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Advanced imaging tools fo
Review
r evaluating cardiac
morphological and functional impairment in
hypertensive disease
Maria Lembo, Maria Virginia Manzi, Costantino Mancusi, Carmine Morisco,
Maria Assunta Elena Rao, Alberto Cuocolo, Raffaele Izzo, and Bruno Trimarco
Arterial hypertension represents a systemic burden, and it
is responsible of various morphological, functional and
tissue modifications affecting the heart and the
cardiovascular system. Advanced imaging techniques, such
as speckle tracking and three-dimensional
echocardiography, cardiac magnetic resonance, computed
tomography and PET-computed tomography, are able to
identify cardiovascular injury at different stages of arterial
hypertension, from subclinical alterations and overt organ
damage to possible complications related to pressure
overload, thus giving a precious contribution for guiding
timely and appropriate management and therapy, in order
to improve diagnostic accuracy and prevent disease
progression. The present review focuses on the peculiarity
of different advanced imaging tools to provide information
about different and multiple morphological and functional
aspects involved in hypertensive cardiovascular injury. This
evaluation emphasizes the usefulness of the emerging
multiimaging approach for a comprehensive overview of
arterial hypertension induced cardiovascular damage.

Keywords: 3D-echocardiography, arterial hypertension,
cardiac magnetic resonance, computed tomography,
speckle tracking echocardiography

Abbreviations: AH, arterial hypertension; 18F-FDG,
fluorine-18-fluorodeoxyglycose; 18F-NaF, fluorine-18-
sodium fluoride; 2D, two-dimensional; 3D, three-
dimensional; CT, computed tomography; ECV, extracellular
volume fraction; EDV, end-diastolic volume; GLS, global
longitudinal strain; LGE, late gadolinium enhancement;
LVH, left ventricular hypertrophy; LVM, left ventricular
mass; PET-CT, PET-computed tomography
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A
rterial hypertension (AH) represents a relevant car-
diovascular risk factor and a systemic burden [1,2]. It
has, in fact, an important impact on the develop-

ment of cardiac and vascular events, predisposing to heart
failure, acute coronary syndromes, peripheral artery dis-
ease and stroke [3,4]. AH affects the entire body, thus
leading to target organ damage in multiple districts [5].

Early diagnosis of cardiac modifications induced by pres-
sure overload and arterial disease induced by increased
4 www.jhypertension.com
arterial stiffness, together with the identification of subclinical
organ damage have become crucial for a timely and adequate
treatment, aiming at not only the avoidance of irreparable
organ damage but also trying to confine injury progression
[6].

Beyond standard echo-Doppler echocardiography,
which remains among the most simple but accurate meth-
ods for the investigation of cardiac and vascular remod-
elling and diastolic dysfunction [1,6,7], advanced imaging
techniques are emerging for their sensitive capability of
recognizing early myocardial and vascular impairment in
many cardiovascular diseases [8–10], including AH [11,12].
Those imaging methods, including speckle tracking and
three-dimensional (3D) echocardiography, cardiac MRI,
computed tomography (CT) and PET-computed tomogra-
phy (PET-CT), can help, in different ways, in the detection
of subclinical disease and/or in the identification of
cardiovascular changes deriving from pressure overload
[13–15].

The current review aims at highlighting the usefulness of
advanced imaging tools, each with its peculiarity, beyond
standard echocardiography, for the identification of sub-
clinical AH-induced organ damage, revealing both myocar-
dial morphological and functional alterations present in the
hypertensive setting, even at very early stages.

TWO-DIMENSIONAL SPECKLE
TRACKING ECHOCARDIOGRAPHY

Two-dimensional (2D) speckle tracking echocardiography
is a feasible ultrasound tool, providing information about
left ventricular deformation in different directions: longitu-
dinal, circumferential and radial and left ventricular twist-
ing. It was demonstrated that all speckle-tracking-derived
Volume 40 � Number 1 � January 2022
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strains appeared to be altered in patients affected by AH
[16]. In particular, global longitudinal strain (GLS), despite
being load dependent, is a sensitive parameter for identifi-
cation of left ventricular subclinical systolic dysfunction,
and it is related to the amount of myocardial fibrosis and left
ventricular filling pressures [17,18]. In fact, it resulted im-
paired even in patients at very early stages of AH, indepen-
dently on alterations in left ventricular geometry and before
a reduction in left ventricular ejection fraction, the main
used parameter for the evaluation of left ventricular systolic
function, also presenting a higher reproducibility and lower
interobserver and intraobserver variability than the latter
[19,20].

Regional strain provided further information: longitudi-
nal strain impairment mainly involved basal and middle
segments, with a relative sparing of apical ones and result-
ing in higher values of relative regional strain ratio (the ratio
between apical and the sum of basal and middle strain) in
newly diagnosed hypertensive patients in comparison to
controls, thus exacerbating the base-to-apex gradient de-
formation [21]. This phenomenon found correspondence in
myocardial fibrosis by late gadolinium enhancement cardi-
ac magnetic resonance, which is mainly found in left
ventricular basal and middle segments in hypertensive
patients with concentric left ventricular hypertrophy
(LVH) [22].

Left ventricular longitudinal strain resulted progressively
more impaired in hypertensive patients presenting left
ventricular concentric remodelling, LVH and LVH associat-
ed with dilation. Circumferential and radial strains resulted
instead compromised in more advanced stages of AH when
LVH was already established, being still normal or actually
increased as for radial strain and left ventricular torsion in
early phases of AH, probably as a compensatory mecha-
nism in response to pressure overload [16,23,24].

Subsequent studies showed the involvement of all the
three endo, mid and subepicardial layers of both longitu-
dinal and circumferential strains in AH [25]. At early stages
of AH, longitudinal endomyocardial layer seemed to be the
most affected by pressure overload [26]. Left ventricular
longitudinal and circumferential endocardial and mid-myo-
cardial layer strains progressively decreased from normo-
tensive individuals, across patients with masked AH to
patients with sustained AH [27]. Subepicardial layer strain
seems to be involved in more advanced stages of AH and it
was described as a prognosticator of cardiovascular events
[28]. The interrelation and concomitant dysfunction of
multiple strains together with the impairment of echo
parameters examining different myocardial layers (e.g.
the independent association between GLS, quantifying
the deformation of longitudinal fibres and midwall fraction-
al shortening evaluating the motion of midwall circumfer-
ential fibres), demonstrated the comprehensive left
ventricular systolic dysfunctional dynamics in AH [16,29].
Furthermore, longitudinal and circumferential early diastol-
ic strain rates were decreased, while late diastolic strain
rates were increased in hypertensive patients, reflecting an
impaired left ventricular myocardial relaxation and diastolic
dysfunction [27].

In addition, investigating myocardial work components
by left ventricular pressure-strain loops derived from
Journal of Hypertension
speckle tracking echocardiography and GLS, a positive
and significant correlation was found between systolic
blood pressure and both global work index, representing
the total work within the left ventricular pressure-strain
area, and global constructive work, indicating the work
performed during systolic shortening in addition to nega-
tive work during lengthening in isovolumetric relaxation, in
a population of heathy individuals [30]. Those correlations
were also confirmed in the hypertensive setting, where
higher values of global work index and global constructive
work values were highlighted in comparison to controls, in
particular in patients with eccentric and concentric LVH
[31]. Wasted work, which represents the work performed
during segmental shortening when the aortic valve is closed
in isovolumic relaxation or the work performed during
systolic segmental lengthening, was also demonstrated to
be higher in hypertensive patients. In addition, global
efficiency, which is computed as the ratio between con-
structive work and wasted work of all left ventricular seg-
ments, was demonstrated to be preserved in early stages of
hypertension, as higher wasted work is balanced by a
higher constructive work, whereas this balance is lost in
advanced stage when left ventricular dilation is established
[32,33]. In addition, myocardial work index and construc-
tive work were significantly increased in patients with
uncontrolled and resistant AH in comparison to well con-
trolled hypertensive patients and normotensive individuals.
Myocardial work index was also associated with functional
capacity alteration in terms of oxygen consumption [34]. In
hypertensive patients, work index was positively correlated
with SBP and segmental differences in work index were
demonstrated, affecting especially basal segments and in
particular basal septum in patients with LVH, emphasizing
again the base-to-apex gradient [35].

Moreover, GLS was demonstrated to be a potential good
predictor of major adverse cardiovascular events in a pop-
ulation of asymptomatic patients affected by hypertensive
heart disease, when incorporated in a risk score, also
including age more than 70 years, concentric LVH and atrial
fibrillation [36].

GLS stands out among other strain types not only be-
cause its impairment is detectable even at very early stages
of AH, but for its high reproducibility and as it is easily
performed on board the echo machine, whereas the assess-
ment of the other strains requires additional software.

Even if a small variability among vendors is still present,
usefulness and simple approach of left ventricular GLS is
considered so remarkable in different pathological condi-
tions, including AH, that it has been considered worthy to
be incorporated into the standardization of the echo report
[37].

Right ventricle could also be affected by AH, as both
ventricles share the interventricular septum, myocardial
fibres and pericardium and this could determine ventricular
interdependence. Indeed, right ventricular systolic dysfunc-
tion was demonstrated to be a remarkable prognosticator of
heart failure related to AH [38]. 2D strain imaging revealed
right ventricular longitudinal mechanics’ dysfunction in
early systemic hypertension by an impairment in peak
systolic strain and early diastolic strain rate [39]. Both right
ventricular GLS and longitudinal deformation of right
www.jhypertension.com 5
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ventricular free-wall resulted impaired in hypertensive
patients, in particular in untreated and suboptimally treated
patients, and longitudinal dysfunction was more evident in
the subendocardial than in the mid-myocardial right ven-
tricular wall layer [40,41].

Speckle tracking assessment found its utility also for the
evaluation of left atrial compliance.

Apart from the left and right ventricle, left atrium is
another cardiac chamber being frequently affected by pres-
sure overload. Before the development of left atrial dilation,
impairment in left atrial longitudinal strain was detected in
patients with suboptimal blood pressure control and AH,
independently on left ventricular longitudinal dysfunction
[42–44]. Left atrial peak longitudinal strain, measured at the
end of the reservoir phase and left atrial peak contraction
strain during left atrial systole, resulted altered even before
LVH. Left atrial longitudinal strain was considered a surro-
gate of left ventricular diastolic dysfunction, being signifi-
cantly correlated with E/e’ ratio and increased left
ventricular filling pressures [45,46].

Moreover, in hypertensive patients with concomitant
paroxysmal atrial fibrillation, speckle tracking-derived left
atrial reservoir, conduit and pump function were all early
impaired [47].

Even if not as widely validated as for left ventricular and
left atrial assessment, speckle tracking echo was also ap-
plied on vascular districts [48]. In particular, circumferential
strain analysed in common carotid arteries was demonstrat-
ed to be significantly correlated with carotid intimalmedia
thickness and arterial stiffness in a population including
patients with several cardiovascular risk factors and a high
prevalence of AH [49].

Table 1 summarizes the information derived from ad-
vanced cardiac imaging techniques for detection of left
ventricle (LV), left atrial and vascular damage, according
to the possibility to identify morphological and functional
abnormalities at an early stage, consolidated stage of AH or
possibly diagnosing AH complications (Fig. 1).
THREE-DIMENSIONAL
ECHOCARDIOGRAPHY AND THREE-
DIMENSIONAL SPECKLE TRACKING
ECHOCARDIOGRAPHY

Real-time 3D echocardiography allows the assessment of
left ventricular geometry and in particular the computation
of left ventricular mass (LVM) and left ventricular end-
diastolic volume (EDV) and end-systolic volume, providing
an accuracy that is comparable to MRI, the latter considered
the gold standard for this evaluation [50–52]. 3D-echocar-
diographic technique could represent a good compromise
between two-dimensional echocardiography and MRI: it
shows indeed advantages over standard 2D-echo, as it does
not need geometrical assumptions and could overcome
some limitations due to off-axis beam orientation and
difficult evaluation of asymmetric LVH; it is also less ex-
pensive than MRI [53].

Recently, the use of LVM/EDV ratio, the so-called left
ventricular remodelling index, already validated by MRI, has
been proposed for the 3D-echocardiographic evaluation of
6 www.jhypertension.com
left ventricular geometry in the hypertensive setting [54].
Higher values of LVM/EDV ratio correspond to the in-
crease of left ventricular wall thickness in relation with left
ventricular internal cavity size. Elevated values of LVM/
EDV ratio by MRI were associated with more extended
areas of left ventricular myocardial fibrosis and with poor
prognosis in hypertensive patients [13,55]. In a population
of newly diagnosed and never-treated hypertensive
patients, the use of LVM/EDV ratio by 3D-echo was able
to recognize a higher rate of hypertensive patients with
left ventricular concentric remodelling in comparison to
2D-derived relative wall thickness; these patients also
presented an impairment in both systolic dynamics, with
GLS and stroke volume reduction, and diastolic function,
with higher values of E/e’ ratio [15,54]. Hypertensive
women, being more likely to develop left ventricular
concentric remodelling in response to pressure overload,
presented higher values of 3D-LVM/EDV ratio than men
[54,56].

3D-speckle tracking derived strains provide further in-
formation. The use of 3D-speckle tracking examination has
the advantage over 2D assessment of allowing the evalua-
tion of the entire LV from a single volume of data acquired
from the apical probe position, without the need of multiple
views acquisition, thus substantially reducing time of ac-
quisition and analysis. From this technique, information
about GLS, global circumferential and global radial strain,
left ventricular twisting and torsion are obtainable, similarly
to 2D-strain evaluation [57]. In addition to these strains, 3D-
speckle tracking produces info about a further strain: global
area strain, which is the percentage change of the myocar-
dium from its original dimensions, thus a combination of
both longitudinal and circumferential deformation. An im-
pairment of all those strains, including global area strain,
was observed in hypertensive patients, even in very young
patients and in ones at early stages of AH [57,58]. In
addition, the progression towards left ventricular geomet-
rical remodelling induced by pressure overload exacerbat-
ed left ventricular deformation impairment, strains being
more reduced, in absolute value, in hypertensive patients
with concomitant LVH and dilation, according to different
left ventricular geometrical patterns [16,59]. The main limi-
tation to the use of 3D-echocardiographic approach is the
vendor dependent variability and the suboptimal feasibility,
which is a little lower than the standard 2D-echo approach
[60]. However, improvements and advancements in trans-
ducers’ technology allow, nowadays, the acquisition of the
volume data set in a single heartbeat, thus overcoming
some feasibility issues due to arrhythmias or incapability
in breath holding.

3D-echo found application even for the evaluation of
right ventricular volumes and ejection fraction. At consoli-
dated stages of AH, 3D RV end-systolic volume and EDV
were increased, while right ventricular ejection fraction
resulted reduced in patients with any type of LVH; this
feature was indeed particularly evident in hypertensive
patients presenting left ventricular dilation associated with
LVH [61].

3D-approach was also recently used to identify early left
atrial morphological and functional alterations. In particu-
lar, left atrial phasic volumes were found to correlate with
Volume 40 � Number 1 � January 2022



TABLE 1. Advanced cardiac imaging techniques for detection of left ventricular, left atrial and vascular damage induced by arterial
hypertension

Left ventricle

Tool Early stage Consolidated stage Complications

2D speckle tracking echo GLS impairment
Predominant basal and middle LS involvement
Layers’ function impairment, especially
longitudinal endomyocardial layer.

Myocardial work: higher global work index and
global constructive work

GLS, circumferential and radial strains impairment
more evident with LV hypertrophy

Layers’ function impairment
Myocardial work: higher global work index and
global constructive work, higher wasted work

3D echocardiography and
3D speckle tracking

Increased LVM/EDV ratio Concentric
remodelling with reduced stroke volume

All strains impairment: including GLS, global
circumferential, radial and area strain.

LV hypertrophy LV dilation and heart failure

MRI Impaired LV strains by feature tracking LV
diastolic dysfunction

LV hypertrophy
Basal and middle segments LGE, with no ischemic
pattern

LV diffuse and local fibrosis: elevated ECV and
native T1

Impaired LV strains by feature tracking LV diastolic
dysfunction

LV dilation and heart failure

CT LV diastolic dysfunction LV hypertrophy
Diffuse fibrosis by CT ECV
LV diastolic dysfunction

Coronary artery disease
Aortic valve stenosis and
Agaston calcium score

PET-CT Increased LV 18F-FDG uptake, with higher
inflammation

Increased LV 18F-NaF uptake
and 18F-FDG in aortic valve
stenosis

Increased LV 18F-NaF uptake
and 18F-FDG in coronary
atherosclerosis

Rubidium-82 reduced
myocardial perfusion reserve

Right ventricle

Tool Early stage Consolidated stage Complications

2D speckle tracking echo Impaired RV GLS and free-wall LS Impaired RV GLS and free-wall LS.
Layers’ function impairment, especially longitudinal
endomyocardial layer

3D echocardiography and
3D speckle tracking

3D RV volumes were increased and 3D RV ejection
fraction resulted reduced in patients with LV
hypertrophy

MRI Increased RV mass index, ventricular wall thickness
and remodelling index

Left atrium

Tool Early stage Consolidated stage Complications

2D speckle tracking echo LA strain impairment: reduced LA reservoir,
conduit and pump function

3D echocardiography and
3D speckle tracking

LA strain impairment LA strain impairment and dilation

MRI LA strain impairment by feature tracking LV strain impairment and dilation

CT LV dilation

Vessels

Tool Early stage Consolidated stage Complications

2D speckle tracking echo Impaired circumferential vascular strain in
carotids

MRI Aortic aneurism Carotid
plaques

CT Coronary artery disease
Carotid plaques
Aortic aneurism
Acute aortic syndromes Stroke

PET-CT Increased 18F-FDG uptake in
carotid atheroma

Increased LV 18F-NaF uptake in
coronary atherosclerosis and
carotid plaques

18F-FDG, fluorine-18-fluorodeoxyglycose; 18F-NaF, fluorine-18-sodium fluoride; 2D, two-dimensional; 3D, three-dimensional; CT, computed tomography; ECV, extracellular volume
fraction; GLS, global longitudinal strain; LA, left atrial; LS, longitudinal strain; LV, left ventricular; LVM/EDV ratio, left ventricular mass/end-diastolic volume ratio; PET-CT, PET-computed
tomography.
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FIGURE 1 Example showing alterations provided by different advanced imaging tools at early stage, consolidated stage of arterial hypertension and complications. At early
stages: (a) 2D GLS and regional strain impairment with predominant involvement of basal and middle longitudinal strain, (b) Myocardial work components alteration in
hypertensive patients, (c) LV concentric geometry with increased LVM/EDV ratio detectable at 3D-echocardiography. At consolidated stage: (d) LVH evaluated by MRI, E)
LGE nonischemic intramyocardial pattern (white arrow) of the basal anterior septum (left: basal short axis view, right: three-chamber view) in a hypertensive patient with
LVH, (f) contrast-enhanced CT showing LA dilation. Complications: (g) Aneurism of the ascending aorta detected by contrast-CT, (h) Aortic valve calcification and stenosis
by CT, (i) 18F-NaF PET-CT showing uptake within both the descending left coronary artery and the aortic valve. 18F-NaF, fluorine-18-sodium fluoride; 2D, two-dimensional;
3D, three-dimensional; CT, computed tomography; EDV, end-diastolic volume; GLS, global longitudinal strain; LA, left atrial; LV, left ventricular; LVH, left ventricular
hypertrophy; LVM, left ventricular mass; PET-CT, PET-computed tomography.
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organ damage induced by AH and 3D-speckle tracking
derived left atrial strains resulted early altered in hyperten-
sive patients, even before left atrial dilation [62,63]. Higher
cumulative SBP from early adulthood throughout middle
age was associated with adverse left atrial remodelling, with
higher left atrial volumes, increased reservoir, and impaired
early diastolic strain rate indicating impaired conduit func-
tion. Thus, pressure overload has an early and cumulative
impact on both left atrial structure and function. Alteration
of 3D LA dynamics and volumes reflect the severity and
chronicity of left ventricular diastolic dysfunction, being
correlated to left ventricular filling pressures [64].

MRI

Cardiac MRI supplies multiple valuable information not
only about left ventricular geometry and function, but also
providing tissue characterization. Indeed, MRI is consid-
ered the gold standard for the assessment and evaluation of
left ventricular mass and volumes, thanks to the optimal
spatial resolution and tracing of epicardial and endocardial
borders [65]. MRI allows to identify different pathological
left ventricular geometrical patterns possibly present in
AH: left ventricular concentric remodelling, eccentric and
8 www.jhypertension.com
concentric LVH associated or not with left ventricular dila-
tion [66]; left ventricular dilation being related with the
highest risk of mortality [67]. In addition, MRI is extremely
useful for guiding differential diagnosis of LVH: the possi-
bility to combine information deriving from left ventricular
geometry (thus also detect asymmetrical segmental hyper-
trophy) with tissue characterization and derived myocardial
fibrosis’ extension and localization allows the discrimina-
tion between LVH linked to hypertensive hearts and other
pathological conditions, such as infiltrative and storage
cardiomyopathies, hypertrophic cardiomyopathy, athlete’s
heart [22,68,69]. Areas of myocardial replacement fibrosis
are characterized by increased extracellular volume distri-
bution, causing delayed gadolinium wash-out and thus
detection of regions of late gadolinium enhancement
(LGE). In AH-induced LVH, the presence of noninfarcted
LGE patterns were recognised in about 50% of the patients,
most frequently involving basal andmiddle segments [22]. It
was also demonstrated that there was a significant correla-
tion between the extension of LGE and the degree of left
ventricular diastolic dysfunction [70]. On the contrary, in AH
patients, a diffuse myocardial fibrosis is often present,
which is not detectable by LGE. Indeed, T1 mapping and
the evaluation of extracellular volume fraction (ECV) were
Volume 40 � Number 1 � January 2022
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introduced with this aim. T1, expressing tissues’ longitudi-
nal relaxation time, is evaluated before and after gadolini-
um administration: native T1 values reflect the composite
signal of both myocardial cells and interstitium, while
postcontrast values give information about extracellular
space. The computation of ECV is derived from a formula
including pre and postcontrast T1 values of the myocardi-
um and blood pool together with haematocrit [71,72]. In the
hypertensive setting, several studies demonstrated high
values of ECV and native T1 in AH patients, both being
associated with left ventricular mass and LVH [73–75]. In
fact, examining different patterns of left ventricular geom-
etry related to AH, patients with LVH had significantly
higher values of ECV and native T1 in comparison to those
with normal left ventricular mass, whose values were
comparable to those of healthy controls [13,75]. In addition,
elevated ECV identified by T1 mapping in hypertensive
hearts resulted associated with multiple inflammation bio-
markers [75].

As AH represents a well known risk factor for the
development of coronary artery disease involving both
epicardial coronary arteries and coronary microcirculation,
stress cardiac MRI assessment with adenosine or dipyrida-
mole can evaluate the presence of inducible ischemia.
Stress MRI by first pass gadolinium during a vasodilator
stressor injection can differentiate patients with small vessel
disease from those with epicardial coronary stenosis, eval-
uating the temporal and spatial extent of the perfusion
deficits. On the contrary, subendocardial LGE can also
permit to localize and quantify zones of myocardial necro-
sis following myocardial infarction [76,77].

Morphological and functional right ventricular adapta-
tion to systemic pressure overload mostly reflects the mod-
ifications affecting the LV. In hypertensive patients,
significant positive biventricular correlations were demon-
strated between indexed mass, early peak filling rate and
ejection fraction by MRI. Right ventricular mass index,
ventricular wall thickness and remodelling index measured
by MRI were higher in hypertensive patients than in con-
trols [78].

Similarly to CT, MRI can provide information about
morphological changes of heart (e.g. left atrial dilation)
and of the cardiovascular district, thus including the possi-
bility to uncover abnormal aortic dilation, possibly related
to AH, at different districts: aortic root, arch, thoracic or
abdominal aorta [79], with the advantage of not using
ionizing radiation and potentially high nephrotoxic contrast
agents. Furthermore, MRI is a valuable method for the
evaluation of carotid plaques, both for the estimation of
lumen stenosis and for the assessment of plaques’ compo-
sition, also allowing detection of lipid-rich necrotic core
and intraplaque haemorrhage [80]. In the hypertensive
setting, the identification of those vulnerable plaques could
predict the risk of cerebrovascular events [81].

Even with MRI, it is possible to investigate myocardial
deformation and strains likewise speckle tracking for echo-
cardiography. Feature-tracking, which is an optical flow
method, able to detect feature in images and track them
during the cardiac cycle, allows the evaluation of GLS,
global circumferential and radial strains. It is a postprocess-
ing method and one of the most recent used, having the
Journal of Hypertension
advantage over myocardial deformations methods, such as
cardiac tagging or displacement encoding with stimulated
echoes, to not need additional images acquisition [82,83].
Similarly to speckle tracking echo, feature-tracking derived
strains were all demonstrated to be altered in patients
affected by AH, strains being more impaired in patients
with LVH [84]. In patients with hypertensive heart disease
MRI-derived strains were related to both left ventricular
mass and ECV [85]. The negative association between GLS
by feature tracking and concentric geometry evaluated by
LVM/EDV ratio was also confirmed by MRI, similarly to 3D-
echocardiography [86].

Feature-tracking has been used also for the investigation
of left atrial function; in AH, left atrial reservoir and conduit
dysfunction were early identified in patients, even before
the development of LVH [87]. These parameters correlated
with E/A ratio, thus with left ventricular diastolic dysfunc-
tion. Apart from left ventricular and left atrial strain imaging,
info about left ventricular diastolic function can be obtained
by MRI, even if standard Doppler echo is the first level and
more simple way to assess it. Left atrial enlargement, using
biplane area-length method, suggests elevated left ventric-
ular filling pressure and chronic diastolic dysfunction. Sim-
ilarly to echo-Doppler assessment, phase-contrast MRI
allows the evaluation of transmitral flow with E and A
velocities, by placing a reference plane perpendicular to
mitral inflow at the mitral valve leaflet tips. In addition, the
pulmonary vein flow can be measured 1 cm into the pul-
monary vein ostium. In hypertensive patients a strong
relationship between MRI-derived and Doppler-derived
velocities was demonstrated and MRI-derived diastolic dys-
function well correlated with left ventricular invasively
measured filling pressures [88]. With technological ad-
vancement, the quantification of flow was also possible
with 3D spatial encoding and four-dimensional phase con-
trast-MRI [89].

COMPUTED TOMOGRAPHY

ECG-gated contrast-enhanced CT is very useful for anatom-
ical assessment. In AH, for what concern the myocardium,
CT evaluation of LVH and left atrial dilation can be per-
formed, even if echocardiography or MRI are preferred for
this analysis because free of ionizing radiations [90]. Dia-
stolic dysfunction can be also assessed by dual-source CT
with the evaluation of left atrial phasic volumes and func-
tion parameters. In addition, transmitral peak velocity could
be calculated by dividing peak diastolic transmitral flow by
the corresponding mitral valve area and mitral septal tissue
velocity computed from changes in left ventricular length
per cardiac phase for the estimation of left ventricular filling
pressures. These diastolic measures presented good corre-
lation with echo assessment [91].

Similarly to MRI, diffuse myocardial fibrosis can be
detected by ECV applied to CT or dual energy CT. ECV
computation again is based on haematocrit and pre and
postcontrast Hounsfield unit attenuation in the myocardium
and blood pool. This technique was tested in a population
also including hypertensive patients, with a very good
correlation between ECV by CT and ECV by MRI [92]. Thus,
the possibility to noninvasively analyse myocardial fibrosis
www.jhypertension.com 9
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by CT, even if needing validation on wider population
cohorts, has the advantage to be assessed in patients for
whom MRI is precluded because of claustrophobia or non-
MRI compatible implants [93].

CT has an important role in the identification and
evaluation of complications related to AH. The high spatial
resolution makes CT the chosen imaging method for
vessels analysis. AH is associated with arterial stiffness
and high mechanical stress on the aortic wall, thus result-
ing in alteration of aortic elastic properties and dilatation,
possibly involving both thoracic and abdominal aorta [94].
The dilation of abdominal aorta has prognostic implica-
tions since it was demonstrated to be related to long-term
mortality [95]. CT is, in fact, used for surveillance and for
guiding surgical timing and management in patients
experiencing a thoracic or abdominal aortic aneurysm,
not only providing optimal views for the determination
of aneurysm size and extension, but also for diagnosis of
acute aortic syndromes including aortic dissections and
intramural aortic hematoma, also possible complications
related to AH [96,97]. In addition, AH is also one of the
main risk factors for the development of coronary artery
disease, as it induces endothelial coronary damage and
accelerates atherosclerosis and plaque generation, and
ECG-gated contrast CT provides the estimation of coronary
stenosis and lumen patency [98]. CT can be also assessed to
obtain information about carotid plaques composition and
in particular for the evaluation of calcific volume, demon-
strated to be largely present in hypertensive patients
[80,99].

CT is also a valuable technique for the analysis of aortic
valve. Aortic stenosis and AH often coexist, as increased
pressure overload could determine a mechanical stress on
the aortic leaflets, with consequent endothelial damage and
development of valve stenosis [100,101]. CT could be
extremely helpful in aortic stenosis grading with the possi-
bility to evaluate calcification degree by Agaston calcium
score on noncontrast CT scans, particularly in those patients
in whom the echocardiographic examination is suboptimal
and there is a mismatch between different echocardio-
graphic parameters for aortic stenosis estimation [102]. In
this regard, paradoxical low flow low gradient aortic ste-
nosis is a particular type of aortic valve stenosis, character-
ized by a discrepancy between echocardiographic mean
pressure gradient and aortic valve area, often difficult to
distinguish from pseudo-severe aortic stenosis by the echo-
cardiographic evaluation alone; it was described in hyper-
tensive hearts with left ventricular concentric geometry and
small diameters and associated with unfavourable progno-
sis [103].

PET-COMPUTED TOMOGRAPHY

Molecular imaging with PET-CT is emerging for its ability in
detection subclinical disease in multiple settings [104–106].

Different tracers provide information about different
pathological mechanisms developed in diseases, including
AH. Fluorine-18-fluorodeoxyglycose (18F-FDG) is a glucose
analogous; an increased uptake of this tracer reflects cell
active metabolism and proliferation, and it is associated with
inflammation [104]. Left ventricular myocardial 18F-FDG
10 www.jhypertension.com
uptake was demonstrated to be higher in patients affected
by AH, it being positively correlated to both systolic and
diastolic blood pressure values [107]. In addition, AH enhan-
ces the development of arterial atherosclerosis and related
inflammation [108]. 18F-FDG is able to detect and quantify the
arterial inflammatory processes in atherosclerotic plaques
[109,110]. In particular, 18F-FDG uptake in carotid atheroma
resulted associated with a high risk of recurrent cerebrovas-
cular events [111].

On the other hand, fluorine-18-sodium fluoride (18F-
NaF) is able to evaluate microcalcification activity, exchang-
ing with hydroxyl groups on exposed regions of hydroxy-
apatite crystals on calcification surface [112,113]. Thus, it is
extremely useful to study calcification remodelling in ath-
erosclerotic plaques and valve diseases, both possibly
related to AH condition. It was demonstrated that both
diastolic and mean blood pressure values were indepen-
dently associated with the extent of coronary atherosclero-
sis as quantified by 18F-NaF [114]. In addition, in a
population including a high percentage of hypertensive
patients, carotid 18F-NaF uptake was associated with se-
verity of ischemic cerebrovascular disease [115]. For what
concerns aortic valve stenosis, both 18F-FDG and 18F-NaF
uptake resulted increased in patients with aortic stenosis.
Moreover, 18F-NaF activity showed to be progressively
increased in patients with higher disease severity [116].

Rubidium-82 PET-CT allows the evaluation of myocar-
dial perfusion reserve, characterizing the capability of va-
sodilation of the coronary circulation. Hypertensive
patients, in particular those with resistant hypertension,
were demonstrated to exhibit lower values of myocardial
perfusion reserve and this parameter was related with a
higher rate of cardiovascular events, demonstrating both
coronary andmicrovascular dysfunction and the prognostic
value of myocardial perfusion reserve in this setting [117].

Even if needing wider studies on hypertensive popula-
tion settings, PET-CT assessments with different tracers
provide promising basis for studying molecular imaging
and provide possibly prognosticators of disease progres-
sion.

CONCLUSION

The great advancements in imaging techniques allow the
evaluation of AH condition and influence on the myocar-
dium and the cardiovascular system frommultiple points of
view, from tools bringing to light subclinical dysfunction as
speckle tracking echocardiography, to instruments allow-
ing evaluation of tissue characterization and possible AH
complication as MRI and CT, and molecular imaging
highlighting active metabolism, calcification activity or mi-
crovascular dysfunction. Different imaging tools are able to
detect morphological and functional abnormalities related
to AH, but, on the contrary, every single technique owns
its peculiarity and provides complementary information
(Fig. 2).

A multiimaging approach thus may help to have a more
exhaustive perspective of AH-induced damage, thus con-
tributing to assess an early diagnosis, avoid disease pro-
gression and provide appropriate treatments for patients’
optimal management.
Volume 40 � Number 1 � January 2022



FIGURE 2 Schema depicting the advanced imaging tools useful in the cardiac and vascular damage induced by arterial hypertension; some evaluations are common to one
or more techniques while each method owns its peculiarities. 18F-FDG, fluorine-18-fluorodeoxyglycose; 18F-NaF, fluorine-18-sodium fluoride; 2D, two-dimensional; 3D,
three-dimensional; CAD, coronary artery disease; CT, computed tomography; ECV, extracellular volume fraction; EDV, end-diastolic volume; GLS, global longitudinal strain;
LA, left atrial; LGE, late gadolinium enhancement; LV, left ventricular; LVH, left ventricular hypertrophy; LVM, left ventricular mass; PET-CT, PET-computed tomography.
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