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ABSTRACT: Incipient soot early in the flame was studied by
high-resolution atomic force microscopy and scanning tunnel-
ing microscopy to resolve the atomic structure and orbital
densities of single soot molecules prepared on bilayer NaCl on
Cu(111). We resolved extended catacondensed and pentagonal-
ring linked (pentalinked) species indicating how small
aromatics cross-link and cyclodehydrogenate to form moder-
ately sized aromatics. In addition, we resolved embedded
pentagonal and heptagonal rings in flame aromatics. These
nonhexagonal rings suggest simultaneous growth through
aromatic cross-linking/cyclodehydrogenation and hydrogen
abstraction acetylene addition. Moreover, we observed three
classes of open-shell π-radical species. First, radicals with an
unpaired π-electron delocalized along the molecule’s perimeter. Second, molecules with partially localized π-electrons at
zigzag edges of a π-radical. Third, molecules with strong localization of a π-electron at pentagonal- and methylene-type sites.
The third class consists of π-radicals localized enough to enable thermally stable bonds, as well as multiradical species such as
diradicals in the open-shell triplet state. These π-diradicals can rapidly cluster through barrierless chain reactions enhanced by
van der Waals interactions. These results improve our understanding of soot formation and the products formed by
combustion and could provide insights for cleaner combustion and the production of hydrogen without CO2 emissions.
KEYWORDS: Combustion, incipient soot, atomic force microscopy, scanning tunneling microscopy, single-molecule analysis

INTRODUCTION
The mechanism by which soot particles, i.e., carbonaceous
nanoparticles, are formed during the high-temperature
incomplete combustion of hydrocarbon fuels is an object of
ongoing research and is still being strongly debated in the
combustion community. Particle inception, i.e., the transition
from gas-phase polycyclic aromatic hydrocarbons (PAHs) to
condensed-phase clusters or incipient soot,1 remains the most
intensely argued and yet most critical. Understanding the
chemistry and physics behind this process is crucial in
ultimately mitigating carbon particle emissions from combus-
tion systems. The release of soot particles into the atmosphere
is of great concern for human health and the environment,
including climate heating.2,3

On the other side, understanding carbonaceous nanoparticle
formation under combustion and pyrolytic conditions is

motivated in the context of material science, such as producing
carbon blacks,4 or in the recent growing interest toward the
environmentally friendly production of hydrogen via methane
pyrolysis, namely “turquoise” hydrogen production, with low
and possibly even negative carbon emissions.5,6 Flame
synthesis has emerged as an attractive technological method
to produce other carbon nanostructures, including fullerenes,
nanotubes, and graphene,7 but also fluorescent carbon
nanoparticles with tunable optical and electronic properties.8
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In addition, PAHs and carbon nanoparticles, relevant to fuel-
rich combustion, also attract considerable interest from the
astrophysics community as analogues of carbonaceous
molecules and grains in extraterrestrial environments.9−11

Given the above reasons, the formation of PAHs,
condensed-phase carbonaceous species, and soot nanoparticles
has been extensively investigated over the past decades and
remains an ongoing and active research topic.12−17 Particularly
considering the formation mechanisms and the chemical
characterization of incipient soot particles, significant progress
has been made in the past few years both experimentally18−23

and computationally.24−30 Among the main advances, the
identification of resonantly stabilized aromatic π-radicals
(RSRs) as key intermediates in the nucleation and growth of
soot particles has recently attracted major attention. Recent
works have provided evidence for rapid molecular clustering-
reaction pathways involving radical-chain reactions of RSRs,
yet also suggesting the formation of covalently bound
complexes.18,28 In addition, the formation of fully or partially

embedded five-membered ring structures may also contribute
to the mass/molecular growth process.31,32 The chemical
growth of aromatic compounds is a pathway long sought in the
soot community as an alternative or complementary route to
the purely physical coalescence due to van der Waals/
dispersion forces.13,14 The relevance and implications of each
of these two routes - physical and chemical pathways -
alongside the combinations of both, have been thoroughly
reviewed by Frenklach,13 D’Anna,14 and Wang15 and, more
recently, by Martin et al.17,28

Recently, atomic resolution noncontact atomic force
microscopy with CO-functionalized tips (nc-AFM, hereafter
abbreviated as AFM)33 was used to study a variety of complex
molecular mixtures based on atomically resolving single
molecules including asphaltenes/heavy oil mixtures,34,35 fuel
pyrolysis products,36 petroleum pitch,37 molecules of meteor-
itic origin,11 and aromatic molecules forming nascent soot
nanoparticles.19,20 The recent use of AFM,19,20 for the analysis
of the molecular constituents of the incipient soot particles, has

Figure 1. Laplace-filtered constant-height CO-tip AFM images of Z = 7 mm soot molecules. All molecules were measured on bilayer NaCl on
Cu(111). Structures A1 to A31 are assigned with high confidence. Structures A32-A44 are tentatively assigned. All scale bars correspond to
5 Å. See Figures S1 to S6 for additional data.
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shed light on the richness in the molecular configurations and
moieties of such compounds.
Here, for studying incipient soot, samples are collected from

a lightly sooting laminar premixed flame of ethylene and air
(see Methods). With increasing distance Z from the burner,
the incipient soot particles grow and mature. Thus, collecting
samples at different Z values can provide insight into the
particle growth. The results obtained by these earlier
applications of AFM studying soot at burner-to-probe
separations of Z = 8 mm and Z = 14 mm have allowed, for
instance, theoretically predicting a large variety of reactive sites
of the observed molecules based on the different arrangement
and hybridization of the carbon atoms at the edge of the
molecules24,25 as well as proposing possible routes for
molecular growth and clustering.26,27

To achieve a better understanding of the chemical and
physical processes involved during the high-temperature gas-
to-particle transition, an in-depth knowledge of the molecular
structure, properties, and conformations of the main chemical

constituents and the precursors of the incipient particles is
critical. Here, we investigate just-nucleated particles immedi-
ately behind the flame front of a fuel-rich ethylene-air flame,
namely, at a probe-to-burner separation distance Z = 7 mm,
thus accessing molecules in early soot formation, where
particles are expected to be in the form of a molecular cluster
rather than a nanocrystalline “solid” material. Due to their
relatively small size and loosely bonded supramolecular
structure, these incipient soot particles can provide aromatic
molecules that can be studied by high-resolution atomic force
microscopy providing insights into the inception process.
In this work, AFM measurements in combination with

scanning tunneling microscopy (STM) orbital density imaging
and atom manipulation are presented to elucidate the
molecular structures of soot particles and discuss their
implications for the growth process of incipient soot particles.
Beneficial for the statistical significance of this study, most of
the compounds of the Z = 7 mm condition could be resolved
by AFM. Because recent investigations revealed the impor-

Figure 2. Assigned structures A1 to A31 and tentatively assigned structures A32 to A44 of the molecules for which AFM data are shown in
Figure 1.
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tance of open-shell π-radical systems in the soot formation
process,24−28 we refined our analysis by employing orbital
density imaging with scanning tunneling microscopy (STM).
To that end, we concentrated our investigation on the species
found on bilayer NaCl islands. This insulating layer is used for
electronic decoupling of the molecules from the metallic
surface, preventing hybridization with the latter. This
decoupling is beneficial for imaging the frontier orbital
densities of the molecules by STM.38 Electronic character-
ization by STM is important in two aspects: by comparison
with calculated frontier orbital densities and spin densities, it
corroborates and refines the structural assignments based on
AFM.34 Moreover, STM orbital images provide insight into the
spin ground state and open-/closed-shell character of
adsorbates.28,39−43

Atom manipulation was employed to mimic hydrogen
dissociation processes taking place in the flame.14−17,24−28

The atom manipulation experiments provide us with
information about likely reaction pathways in flame, i.e.,
from which atomic sites hydrogen atoms are likely dissociated,
and it also enables us to study the products formed by such
dehydrogenations.
The most important findings of our study of molecules of

the Z = 7 mm soot sample are 1) catacondensed and
pentalinked molecules suggest cross-linking of small aromatics,
2) structures with partially and fully embedded five-membered
and seven-membered rings suggest hydrogen abstraction
acetylene addition (HACA) and cross-linking pathways
occurring in tandem, and 3) different classes of open-shell π-
radicals were found. Our analysis of the detected species
reveals insights about the particle growth in the flame. These
insights provide evidence for PAH growth and soot inception
pathways and are of value to improving combustion processes
and producing carbon materials alongside hydrogen produc-
tion.

RESULTS AND DISCUSSION
Figure 1 shows AFM data of the molecules collected from the
flame at a burner-to-probe separation distance of Z = 7 mm.
They were evaporated from a Si-wafer onto a Cu(111) sample,
partly covered with bilayer NaCl, at a sample temperature of
about 10 K. Characterization has been performed by STM and
AFM using a CO-functionalized tip at a sample temperature of
T = 5 K, investigating individual molecules on bilayer NaCl on
Cu(111). Most of the round bright features in the vicinity of
molecules, e.g., near A15 and A24, are CO molecules, which
had been dosed on the surface for tip functionalization and are
identified due to their dark contrast in constant-current STM
images in conjunction with the AFM images (see Figures S1−
S4).33,44

Figure 2 shows the assigned and tentatively assigned
molecular structures. For the assignments, in addition to the
AFM images shown in Figure 1, constant-height AFM images
at different tip-heights have been obtained. Moreover,
constant-current STM images at different sample voltages,
corresponding to ion resonances, have been obtained and
compared to DFT-calculated maps of the frontier orbital
densities (Section 1 in the Supporting Information).
Compared to the Z = 8 mm sample earlier investigated by

AFM,19,20 for which about half of the molecules could not be
analyzed at atomic resolution mostly because of some three-
dimensional character, for the Z = 7 mm condition, the
majority, i.e., about 80%, of the analyzed compounds could be

resolved at the atomic scale (see STM overview in the
Supporting Information, Figure S7), which is beneficial for the
statistical significance of this study. This most likely is a result
of the more planar morphology of the molecules. The Z = 7
mm sample contains mostly just-nucleated particles, whereas
the Z = 8 mm sample presents more particles grown by
coagulation;45 for further details see the sample collection
section in Methods. The Z = 8 mm sample can be expected to
be more “graphitized” than the Z = 7 mm because particle
carbonization/aging has been shown to be connected to
particle coagulation.46,47

In the following paragraphs, we highlight specific features
and discuss observations and implications of the molecules
resolved in the Z = 7 mm sample. Figure 3 presents the H/C

plots for molecules from the Z = 7 mm and the Z = 8 mm
samples resolved by AFM. As for the Z = 8 mm condition,
most of the aromatic molecules at Z = 7 mm are centered
within the range of 20−40 carbon atoms (250−500 Da), with
a typical H/C ratio of around 0.4−0.5 confirming earlier
experimental and computational investigations that incipient
soot is mainly composed by PAHs of moderate size and about
the size of coronene to circumpyrene.22,23,49

The aromatic molecules are distributed close to the
maximally pericondensed line (black line in Figure 3), but
mainly in the H-rich region of the graph (top right). This is
particularly evident as the mass of the molecules increases, and
H/C almost reaches an asymptote for those exceeding 35
carbon atoms with a typical H/C ratio within the range of 0.4−
0.5 (a pericondensed aromatic molecule with 50 C atoms has a
H/C of 0.35). However, in a few cases, some molecules also lie
below the maximally pericondensed line. This is, for instance,
the case for A21, A39, and A44, which all present a compact
aromatic structure with an extension on the periphery of some
acenaphthylene groups. For the Z = 7 mm sample, a few very
large (nC > 40) pericondensed structures, close to the
maximally pericondensed line, are also detected. These are

Figure 3. H/C ratio as a function of the number of aromatic
carbon atoms (nC). Unknown side chains -R are counted as H.
The line corresponds to the calculated trend for maximally
pericondensed PAHs,48 i.e., H/C = (nC/6)−0.5; the black circles
refer to molecules for the Z = 8 mm sample (from Commodo et
al.20); red circles refer to the molecules of the Z = 7 mm sample
(this work). Symbol sizes indicate the respective abundances in the
sampled pool of molecules.
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molecules A29 and A20 reported in Figure 4a. These have 50
and 45 carbon atoms, respectively, with molecular masses of

621 and 560 Da (counting the unknown -R group in A20 as
-H). Both structures present a high degree of condensation,
i.e., number of fused rings, with some aliphatic moieties, i.e.,
aliphatic substituted aromatics such as side chains (-R), methyl
moieties, or methylene bridges in peripheral partially
embedded pentagonal rings (fluorene-type configuration).
This latter class of functionality is theoretically predicted to
be formed from an “armchair” site (C4 motif) reacting with C1
gas-phase species.50 The compound A20 is also a resonance-
stabilized PAH radical. The radical character of A20 will be
later discussed along with other detected open-shell species,
such as dehydrogenated A29.
Another class of compounds of which several structures were

detected features acenaphthene moieties, represented by
compounds A7, A12, and A13 that are reported in Figure
4b. Each of them, while presenting a high degree of
pericondensation, has an H/C greater than the point on the
maximally pericondensed line with the same number of carbon
atoms. Notably, these structures present pentagonal rings on
the edge of the molecule in the acenaphthene configuration.
Acenaphthene, as well as acenaphthylene moieties, can be

formed on a “zigzag”-type site of the molecule reacting with C2
gas-phase species, i.e., C2H4, C2H2.

50,51 Many (but not all, see
structure A7) of the two peripheral C atoms of these
pentagons are sp3 hybridized, thus contributing to the relatively
high degree of hydrogenation of the aromatic structures. A13
possesses many bay edges that are unlikely to form via
acetylene addition and could potentially indicate a ring-
enlarging reaction of a rim-based pentagonal ring, recently
shown between indenyl and methyl radicals.52

Evidence for cross-linking between aromatic species is
found. Structure A1 contains two PAH subunits cross-linked
via a double bond (see Figure 4c). This motif was also
observed in the cross-linked species IS43, detected in the Z = 8
mm sample.20 Extended catacondensed species (Figure 4d)
could form from HACA growth or cross-linking followed by
cyclodehydrogenation (see Supporting Information section
S4). The pentagonal ring-linked species shown in Figure 4e
provide more conclusive evidence for cross-linking/cyclo-
dehydrogenation between single aromatic units. The presence
of single penta-links indicates cross-linking as seen in A30 and
A35, similar to that found for IS30 in the Z = 8 mm sample.20

Structure A27 suggests the chemical dimerization between
multiple aromatic moieties. A27 also contains two adjacent
pentagonal rings, a motif that has been hypothesized to occur
by the formation of an E-bridge where cross-linking between
an acenaphthylene-type edge and a zigzag edge leads to a
bridge and dehydrogenation leads to two pentagonal rings
connecting two PAH species.16 However, A27 is also likely to
have formed from two fluorenyl-type edges cross-linking (see
Supporting Information section S4). Such polymerization
reactions followed by cyclodehydrogenation have long been
suggested to explain the growth of small PAH to moderately
sized aromatics. For example, Homann31 found evidence in
mass spectrometry for these species, which he called aromatic
oligomers (aromers). Cross-linked and cyclodehydrogenated
PAH have long been computationally predicted.53 Most
recently, mass spectrometry experiments have found strong
correlations between small and moderately sized soot PAH
suggesting cross-links/dehydrogenation leading to loss of 2−6
hydrogens.21

Nonhexagonal rings were also observed either partially or
fully embedded. Figure 4f shows aromatics that have partially
embedded pentagonal rings. These can form from a large bay
site that closes through cyclodehydrogenation to form a
benzo[ghi]fluoranthene-type site.54 But it could also form from
a pentalink that is followed by acetylene addition to the bay
site (see Supporting Information section S4).55 In addition to
the partially embedded five-membered rings, we also resolved a
fully embedded five-membered ring and a fully embedded
seven-membered ring; see A9 and A19 in Figure 4g,
respectively. The A9 compound has a central moiety made
of a corannulene-like motif with the difference of presenting a
seven-membered ring instead of a six-membered ring fused on
one edge of the central five-membered ring. Due to the
presence of the adjacent five-/seven-membered ring, such a
molecule does not present significant curvature, evidenced by
obtaining atomic resolution on the entire molecule with
constant-height AFM, in contrast to, e.g., corannulene.56,57

Molecule A19 also presents a seven-membered ring fused to
two five-membered rings. However, while in A9 a five-
membered ring is fully embedded, in A19 the seven-membered
ring is fully embedded. Like A9, A19 also does not exhibit
significant curvature because of the incorporation of fused five-

Figure 4. (a) Aromatic pericondensed structures with high
molecular mass; (b) molecular species presenting substantial
compact pericondensed structures but moving away from the
maximally pericondensed line due to the aliphatic pentagonal rings
at their periphery; (c) cross-linked aromatic molecule; (d)
extended catacondensed and (e) pentalinked elongated structures;
(f) aromatic molecules with partially embedded pentagonal rings.
Highlights refer to molecules incorporating benzo[ghi]-
fluoranthene-type moieties in which the five-membered ring is
incorporated in one PAH core (blue); molecules incorporating
fluoranthene-type moieties in which the five-membered ring is
bridging two PAH cores (red); and (g) aromatic molecules
incorporating both five- and seven-membered rings. Structure A9
presents a fully embedded five-membered ring, and structure A19
presents a fully embedded seven-membered ring.
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and seven-membered ring moieties. The inclusion of pentagon-
heptagon pairs is a characteristic motif of a dislocation defect,
e.g., in Stone−Wales defects and grain boundaries, observed in
carbon-based materials such as polycrystalline graphene,
defective fullerenes, and carbon nanotubes.58−62 Extended
PAHs in the form of azulene-embedded nanographene
structures have been synthesized as an important structural
motif for tuning the chemical and electronic properties of
PAHs.63 However, the inclusion of heptagonal rings in flame-
formed aromatics has rarely been observed in the combustion/
soot community. Recently, Tian et al.64 reported some
experimental evidence on the formation of hydrogenated
fullerene C66H4 with symmetric heptagonal rings from low-

pressure flames. The possible inclusions of heptagon rings in
the aromatic structures relevant to the soot formation process
were theoretically proposed by Mao et al.65 from reactive force
field molecular dynamics simulations. More recently, Kraft and
coauthors, in a series of theoretical contributions,66,67

specifically focused on the formation and inclusion of five-
and seven-membered rings in PAHs, showing how likely seven-
membered rings could be formed under flame conditions.
Using density functional theory calculations, the rates for the
formation of seven-membered rings by HACA growth and bay
closures (on a bay containing a five-membered ring) were
shown to be similar to the analogous processes for the
formation of five- and six-membered rings (see Supporting

Figure 5. Delocalized π-radicals (a) A20 and (b) A38 structures with plots of their spin densities, i.e., Mulliken spin densities iso-surfaces of
0.025 au with the values of the carbon with the highest spin density indicated. (a) STM measurements of A20 at the first negative ion
resonance (NIR, V = 0.5 V) and the first positive ion resonance (PIR, V = −1.2 V). The simulated orbital density corresponds to the density
of the singly occupied molecular orbital, i.e., SOMO (which looks identical to the SUMO). Scale bars correspond to 5 Å. STM measurements
were performed at a constant current of I = 1 pA.

Figure 6. Partially localized π-radicals. Laplace-filtered AFM image and structure of (a) A4 and (b) A4R, generated by atom manipulation,
with the position of the dissociated hydrogen indicated by red arrows. For dissociation, a voltage pulse V = 4.5 V was applied for 35 s with
the tip positioned above the molecule. (c) STM measurements on A4R at the NIR, V = 0.8 V (left) and PIR, V = −1.4 V (right). Their very
good agreement with the calculated SUMO/SOMO density (center) corroborates the assignment of A4 and A4R and the open-shell
character of A4R. Scale bars correspond to 5 Å. STM measurements were performed at a constant current of I = 1 pA. Mulliken spin
densities of the radicals (d) A4R, (e) A23, (f) dehydrogenated A35, and (g) dehydrogenated A14 are plotted in blue at iso-surfaces of 0.025
au with the highest spin population indicated.
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Information section S4).66,67 However, many of these species
suggest a cross-linking and cyclodehydrogenation reaction
followed by HACA growth, as recently calculated for the E-
bridge,68 is the most likely path to form these extended
structures with adjacent nonhexagonal rings.
The relevance of resonantly stabilized π-radicals, RSRs, in

the generation, growth, and clustering of PAHs in high-
temperature fuel-rich flames, has a central role in the
discussion on the soot formation mechanism.69−73 A
mechanism involving aromatic π-radicals with localized π-
electrons on zigzag edges was earlier suggested by Wang.15

Recently, Johansson et al.18 provided experimental evidence,
by mass spectrometry measurements, for the presence of a
pool of RSRs, including vinyl-cyclopentadienyl, thus proposing
a mechanism based on radical-chain reactions propagation of
RSRs that could promote aromatic growth. Further evidence
on the “persistent radical character” of the pool of aromatics
composing soot nanoparticles has also been recently obtained
by molecular characterization by laser desorption laser
ionization mass spectrometry measurements of soot extracted
from both diffusion22 and premixed laminar flames.23 Recent
measurements of nascent soot by electron paramagnetic
resonance spectroscopy also indicated the presence of
persistent radicals.45,74 Schenk et al.75 also provided evidence
of the presence of RSRs in gas-phase samples extracted from
several flames. Their analysis of the obtained mass spectra
suggested that hydrogen removal from the saturated CH2
group in PAHs containing five-membered rings, e.g., indene
and fluorene, could result in the formation of very stable
radical structures, i.e., RSRs, in concentrations comparable to
those of the parent closed-shell structures. Our AFM results
support this hypothesis. Several assigned aromatics present sp3
carbons in methyl groups (−CH3), which within the flame are
expected to lose hydrogen and form methylene groups
(−CH2) and result in RSRs. However, different π-radicals
present different reactivity, with only specific edge sites with
localized π-radicals being able to form thermally stable cross-
links.24 Direct imaging of the bonding and electronic
configurations within AFM and STM provides the opportunity

to demonstrate the presence of these π-radicals and to analyze
their π-electron localization.
Structures A20 and A38, shown in Figure 5, are RSRs that

possess delocalized π-electrons. A clear confirmation of its
open-shell configuration has been measured for A20 by STM
orbital density imaging, shown in Figure 5a. Very similar
images for the first negative ion resonance (NIR, V = 0.5 V)
and the first positive ion resonance (PIR, V = −1.2 V) indicate
the possibility of both adding and removing an electron to the
same orbital, a hallmark of the open-shell character. The
simulated orbital density shows the density of the singly
unoccupied molecular orbital (SUMO), which is in excellent
agreement with the measurements. The most pronounced
maxima in the orbital density maps measured by STM are
observed at the periphery of the molecule. The computed spin
density is also found to be spread out along the perimeter of
the aromatic. The maximum Mulliken spin population on a
carbon atom is 0.26 indicating significant delocalization. It was
computed that these delocalized π-radicals form bonds below
20 kcal/mol in strength.24,26,76 The thermal stability of bonds
within the flame is generally agreed to require bond strengths
of more than 40 kcal/mol.15 Thus, stronger localization of the
π-electron is required for the formation of thermally stable
bonds for inception. Nonetheless, these delocalized π-radicals
do provide weak pancake and σ-bonds (∼20 kcal/mol) that
could stabilize early incipient nanoparticles.24,25

The partial localization of the π-electron on zigzag edges is
explored through atom manipulation experiments on A4, as
shown in Figure 6a,b. Starting from the A4 closed-shell
molecule (Figure 6a) as found on the surface, the
corresponding open-shell radical A4R (Figure 6b) was
generated by tip-induced dehydrogenation with a voltage
pulse V = 4.5 V applied above the molecule for 35 s. STM
measurements on the formed A4R (Figure 6c) at the NIR, V =
0.8 V, and PIR, V = −1.4 V, and their very good agreement
with the calculated SUMO/singly occupied molecular orbital
(SOMO) density corroborate the assignment of A4R and its
open-shell character and, in turn, also corroborate the
assignment of A4. (Note that orbital densities of A4 could

Figure 7. (a) STM measurements on IS1 at the NIR, V = 1.7 V, with the orbital density of the SOMO also plotted and the spin density shown
as an iso = 0.025 au surface with maximal spin populations indicated. Dehydrogenated (b) A5 and (c) A29 were characterized with their
corresponding spin densities and populations.
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not be acquired by STM, because the molecule dislocated
when the voltage was increased to map ionic resonances.)
Calculated spin density isosurfaces of A4R, shown in Figure
6d, reveal the localization of the π-electron to the zigzag edge
with a spin population of 0.41. The locations of high spin
density coincide with the maximal protrusions measured by
STM in the NIR and PIR images, as indicated by arrows in
Figure 6c. This manipulation experiment, showing the
dissociation of hydrogen from a CH2 group, points toward
this broken C−H bond being among the weakest bonds within
the molecule and thus is in line with the hypothesis that such
dissociation reactions occur in the flame.24,26,75 However, our
experiment is no proof of that process happening in the flame,
because the situation in our tip-induced manipulation
experiment at low temperature on a surface, where a molecular
bond is broken by inelastic tunnelling of charge carriers40,77−81

and also high electric fields between tip and sample might
contribute to the reaction,82,83 is very different from the
situation in the flame.
The detected open-shell molecule A23 shows a comparable

π-electron localization as A4R, see Figure 6e. The hydro-
genated zigzag edges of A35 and A14 shown in Figure 6f & 6g,
respectively, present two more examples that could form partly
localized open-shell species when dehydrogenated in the flame.
The dehydrogenated A14, which features four aromatic rings
involved in the zigzag edge, provides the strongest localization
among these partially localized radicals. We have previously
found that cross-linking between zigzag edges can reach bond
energies of 30 kcal/mol.24,26,76

The strongest localization of π-electrons is found on
pentagonal and methylene-type edges, with examples shown
in Figure 7. Figure 7a shows the STM measurement of the NIR
image and SOMO orbital density for the IS1 species imaged in
our previous paper.28 The spin density shows strong
localization to the edge, with a population of 0.67. For the
structures A5 and A29, strongly localized π-electrons can also
be formed through dehydrogenation. The indenyl-type edge in
A5 leads to a localized π-electron spread between two sites,
each with a spin population of 0.47. We have previously found
these strongly localized π-radicals form bonds >40 kcal/mol in
strength.24,26,76

These strongly localized π-radicals can also form diradicals.
Dehydrogenation of A29, expected to occur under flame
conditions, leads to the production of a localized π-diradical
species with a triplet ground state.28 Such species, comprising
two localized radical sites, can rapidly form multiple cross-links
through barrierless chain reactions enhanced by van der Waals
interactions. The van der Waals interactions enable the lifetime
of a physical dimer to be enhanced. By conformational changes
and rotations of the molecules constituting a van der Waals
bonded dimer, i.e., an internal rotor, the reactive sites have
multiple opportunities to align and cross-link as recently
discussed by Frenklach et al.84 This mechanism of π-diradical
inception to form soot is called polymerization of aromatic
rim-linked hydrocarbons (PARLH).

CONCLUSIONS
We resolved individual molecules of incipient soot at the Z = 7
mm condition by high-resolution STM and AFM with CO-
functionalized tips. We believe that, in the context of particle
inception and growth, our results are important by providing
specific structures of soot-formed molecules, including
evidence for cross-linking, fully embedded five- and seven-

membered rings, and providing an explanation for moderately
sized aromatics formation. We report individual structures that
feature open-shell π-radicals and analysis of the varying degrees
of localization of the π-electrons. Delocalized π-radicals at the
periphery of pericondensed aromatics provide weak local-
ization and could provide some stabilizing multicenter bonds
within the soot particles. Partially localized π-radicals on zigzag
edges were found and generated by atom manipulation.
Finally, we observed strongly localized π-radicals formed on
pentagonal and methylene-type edges. These sites also provide
opportunities for multiple reactive sites per molecule, such as
in π-diradicals, that can react rapidly through the PARLH
mechanism of inception. The flame aromatics detected in this
work provide specific examples that allowed us to describe how
molecules grow and cross-link in the flame, and they revealed
the importance of π-radical localization. We hope that our
findings can improve the fundamental understanding required
for reducing soot formation in combustion, enhancing
hydrogen production in pyrolysis, or explaining interstellar
dust formation.

METHODS
Sample Collection. Incipient soot nanoparticles were collected

from a lightly sooting laminar premixed flame of ethylene and air. The
operating conditions were equivalent to those used in several earlier
investigations,23,85,86 including the previous AFM studies.19,20 The
flame has a cold gas velocity of 9.8 cm/s and equivalence ratio Φ =
2.01 and was stabilized on a water-cooled McKenna burner. Incipient
soot, suspended in burned combustion gases, was extracted from the
flame centerline using a high-dilution horizontal tubular probe
positioned at a burner-to-probe separation distance Z = 7 mm,
corresponding to the minimal distance that could be probed without
perturbations of the flame front. The combustion products were
sampled through a small orifice (200 μm in diameter), located on the
bottom side of the dilution probe and rapidly mixed with N2,
providing a dilution ratio of 1:3000. A schematic view of the burner
and soot sampling is reported in previous work.20 The flame
temperature was measured by an R-type thermocouple (Pt/Pt-13%
Rh) with a spherical junction with a diameter of 300 μm with a rapid
insertion procedure87,88 and accounting for heat loss corrections.89

The size distribution of particles of this work was measured by a
differential mobility analyzer (DMA): the aerosol sample passed
through an X-ray charger (TSI model-3088) first and was then
selected in an electrostatic classifier (DMA model-TapCon 3/150)
and counted by a Faraday-cup electrometer.86 The measured particle
size distribution (PSD) is shown in Figure S9.
A stainless steel aerosol filter holder (Merck−Millipore model

XX5004700) containing a quartz filter (Whatman QMA-grade, 47
mm) was positioned online downstream of the dilution tubular probe
for soot collection. The gas temperature at the filter location was
approximately 350 K. The sample collection lasted several hours to
collect enough material on the filter for offline analysis.
On-Surface Sample Preparation for AFM Measurements.

For sample preparation, a small Si wafer was covered with soot by
softly pressing a soot-covered quartz filter on it. Afterward, the wafer
was transferred into the ultrahigh vacuum (UHV) system, positioned
in front of the cold sample (T ≈ 10 K), and flash-annealed by Joule
heating from room temperature to ∼900 K within a few seconds. This
rapid heating can promote the process of sublimation over
decomposition90 and has been shown to work for molecules with
masses up to ∼1000 Da.91,92 An exemplary STM overview image is
seen in Figure S7. About 80% of the compounds identified in an
overview image as the one shown in Figure S7 could be resolved by
atomic resolution AFM. For a detailed explanation of the preparation
method and discussion of the representativeness of the assigned
structures, see Supporting Information, sections S2 and S3.
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STM and AFM Methods. The STM and AFM measurements
were performed in a home-built combined STM/AFM setup33,93

operating under ultrahigh vacuum (UHV) conditions (p ≈ 1 × 10−10

mbar) and at low temperature (T ≈ 5 K). The mode of operation is
described in ref33 and in more detail in ref,94 and the different modes
of operation and tip functionalization are reviewed in ref.95 The
microscope was equipped with a qPlus quartz sensor96 operated in the
frequency modulation mode.97 As tip we used a PtIr-wire (25 μm in
diameter) sharpened ex situ by focused ion beam milling and in situ
by indentations into the bare Cu surface.
All STM images were measured in constant-current mode with a

sample bias voltage V. AFM images were acquired in constant-height
mode at V = 0 V. A Cu(111) single crystal was used as the substrate
and partially covered with two monolayer (ML) thick NaCl(100)
islands, denoted as NaCl(2 ML)/Cu(111). The tip was functionalized
for AFM imaging by picking up a CO molecule from NaCl.33,98 For
AFM, this enabled high-resolution imaging. CO tip relaxations99,100

lead to image distortions and can lead to apparent bonds but also
enhance the contrast.99,101 AFM is sensitive to the short-range Pauli
repulsive force, resulting from the overlap of tip and sample wave
functions.102

DFT Calculations. Density functional theory (DFT) calculations
to calculate molecular geometries and frontier orbital densities were
performed with Psi4 in the gas phase.103 Geometry relaxations and
subsequent single-point energy calculations utilized the B3LYP hybrid
functional and the 6-31G basis set. The spin density calculations were
performed in the ORCA 4.2.1 software.104 The geometry
optimizations were performed at the B3LYP/6-31G(d) level of
theory with the spin density isosurface, and Mulliken atomic spin
densities were calculated at the B3LYP/6-311G(d,p) level of theory.
Multiwfn105 was used to generate the cube files to visualize the spin
density isosurfaces in Visual Molecular Dynamics.106
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