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Abstract

In this study, we investigated the effect of the dietary inclusion of Hermetia illucens larvae oil on the diversity
and structure of the bacterial community of the caecal content of Japanese quails (Coturnix japonica). A total of
40 quails, equally selected for slaughter from 100 animals which were divided evenly into four treatment groups
including control group (C) with a diet containing corn oil and 3 experimental groups with partial (25%, 50%) or
total (100%) substitution of corn oil by H. illucens larvae oil, here referred to as Black soldier fly larvae oil (BSFO):
BSFO 25, BSFO 50 and BSFO 100, respectively. After slaughtering (42 days of age), the microbiota of caecal samples
was examined by high-throughput sequencing using the V4-V5 region of the 16S rRNA gene. In all the studied
groups the dominant phylum was Firmicutes with prevailing families of Ruminococcaceae and Lachnospiraceae.
Caecal microbiota was meaningly influenced on genus level. The linear discriminant analysis effect size (LefSe)
analysis for the differential taxa abundance showed that Lactobacillus was significantly increased in BSFO 25 group,
Fusicatenibacter was significantly enriched in all the experimental groups fed larvae oil (BSFO 25, 50 and 100) and
Subdoligranulumwas highly elevated in BSFO 100 group. The analysis revealed statistical dissimilarities between the
control group (C) and the groups with 50% and 100% oil replacement (BSFO 50 and 100). The bacterial diversity
was significantly suppressed in the samples of quails fed the diet with a total inclusion of H. illucens oil (BSFO 100).
The results showed the considerable effect of Black soldier fly larvae oil on the caecal microbiota of Japanese quails.
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1 Introduction

Poultry is nowadays the leading source of meat pro-
duced due to the remarkable feed conversion ratio, short
lifecycle, and low greenhouse gas emission (FAO, 2020).
Despite that chicken still dominate the poultry egg and

meat production sectors, quails’ production is a widely
emerging branch in the poultry industry as it introduces
diversity among both egg and meat yield and has been
used extensively for both purposes (Minvielle, 2004;
Nasr et al., 2017; Sabow, 2020). In Asia, Japanese quails
are typically reared for their egg yield, while in the US
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and Europe their meat production is the core driver
and in some Countries, such as Turkey for instance,
Japanese quails are produced for both eggs and meat
(Narinc et al., 2015). Reasons for interest in breeding
these birds insist in their small size, rapid growth, early
sexual maturity (7-8 weeks), short generation interval,
and high laying rate (Du et al., 2020; Huss et al., 2008). In
addition, quail are increasingly becoming an alternative
to chicken, especially for health-conscious consumers,
due to the higher levels of vitamins (A, C), minerals and
amino-acids and lower content of fat and cholesterol
in their meat (Fakolade, 2015; Glick and Fischer, 2013).
Japanese quail (Coturnix japonica) moreover represents
favoured animal model in the field of poultry research
(Huss et al., 2008) and due to the well-researched and
confirmed genetic similarities with chicken (Gallus gal-
lus domesticus) it has been adopted as the best opti-
mised model to study the poultry functional genomics
(Minvielle, 2009; Shin, 2017). However, the number of
intestinal microbiota studies, which has been an impor-
tant topic in recent years, is surprisingly limited in these
animals.It is now well accepted that the microbiota of
digestive tract contributes to the overall health status of
animals and their productivity. Even if the primary role
of the gastrointestinal tract (GIT) microbes is digestion
of food substrates, the microbiota is important in many
other functions ranging fromdefense against pathogens,
production of nutrients to maturation and regulation of
the immune system (Aruwa et al., 2021; Carrasco et al.,
2019; Clavijo and Flórez, 2018).

Up to now only few studies on the characterisation
of quail intestinal microbiota have been done (Du et
al., 2020; Ma et al., 2021; Su et al., 2014; Wilkinson et
al., 2016). They differ substantially in intent and goals,
either characterising the bacterial community profile
along the whole GIT (Du et al., 2020; Su et al., 2014;
Wilkinson et al., 2016), or focusing, from different rea-
sons, on ileal microbiota (Borda-Molina et al., 2020;
Vollmar et al., 2020), or describing composition of cul-
tivable bacteria (Du et al., 2020; Su et al., 2014;Wilkinson
et al., 2016), or studying caecal (Liu et al., 2015) or duo-
denal and ileal microbiota of atherosclerosis susceptible
and resistant quail strains (Liu et al., 2018). An interest-
ing article of Ma et al. (2021) provided the description of
the gene catalog of the caecal bacteria of Japanese quail
including the comparison of bacterial taxa and predic-
tive metagenomic functions of male and female quail
(Ma et al., 2021).

Research on altering the composition of the poultry
intestinal environment with the use of insect feed addi-
tives as an alternative source of fats, proteins and/or

antimicrobial peptides has made significant strides in
recent years (Clavijo and Flórez, 2018; Shin, 2017). Her-
metia illucens (also called black soldier fly) and Tenebrio
molitor are the most studied insect species in poultry
nutrition (Benzertiha et al., 2020; Bovera et al., 2018;
Colombino et al., 2021; Kierończyk et al., 2018; Moniello
et al., 2019; Secci et al., 2018, 2022) One of themajor ben-
efits of this insect is the ability to decompose organic
waste to animal feed as a dietary source (Addeo et al.,
2021; Surendra et al., 2016).

Corn production has previously showed negative
environmental consequences, such as gas emissions,
deforestation, and high-water costs (Holka and Bień-
kowski, 2020), which is not the case for the environ-
mentally friendly production of black soldier fly (BSF)
feed materials, based on the use of plant-origin wastes,
as a source of nutrients in vertical rearing systems, to
limit greenhouse gas (GHG) emissions and to use frass
as a fertiliser (Józefiak et al., 2016). Despite the higher
cost of BSFO compared to corn oil, it can be employed
as the basis of a highly promising technology to sustain
a circular economy (Barragan-Fonseca et al., 2017). Up
to date, only one study compared the usage of BSFO as
an alternative source of corn oil in poultry, but the study
focused on growth performance, serum parameters and
carcass characteristics Kim et al., 2020).

The fatty acid (FA) composition of Black soldier fly
larvae (BSFL) predominantly comprises saturated fatty
acids (SFAs), such as lauric and palmitic acids (Ewald et
al., 2020; Kim et al., 2020;Makkar et al., 2014; Zotte et al.,
2019). Dietary medium-chain fatty acids (MCFA), and
in particular lauric acid, have a positive effect on poul-
try gut microbiota by having an antimicrobial effect,
which can thus stimulate the health of the gastrointesti-
nal tract by inhibiting potentially pathogenic bacteria
(Baltic et al., 2019; Boyen et al., 2008; van der Hoeven-
Hangoor et al., 2013; van Immerseel et al., 2006). The
lauric acid has shown to have antimicrobial activ-
ity against Salmonella enteridis (Van Immerseel et al.,
2004), Campylobacter jejuni (Molatová et al., 2010), Esh-
erichia Coli (Fortuoso et al., 2019) and Clostridium per-
frigens (Skřivanová et al., 2005; Timbermont et al., 2010)
which are known pathogenic bacteria in quail produc-
tion. On the other hand, substantially higher inclusion
of lauric acid inhibited Lactobacillus and Firmicutes
spp. leading to increased population of Enterobacte-
riaceae spp. (van der Hoeven-Hangoor et al., 2013).
The influence of the substitution of conventional veg-
etable oils (corn oil, soybean oil) by BSF oil on poultry
caecal microbiota resulted in reduced bacterial rich-
ness, increased Proteobacteria, decreased Bacteroides-
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Prevotella cluster, decreased family Enterobacteriaceae,
reduced enteric pathogenity (Listeria monocytogenes,
Yersinia enterocolitica, Pasteurella multocida) (Chen et
al., 2022; Kierończyk et al., 2022; Kierończyk, 2022; Syp-
niewski et al., 2020), the results however depend on the
treatment (partial or total oil replacement) and poultry
species.

In this study, we investigated the effect of H. illucens
larvae oil on caecal microbiota of Coturnix japonica.

Commonly used corn oil (CO) was in quail diet
partially (25%, 50%) or totally (100%) replaced by
BSFL oil and the caecal content was analysed by high-
throughput sequencing (HTS) of 16S rRNA fragments
and evaluated for the bacterial diversity, community
structures and taxonomic composition.

2 Materials andmethods

Ethics statement
The animals were treated in accordance with the EC
Directive 63/2010/EEC on the protection of the animals
used for experimental and other scientific purposes. The
experimental procedures were approved by the Ethi-
cal Animal Care and Use Committee of the Depart-
ment of Veterinary Medicine and Animal Production
of the University of Napoli Federico II, Italy (prot.N.
2017/0017676). The trial was carried out on a private
quail’s farm in Sardinia (Italy).

Animals and experimental design
A total of one hundred 7 days old Japanese quails
(Coturnix japonica) were equally divided in 4 groups
(5 replicates of 5 birds/replicate) in galvaniased metal
cages (100 cm length × 50 cm depth × 25 cm height),
where they were reared until 42 days of age. At the
beginning of the trial the quails were housed at 32-
35 °C using the infrared heat lamps (150 W) situated at
25 cm from the floor of the cages. Then, the temperature
was gradually decreased until the end of fourth week to
reach final temperature of 23-24 °C. The lighting pro-
gramme was 16:8 h light: dark.

Diet
The birds were fed 4 isoproteic and isoenergetic diets,
which differed only in the source of fat (oil). The con-
trol group (C) was fed a basal diet containing corn oil
(CO) and the three experimental groups (BSFO 25, BSFO
50 and BSFO 100) were fed the same diet, in which,
CO was partially (25%, 50%) or totally (100%) substi-
tuted by BSF oil (BSFO) extracted from BSF larvae by

cold press extraction technique, as commercially avail-
able from PROTIX, Dongen, the Netherlands to keep
the amount of 50 g of added oil per kg of diet. PRO-
TIX, recognised as a leading insect farming company
in EU, assure the purity of their industrial products as
they must conform with the relevant EU legislations by
ensuring high standards of animal welfare in insect pro-
duction. Feed and fresh water were administered ad libi-
tum. The analysis of the diets’ contents was performed
according the AOAC (2005) methods: for crude protein
(method 978.04), ether extract (method 920.39), crude
fiber (method 978.10), dry matter (2001.12) and ash
(method 930.05). Based on the composition of the diet’s
constituents, the content of amino acids was estimated.
From the diets’ chemical composition, the metabolis-
able energy (ME) was calculated based on the NRC,
(1994) equations. Detailed information about the exper-
imental diets and their nutritional characteristics are
shown in the Table 1.

To perform a fatty acids (FAs) transmethylation anal-
ysis, a base-catalysed procedure was used, as reported
by Christie et al. (1982) and modified by Chouinard et
al. (1999). A gas chromatograph (Agilent technologies,
model 5890, Santa Clara, CA, USA), equipped with a
fused SP-2560 silica capillary column L × I.D. 100 m ×
0.25 mm, df 0.20 μm (Supelco, Inc., Bellefonte, PA, USA)
was used for FAs methyl esters quantification. Helium
was used as carrier gas, with 280 kPa of constant pres-
sure, 50 mL/min splitting flow, and 1 μL of injection
volume. Concerning the column parameters, for 15 min
the column temperature was sustained at 170 °C, then
increased up to 240 °C by adjustment of 5 °C/min.
The overall execution duration was 64 minutes. The
FAs peaks were categorised through comparision of the
retention times of a commercial standard comprising
37 methyl esters of FAs (Sigma-Aldrich, St. Louis, MO,
USA). Controlling of the CLA isomers retention time
was done by the elution of the commercial standard
(Larodan AB, Solna, Sweden) of these fatty acids. By
applying a percentage calculation to the overall area of
the eluted peaks, the area of each specific FA found in
the sample was determined. The fatty acid profile anal-
ysis of H. illucens oil, corn oil and the diets used in this
experiment are shown in Table 2.

Growth performance
The live weights (LW) of birds were recorded individu-
ally at the beginning (day 7) and the end of the experi-
ment (day 42). The amounts of administered feed and
leftovers were measured daily to calculate the birds’
feed intake. Average daily feed intake (ADFI), average
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Table 1 Chemical and nutritional composition of
experimental diets (as-fed)

Diets Control BSFO 25 BSFO 50 BSFO
100

Ingredients g/100 g as fed
Corn 8.8 48.1 48.1 48.1 48.1
Soybean meal 44 43 43 43 43
BSF oil 0 1.25 2.5 5
Corn Oil 5 3.75 2.5 0
Calcium 1 1 1 1

carbonate
Dicalcium 2 2 2 2

phosphate
Salt 0.3 0.3 0.3 0.3
Methionine 0.1 0.1 0.1 0.1
1Premix Vit-Min 0.5 0.5 0.5 0.5
Chemical composition
Dry matter (%) 90.2 89.9 90.1 89.8
Ash (%) 6.52 6.43 6.47 6.39
Crude protein (%) 23.1 23.1 23.1 23.1
Crude fiber (%) 9.32 9.15 9.43 9.24
Ether extract (%) 7.73 7.86 8.04 7.92
Lysine (%) 1.41 1.41 1.41 1.41
Calcium (%) 0.96 0.96 0.96 0.96
Phosphorus (%) 0.44 0.44 0.44 0.44
Methionine + 0.92 0.92 0.92 0.92

Cysteine (%)
2 ME (kcal/kg) 2,900 2,900 2,900 2,900

1 Provided per kg of product: Fe, 50,000 mg; Co, 200 mg; Cu,
8,500 mg; Mn, 75,000 mg; Zn, 70,000 mg; Se, 250 mg; I, 1,500 mg;
folic acid, 500 mg; pantothenic acid, 13.5 g; niacin, 30 g; vit. A,
10,000,000 IU; cholecalciferol 50,000 mg; vit. K3, 4,000 mg; vit.
B2, 5,000 mg; vit. B6, 2,000 mg; vit. B12, 10,000 mg; vit. E (dl-a-
tocopheryl acetate), 21,978 IU. 2: Metabolisable energy.

daily gain (ADG) of live weight, and feed conversion
ratio (FCR) were calculated for the entire experimental
period (35 days).

Samples collection
Ten quails (42 days old) were picked from each group
(2 birds from each replicate) and slaughtered by cervi-
cal dislocation. The intestine was immediately removed
from the carcasses and the luminal contents from the
caeca were collected, packed and sealed in sterilised
micro-centrifuge tubes (2.0 ml, Eppendorf ®), immedi-
ately refrigerated (for about 1 hour) and transported
into laboratory. The samples were frozen at −80 °C and
lyophilised using Heto powerdry LL3000 freeze dryer
(Thermo Fisher Scientific, Wilmington, DE, USA). The

dried samples were transported to the Institute of Ani-
mal Physiology and Genetics of the Czech Academy of
Sciences (Prague, Czech Republic) for further analysis.
The list of samples is summerised in Supplementary
Table S1.

DNA extraction
The DNA was extracted from the dry caecal samples
using PowerSoil DNA Kit (QIAGEN, Hilden, Germany)
according to the manufacturer’s instructions. The con-
centration and quality of the nucleic acids were mea-
sured using a NanoDrop 2000c UV-Vis spectrophotome-
ter (Thermo Scientific, Wilmington, DE, USA) and the
DNA was stored at −20 °C until further use.

Amplification and purification of 16S rRNA fragments
The DNA isolates were diluted 10-fold in nuclease-free
water and 2 μl (~20 ng/μl) were used as templates for
the PCR reaction. TheV4-V5 region of the 16S rRNA gene
was amplified using the specific primer pair, BactB-F
(GGA TTA GAT ACC CTG GTA GT) and BactB-R (CAC
GAC ACG AGC TGACG) (Fliegerova et al., 2014), using
the EliZyme™ HS FAST MIX Red Master Mix (Elisabeth
Pharmacon, Brno, Czech Republic). Thermal cycling
conditions included a denaturation step for 5 min at
95 °C, followed by 25 cycles of 30 s at 95 °C, 30 s
at 57 °C and 30 s at 72 °C, a final elongation step at
72 °C for 5 min. The length and quality of PCR ampli-
cons were checked by 1.5% agarose gel electrophoresis.
The amplicons were purified using the Monarch® PCR
and DNA Cleanup Kit (New England BioLabs, Ipswich,
MA, USA) and their concentration was checked using
a NanoDrop 2000c UV-Vis spectrophotometer (Thermo
Scientific, Wilmington, DE, USA).

Library preparation and next generation sequencing
The libraries were prepared from purified amplicons
using the NEBNext Fast DNA Library Prep Set kit (New
England BioLabs, Ipswich, MA, USA) and the Ion Xpress
Barcode Adapters 1-96 Kit (Thermo Fisher Scientific,
Waltham, MA, USA). The quality of the libraries was
checked by the Agilent 2100 Bioanalyser instrument
using the Agilent High Sensitivity DNA Kit (Agilent
Technologies, Santa Clara, CA, USA). The quantifica-
tion of the libraries was done using the KAPA Library
Quantification Kit (KAPA Biosystems, Roche, Pleasan-
ton, CA, USA). A volumetric pooling of each library was
done after its normalisation by dilution to achieve a 30
pM concentration and used for the template amplifica-
tion and enrichment by the Ion OneTouch™ 2 instru-
ment using the Ion PGM™ HiQ™ View OT2 Kit-400
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Table 2 Fatty acid profile of the dietary fats and experimental diets (% total FA)

Fatty acid Dietary fats Experimental diets
CO BSFO Control BSFO 25 BSFO 50 BSFO100

C4:0 0.15 1.57 0.01 0.03 0.04 0.08
C12:0 – 37.71 – 0.47 0.94 1.89
C14:0 – 10.46 0.08 0.22 0.35 0.61
C16:0 10.85 17.11 11.12 11.20 11.28 11.44
C16:1 – 2.89 – 0.04 0.07 0.15
C18:0 1.51 2.79 2.68 2.70 2.71 2.75
C18:1t9 0.12 0.34 0.006 0.009 0.011 0.017
C18:1 cis-9 30.4 11.97 23.027 22.106 22.566 22.797
C18:2cω6 (LA) 54.9 12.13 52.75 52.21 51.68 50.61
C20:0 0.54 0.21 0.76 0.75 0.75 0.74
C20:1 – 0.04 0.043 0.044 0.044 0.045
C18:3ω3(ALA) 1.07 0.68 4.62 4.62 4.61 4.60
SFA 13.35 70.41 14.84 15.55 16.27 17.69
MUFA 30.56 15.68 23.08 22.89 22.71 22.33
PUFA 56.08 13.51 57.55 57.01 56.48 55.42
ω 6 54.96 12.16 52.75 52.22 51.68 50.61
ω 3 1.12 0.68 4.79 4.79 4.78 4.77
Ratios
PUFA/SFA 4.20 0.19 3.75 3.70 3.65 3.55
ω 6/ω3 49.26 17.89 50.04 49.65 49.26 48.47
LA/ALA 51.40 17.85 59.65 59.23 58.81 57.97

CO = corn oil fatty acid profile; BSF = black soldier fly; LA = linoleic acid; ALA = alpha linoleic acid; SFA = saturated fatty acid; MUFA =
monounsaturated fatty acid; PUFA = polyunsaturated fatty acid.

(Thermo Fisher Scientific, Waltham, MA, USA). The
enriched template was sequenced with the Personal
Genome Machine (PGM™) System (Thermo Fisher Sci-
entific, Waltham, MA, USA) using the Ion PGM™ Hi-Q™
View Sequencing solutions kit and the Ion 316™ Chip v2
BC according to the manufacturer’s protocols.

Bioinformatic and statistical analysis
The growth performance data were subjected to a one-
way ANOVA with diet as a fixed effect, following the
GLMprocedure (General LinearModel) of the IBM SPSS
Statistics package (IBM Corp. Released 2011. IBM SPSS
Statistics forWindows, Version 20.0. Armonk, NY, USA).

The raw sequences retrieved in FASTQ format from
the Ion Torrent software were analysed using Qiime2
version 2020.2 software (Bolyen et al., 2019). The
sequences were quality filtered, and denoised using
DADA2 and chimeras were removed (Callahan et al.,
2016). The rarefaction was conducted to ensure a uni-
form sampling depth, the dataset was subsampled to
a minimum of 5000 reads per sample. The rarefac-
tion curves reached a plateau, showing that the depth

of sequencing was adequate and all the species in the
samples were sufficiently covered (Supplementary Fig-
ure S1). The sequences were clustered into Amplicon
Sequence Variants (ASVs) by VSEARCH, and the taxo-
nomic assignment was achieved with a BLAST search
against the SILVA database (version 132) with a 97%
threshold (Rognes et al., 2016). The bacterial diver-
sity was assessed using alpha diversity indices (Faith’s
Phylogenetic Diversity, Pielou Evenness, and Shannon
Entropy), the comparison between the groups was done
with the Kruskal-Wallis H test and visualised using
the qiime2R, tidyverse and ggplot2 packages in R-
Studio (version 4.2.1) (Bisanz, 2018; Wickham, 2016;
Yan Hui, 2021). Beta diversity was calculated using
the Jaccard distance matrix. The principal coordinate
analysis (PCoA) was used for the visualisation, and
the resultswere plotted using EMPeror (Vázquez-Baeza
et al., 2013). The permutational multivariate analy-
sis of variance (PERMANOVA) with 999 permutations
was performed to determine the statistical differences
between the groups, PERMDISP test was also performed
to check the homogeneity of dispersions among the ani-
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mal groups. Linear discriminant analysis (LDA) with an
effect size (LEfSe) algorithm (Segata et al., 2011) was
done on the Galaxy web module (http://huttenhower
.sph.harvard.edu/galaxy/ (accessed on 15 August 2022)
to identify the significantly differentially abundant taxa,
with the following parameters: alpha = 0.05 and a mini-
mum LDA score = 2.0.

The sequence information was deposited in the
Sequence Read Archive under accession number:
PRJNA871111.

3 Results

Fatty acid composition of the dietary fat sources
Oil sources (50 g/kg) were added into a soybean meal
and corn base diet. The analysis of the experimental
diets showed a similar content of crude protein, ether
extract and ash, but the fatty acid composition of the
oil sources clearly differed as shown in Table 2. BSF
larvae oil was rich in saturated fatty acids (SFA) as
the result of high concentrations of lauric (C12:0) and
myristic (C14:0) acids, while corn oil had higher content
of monounsaturated (MUFA) and polyunsaturated fatty
acids (PUFA) concentrations represented by oleic (C18:1
cis-9) and linoleic acid (C18:2cω6), respectively.

Growth performance
No statistically significant differences (P > 0.05) were
recorded for the birds’ live weights (LW), average daily
gain (ADG), average daily feed intake (ADFI), and feed
conversion ratio (FCR). Results are summarised in Table
3 showing no influence of the different dietary treat-
ments on the animal growth parameters.

Diversity and similarity of bacterial communities
The bacterial population in the caecal samples of quails
of the 4 groups was qualitatively and quantitatively
analysed for species richness, evenness and phyloge-
netic diversity. The analysis showed a lower diversity
richness and evenness mainly in the samples of quails
fed diet with a total replacement of corn oil by H. illu-
cens larvae oil, as shown in the Supplementary Table S2.
Mainly, the Shannon entropy revealed a significant dif-
ference in richness between the control group and the
BSFO 100 group (P = 0.03), also between the BSFO 25
group and the BSFO 100 group (P = 0.03), as shown
in Figure 1A. Similarly, Pielou evenness index showed
a significant difference between the control group and
the BSFO 100 group (P = 0.02), also between the BSFO
50 group and BSFO 100 group (P = 0.04), as shown

in Figure 1B. However, the Faith’s phylogenetic distance
showed no significant differences among the groups.
The results of the alpha diversity assessment are shown
in Supplementary Table S3. The Beta diversity, which
evaluates the similarity/differences in bacterial compo-
sition among the groups, was assessed using Jaccard’s
non-phylogenetic distance matrix. A Principal Coordi-
nate Analysis (PCoA) plot (Figure 2) shows the spa-
tial separation of the samples and statistical analysis
revealed significant differences among all the studied
group (PERMANOVA P < 0.05) except the compari-
son of control group with BSFO 25 group (P > 0.05).
PERMDISP showed no statistical differences among the
groups (P < 0.05), indicating a low intergroup variabil-
ity (Table 4).

Taxonomical composition
In total, the caecal bacterial community consisted of
5 phyla including 110 bacterial phylotypes. Firmicutes
represented the dominant phylum in all four groups of
animals (C: 87.3 ± 6.3%; BSFO 25: 89.1 ± 5%; BSFO 50:
89.4 ± 4.1%; BSFO 100: 91.5 ± 2.8%) followed by a minor
population of Actinobacteria, Tenericutes, Proteobacte-
ria and Bacteroidetes. Regardless of the quails’ diet, the
major order of Firmicutes was Clostridiales mainly rep-
resented at the family level by Ruminococcaceae and
Lachnospiraceae. The second most abundant order was
Lactobacillales, which was mainly represented at the
family level by Streptococcaceae and Lactobacillaceae,
as shown in Figure 3A. At genus level, the most abun-
dant genera were Subdoligranulum, unclassified genus
within family Lachnospiraceae, Blautia and Clostridi-
ales bacterium CHKCI001, forming together more than
half of the sequences in all four groups of quails. Less
abundant genera with a meaningful relative abundance
(>1%) were unclassified genus within family Lach-
nospiraceae, Eubacterium hallii group, Ruminococcus
torques group, Ruminococcaceae UCG-014, Lactobacil-
lus, Butyricicoccus, Sellimonas, unclassified genus within
family Ruminococcaceae, Ruminococcaceae UCG-005.
Bacterial taxa with relative abundance lower than 1%
are summarised as ‘Others’ in Figure 3 and listed in the
Supplementary Table S4.

Determination of taxonomic biomarkers
Linear discriminant analysis effect size (LEfSe) was per-
formed to determine the bacterial taxa with signifi-
cantly different levels of abundance between the con-
trol group and the other groups of quails in which the
H. illucens larvae oil was included in diet. The analy-
sis comparing the control group C to BSFO 25 resulted
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Table 3 Effect of the dietary inclusion of Hermetia illucens larvae oil on the growth performance of broiler Japanese quails

Item Experimental Diets P-value SEM
Control BSFO 25 BSFO 50 BSFO100

IBW (g,d 7) 36.04 35.83 35.44 36.7 0.615 0.36
FBW (g,d 42) 221.64 224.7 223.4 225.8 0.927 2.4
ADFI (g) 16.67 16.58 16.6 16.61 0.388 0.02
ADG (g) 5.3 5.4 5.37 5.4 0.949 0.07
FCR (g/g) 3.19 3.14 3.1 3.12 0.831 0.03

BSFO = black soldier fly oil; IBW = initial body weight; FBW = final body weight; ADFI = average daily feed intake; ADG = average daily gain;
FCR = feed conversion ratio; SEM = standard error of the mean.

Figure 1 Comparison of diversity indices for caecal bacterial communities of four groups of quails fed different diets. (A) The bacterial
diversity estimated by the Shannon entropy. (B) The bacterial evenness estimated by Pielou evenness index. The Kruskal–Wallis
pairwise test was used for sample comparison.

in 5 differentially abundant bacterial taxa (LDA score >
2.0). Only 1 taxon, Anaerotruncus (Family Ruminococ-
caceae), had significantly higher relative abundance
in the control group (green bars) and 4 taxa had sig-
nificantly higher relative abundance in the BFSO 25
group (red bars), including Fusicatenibacter (family
Lachnospiraceae), Lactobacillaceae, Lactobacillus and
Eubacterium hallii group (Family Lachnospiraceae) (Fig-
ure 4A,D). The comparison of the control group C with

BSFO 50 showed 6 differentially abundant bacterial taxa
(LDA score > 2.0). Five taxa had significantly higher
relative abundance in the control group (green bars),
including 3 phylotypes of bacilli (Bacillales, Bacillaceae
and Bacillus), Anaerotruncus (Family Ruminococcaceae)
and Coprococcus 3 (family Lachnospiraceae). Only 1
taxon, Fusicatenibacter (family Lachnospiraceae), had
significantly higher relative abundance in the BSFO 50
group (red bars) (Figure 4B,E). LEfSe analysis compar-
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Figure 2 Principal Coordinate Analysis (PCoA) showing the Jaccard’s distance matrix between caecal bacterial community compositions
of four groups of quails fed on different diets. Each dot represents one sample. The percentage of variation explained by the
plotted principal coordinates is indicated on the axes.

Table 4 Permutational multivariate analysis of variance
(PERMANOVA) and dispersions (PERMDISP) based on
Jaccard distance matrix)

Jaccard distance matrix
Diet PERMANOVA PERMDISP

P-value P-value
Control vs BSFO 25 0.092 0.699
Control vs BSFO 50 0.003* 0.068
Control vs BSFO 100 0.004* 0.413
BSFO 25 vs BSFO 50 0.002* 0.176
BSFO 25 vs BSFO 100 0.001* 0.736
BSFO 50 vs BSFO 100 0.004* 0.261

* Significant difference (P < 0.05).

ing the control group C to BFSO 100 resulted in the
highest number of taxa with significantly different rel-
ative abundances. A total of 16 differentially abundant
bacteria (LDA score > 2.0) were found. Fourteen taxa
had significantly higher relative abundance in control
group C (green bars) and only 2 were significantly more
abundant in the BSFO 100 group (red bars). In the
control group C, the increased phylum Actinobacteria
(LDA score > 3.0) included several coriobacterial phy-
lotypes (Coriobacteriia, Coriobacteriales and Eggerthel-

laceae). Increased class Erysipelotrichia included sev-
eral Erysipelotrichales phylotypes. The genera Eubac-
terium brachy group (Family XIII), Anaerotruncus and
Negativibacillus (belonging to Ruminococcaceae fam-
ily), Coprococcus 3, Anaerostipes and Lachnoclostridium
(belonging to Lachnospiraceae family) and finally Bacil-
lus (family Bacillaceae) were also significantly higher
in the control group. On the other hand, in the BSFO
100 group, the genera Fusicatenibacter (family Lach-
nospiraceae) and Subdoligranulum (family Ruminococ-
caceae) were significantly enriched (LDA score > 3.6)
(Figure 4C,F).

4 Discussion

In this study, we examined the influence of black sol-
dier fly larvae oil (BSFO) on bacterial community of the
caecal content of Japanese quails. BSFO has attracted
attention in the recent years as an alternative oil source
in poultry nutrition, because this insect oil, which is rich
in medium-chain fatty acids (MCFA), especially lauric
acid (Ewald et al., 2020), could have a positive effect
on growth performance, gut health and meat quality in
broiler chickens (Cullere et al., 2019; Kim et al., 2020;
Schiavone et al., 2018; van Immerseel et al., 2006). BSFL
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Figure 3 Relative abundance of caecal bacteria in four groups of quails fed different diets illustrated at family (A) and genus level(B).
Taxa with a relative abundance lower than 1% are grouped as ‘Others’.

and its oil moreover exhibit antioxidant, antimicrobial
and immune-modulating properties (Lee et al., 2018;
Mlcek et al., 2014). The research on the effect of the
insect oil on poultry is still scarce and insufficient and
completely lacking on quails. Therefore, we focused on
the study of the influence of BSFO on the caecal micro-
biota of Japanese quails. Even if the whole poultry diges-
tive tract is important and each part plays a specific role
in the digestion process and absorption of nutrients,
the caecum represents the primary site of fermenta-
tion in the avian GIT responsible for transformation of
indigestible carbohydrates (cellulose, starch) into short-
chain fatty acids (SCFA) (Józefiak et al., 2004), whose
processes are closely related to productivity (Díaz Car-
rasco et al., 2018;Waite and Taylor, 2014). With up to 1011

cells per gram, caeca have the greatest bacterial num-
ber and biodiversity along the poultry GIT (Grant et al.,
2018) and it is dominated by the phyla Firmicutes, Bac-
teroidetes and Proteobacteria (Oakley et al., 2014).

The dietary treatments used in this study did not
significantly affect the animals growth performance
parameters (ADFI, ADG and FCR). Results in respec-
tive poultry literature regarding an influence of insect
oil on feed intake and body weight gain are not con-
sistent describing positive (Benzertiha et al., 2019a), or,
more often, no significant effects on growth of broiler
chickens (Benzertiha, et al., 2019b; Chen et al., 2022;
Kawasaki et al., 2019; Kim et al., 2020; Schäfer et al.,
2023), which is in agreement with our study. The dis-
crepancies can be attributed to different experimental
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Figure 4 Linear discriminant analysis (LDA) scores on different taxonomical levels of four groups of quails fed on different diets:
phylum(p), class(c), order(o), family(f), genus(g). (A), (B) and (C) represent the histogram plots of LDA scores for differentially
abundant taxa among the groups. The length of the bar represents the log10 transformed LDA score, indicated by vertical
dotted lines. Positive LDA scores (green bars) and negative LDA scores (red bars) represent bacterial taxa over-abundant in the
corresponding group. (D), (E) and (F) represent the cladograms showing the phylogenetic relationship among different groups
of organisms with significantly different levels of abundance.

conditions, variations in animal age, breed, trial settings
andmanagement, feed composition, and the wide range
in FA contents of insect oils. However, a broader view
of the influence of BSF oil as part of the poultry diet
indicates the beneficial effect on the animal health and
production (Gasco et al., 2018).

Regarding the influence of the diet on the diversity
of the caecal microbiota, the richness and equity in
bacterial species abundance was significantly lower in
the BSFO 100 group compared to the Control group.
The Principal Coordinate Analysis (PCoA) based on the
Jaccard distance matrix, showed the spatial separation
of the samples, with statistical differences between the
studied groups. This is in agreement with Biasato et al.
(2020) who showed a lower alpha diversity in broiler
chicken fed 15% H. illucens meal and a significant beta
diversity (using the weighted UniFrac distance matrix)
between birds fed H. illucens diets and control diet
fed a maize, corn gluten and soybean meals (Biasato

et al., 2020). In contrast, Dabbou et al. (2021) study
didn’t find differences in alpha diversity but the Prin-
cipal component analysis (PCA) based on OTUs rela-
tive abundance showed a clear separation of the con-
trol samples fed with soybean oil from sample of the
BSF oil group diet. The significant beta diversity dif-
ferences were also described in several other insect-fed
poultry studies (Biasato et al., 2018, 2019; Borrelli et al.,
2017; Dabbou et al., 2021). Our results are partially in
agreement with Chen et al. (2022) who also found a
lower richness in alpha diversity in the chickens fed
different levels of BSF oil, however the PCoA based on
OTUs revealed no significant difference in beta diver-
sity between the studied groups. A decreased bacterial
diversity is in general a negative phenomenon because
the species diversity plays an important role in main-
taining the stability of the intestinal ecosystem and its
normal ecological function. A loss of diversity could ini-
tiate immune-mediated disorders, which can result in
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the development of inflammatory disease. This is well
documented mainly in human research (Al Bander et
al., 2020) but also in poultry science (Wickramasuriya
et al., 2022; Yang et al., 2022). In poultry research the
GIT bacterial species diversity is considered a key factor
of pathogen exclusion (Pedroso et al., 2021).

In this work, the bacterial community composition
in the quail caecal samples was also dominated by
Firmicutes, regardless of the type of diet, which is in
agreement with the previous studies on quails (Du et al.,
2020; Su et al., 2014; Wilkinson et al., 2016) and other
poultry (Andreani et al., 2020; Biasato et al., 2020; Car-
denas et al., 2021; Costa et al., 2017; Danzeisen et al.,
2011; Józefiak et al., 2020; Moula et al., 2018; Wei et
al., 2013; Yeoman et al., 2012; Zou et al., 2018). At the
family level, the dominance of the families Ruminococ-
caceae and Lachnospiraceae (>80% in all treatment
groups) in the caecal microbiota is in agreement with
many previous studies, (Andreani et al., 2020; Biasato
et al., 2020; Danzeisen et al., 2011; Józefiak et al., 2020;
Moula et al., 2018; Wei et al., 2013; Wilkinson et al.,
2016). These two families from the order Clostridi-
ales are highly specialised for the degradation of com-
plex plant material and have the considerable capac-
ity to break down a full range of plant-derived sub-
strates including cellulose, hemicellulose and starch
(Biddle et al., 2013; Broom, 2018; Stanley et al., 2016;
Yang et al., 2017). Their production of SCFA (mainly
acetate, butyrate and propionate) improves feed effi-
ciency and butyrate supports gut health. The production
of butyrate is an essential energy source for colono-
cytes (Jung et al., 2015), it ameliorates the integrity
of tight-junctions (Peng et al., 2009) and has an anti-
inflammatory effect or role by reducing the inflamma-
tory response (Furusawa et al., 2013). The two dominant
families, Ruminococcaceae and Lachnospiraceae, how-
ever, responded differently to the inclusion of different
levels of black soldier fly larvae oil in the quail diet. In
BSFO 25 group the Ruminococcaceae decreased (30.9%)
and Lachnospiraceae increased (50.5%), while in BSFO
100 the shift was the opposite with Ruminococcaceae
forming (55.3%). In addition, an increase in Lactobacil-
laceae and a decrease in Streptococcaceae was observed
in the BSFO 100 group. Lactobacillaceae are known to be
beneficial in improving the intestinal health and growth
performance of poultry (Chateau et al., 1993; Yan et al.,
2017). While Streptococcaceae is a source of streptococ-
cosis in poultry and its reduction thus can be considered
as the beneficial effect of HI oil inclusion. On the other
hand, regardless of the diet, the abundance of Clostridi-
aceae and Bacteroidaceae families was found to be low,

which is in disagreement with previous studies on quails
(Du et al., 2020) and chickens (Biasato et al., 2020; Car-
denas et al., 2021).

At the genus level, the core bacterial genera were
Subdoligranulum, Unclassified genus within family
Lachnospiraceae, Blautia, and Clostridiales bacterium
CHKCI001, which represented together 56.3% of the
sequences in the control group, 60.7% in the BSFO
25 group, 63% in the BSFO 50 group and 71% in the
BSFO 100. This is in good agreement with previous stud-
ies describing a predominance of these taxa in healthy
broiler chickens (Biasato et al., 2020; Cardenas et al.,
2021; Clavijo and Flórez, 2018; Emami et al., 2021; Hou
et al., 2016; Ijaz et al., 2018; Kong et al., 2021; Polansky et
al., 2016). The gradual effect of increasing doses of black
soldier fly larvae oil is well seen at the genus level (Fig-
ure 3B), which is evident in particular by the increasing
amount of Subdoligranulum sp. This genus belongs to
the Ruminococcaceae family and is a butyrate-producing
organism closely related to the Faecalibacterium genus.
Subdoligranulum has been linked to multiple bene-
ficial health effects on host energy metabolism and
several interesting findings supported using this organ-
ism as promising probiotic (van Hul et al., 2020). This
genus promotes the development of intestinal epithe-
lial cells, which can minimise Salmonella invasion and
colonisation (Eeckhaut et al., 2008). Danzeisen et al.
(2011) stated that the use of antibiotics in poultry feed
increased the prevalence of Subdoligranulum, leading to
an increased approval of the hypothesis that the inclu-
sion of BSF oil can be a substitute for conventional
antibiotic usage, probably due to the high lauric acid
content in its fatty acid composition (Boyen et al., 2008).
With respect to other highly abundant genera, Blau-
tia was increased in BSFO 25 and unclassified genus
within family Lachnospiraceae was increased in BSFO
50. Clostridiales bacterium CHKCI001 and Streptococcus
were suppressed in BSFO 50 and 100. With respect to
less abundant genera, the Ruminococcus torques group
was increased in the BSFO 50 group and Lactobacil-
lus was elevated in the BSFO 100 group. Both these
two bacteria are supposed to have positive effect. The
Ruminococcus torques has been shown to bemore abun-
dant in broiler chickens fed a diet with a blend of
medium-chain fatty acids (MCFA) (Kers et al., 2019) it
and has been associated with improved performance
in the broiler caeca (Torok et al., 2011). Lactobacillus was
identified as characteristic OTU of the caecalmicrobiota
of broiler chickens fed 10% of H. illucens meal inclusion
(Biasato et al., 2020) and in general it is well known for
its positive effect on gut health and the immune cells
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homeostasis (Ren et al., 2016; van Tassell and Miller,
2011).

The LEfSE analysis identified taxa with significantly
different abundances in each animal group. The
increased relative abundances of Anaerotruncus (family
Ruminococcaceae) in the control group and Fusicateni-
bacter (family Lachnospiraceae) in all three groups
including H. illucens oil were the common features
resulting from all three analyses. Anaerotruncus may
enhance the absorption of volatile fatty acids to increase
the energy utilisation of recipients, leading to an
increased muscle fiber diameter and decreased drip loss
(Lei et al., 2022). Fusicatenibacter is SCFA-producing
taxon which produce formate and acetate and it can
protect the equilibrium of the intestinal microbial com-
munity (Qiu et al., 2020; Takada et al., 2013), sup-
presses the intestinal inflammation (Takeshita et al.,
2016), reduces diarrheal symptoms (Yang et al., 2021)
and regulates colonic motility (Zhang et al., 2021). As
well, Subdoligranulum, which was the dominant genus
among the four groups and was significantly enriched
in the BSFO 100 group compared to the control group
(LDA > 4.8), can have positive outcomes as discussed
above. The other taxa significantly increased in BSFO
25 group, compared to Control, also can be consid-
ered beneficial. The Eubacterium halii group (family
Lachnospiraceae) includes only uncultured bacteria, but
Eubacterium hallii itself is a butyrate producing organ-
ism important for intestinal metabolic balance (Duncan
et al., 2004; Engels et al., 2016). Lactobacillus genus also
have positive effects on the animal health and perfor-
mance by producing antimicrobial substances (Oakley
et al., 2014), short chain fatty acids, exopolysaccharides
and additional sources of energy (Pajarillo et al., 2015).
The effect however highly depends on species (Brisbin
et al., 2015). The comparison of bacterial shift in BSFO
50 and Control group however seems to be more bene-
ficial to the control group. The increased abundance of
Bacilli phylotypes (Bacillales, Bacillaceae and Bacillus)
and butyrate-producing Coprococcus3 genus in could
have a positive impact on nutrient absorption (Aliak-
barpour et al., 2012). Similar conclusions could be par-
tially assessed for the comparioson of BSFO 100 group
with its respective Control group. Taxa Eubacterium
brachy group, Lachnoclostridium and Anaerostipes are
butyrate producers (Pryde et al., 2002; Ríos-Covián et
al., 2016) and Coriobacterial phylotypes (Coriobacteriia,
Coriobacteriales and Eggerthellaceae) are involved in the
conversion of bile salts and steroids as well as the acti-
vation of dietary polyphenols (Clavel et al., 2014). On
the other hand, the increase of Erysipelotrichales phy-

lotypes in control group seems to be negative, because
they were shown to be associated with lipid metabolism
and inflammation (Kaakoush, 2015). From this point of
view the replacing corn oil with 25% of H. illucens oil
would be the best dietary recommendation.

Quails are an economically advantageous type of
poultry with growing popularity among consumers and
an increasing interest in their research can be expected.
Our work on the effect of insect oil on the caecal micro-
biota proves that the diet is rightly considered to be the
most influential factor on the composition of the gut
microbiota. The GI tract has the most extensive exposed
surface in the body and a wide variety of factors asso-
ciated with diet can positively or negatively affect the
delicate balance among the components of the poul-
try gut. Therefore the research in this area is of great
importance. The understanding of the efficient conver-
sion of feed into its basic components for optimal nutri-
ent absorption is vital for both broiler production and
welfare and for broiler breeder.

5 Conclusion

To best of our knowledge, this is the first study eval-
uating the effect of H. illucens larvae oil (BSFL oil)
inclusion in quails’ diet on the caecal bacterial diver-
sity and composition. The results suggest that insect
larvae oil can produce changes in the caecal microbiota
by enhancing bacterial genera known for their positive
effect on gut health. However, the total replacement of
corn oil in quails’ diet needs to be further studied, due to
the adverse effects on bacterial richness and evenness.
Based on our results the substitution of corn oil by 25%
of BSF oil could be suggested and adopted in quails’ diet
due to an increase in beneficial bacteria without any
significant alteration in richness or evenness of caecal
bacterial microbiota and growth performance. However
more studies about other parameters, especially regard-
ing meat quality, are necessary to perform to support
this hypothesis. The use of BSFL oil for the manipu-
lation of intestinal microbiota, thus should be applied
with caution and more research is required to better
understand the potential effects of insect oil on intesti-
nal bacteria.
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