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Abstract

We consider a two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. In both the focusing and defo-
cusing case we prove local well-posedness, i.e., existence and uniqueness of the solution for short times, as well as energy and 
mass conservation. In addition, we prove that this implies global existence in the defocusing case, irrespective of the power of the 
nonlinearity, while in the focusing case blowing-up solutions may arise.
© 2018 
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1. Introduction and main results

The nonlinear Schrödinger (NLS) equation plays a relevant role in several sectors of physics, where it appears as an 
effective evolution equation describing the behavior of a microscopic system on a macroscopic or mesoscopic scale. 
A typical example is provided by the time evolution of Bose–Einstein condensates, which is known to be well ap-
proximated by a NLS-type equation going under the name of Gross–Pitaevskii equation [17]. There are however other 
examples in which the physical meaning of the NLS equation is totally different, as, e.g., the propagation of light in 
nonlinear optics, the behavior of water or plasma waves, the signal transmission through neurons (FitzHugh–Nagumo 
model), etc. (see, e.g., [28] and references therein).

Thanks to its physical relevance, the NLS equation has attracted a lot of interest within the mathematical community 
as well, and several monographs are devoted to its detailed study (see, e.g., [13]). Here we focus on the simple 
but nontrivial case of a nonlinearity affecting the evolution only at finitely many points, i.e., a NLS equation with 
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concentrated nonlinearity. Roughly speaking the model we want to investigate is described by the two-dimensional 
formal equation

i∂tψt =
(

− � +
N∑

j=1

μjδ(x − yj )

)
ψt, (1.1)

where any coupling parameter μj = μj (ψt (yj )) depends itself on the value of the function ψt at yj (see below).
Such a model has been used in physics to describe very different phenomena, mostly related to solid state physics: 

the charge accumulation in semiconductor interfaces or heterostructures can be modelled indeed by nonlinear effects 
concentrated in a small spatial region [7,25,29,32,34]. The idea is that the nonlinear term takes into account the many-
body interaction effects on the scattering of an electron through a barrier or by an impurity in the medium [31]. In 
nonlinear optics similar models arise in the description of the nonlinear propagation in a Kerr-type medium in pres-
ence of localized defects [37–39], but several other applications are suggested in acoustic, conventional and high-Tc

superconductivity, light propagation in photonic crystals etc. (see [38] and references therein). More recently the non-
linear propagation in presence of a concentrated defect has been suggested as a dynamic model for the evolution of 
Bose–Einstein condensates in optical lattices, where the isolated defect is generated by a focused laser beam [20,27].

From the mathematical point of view, the expression between brackets in the above formula is purely formal, 
at least in two or more dimensions, and, in order to give it a rigorous meaning, one can follow different paths, as, 
e.g., classifying the self-adjoint extensions of suitable symmetric operators [6] or investigating the properties of the 
associated quadratic forms [18]. The reason why such models (a.k.a. solvable models), involving zero-range or point 
interactions, have attracted so much interest in the past is that the time evolution described by (1.1) can be simplified 
and in fact reduced to an ODE-type evolution of finitely many complex numbers named charges (see below), which 
are proportional to the values of ψt at the singular points. This was first observed in the corresponding time-dependent 
linear models [19,36] (see also [8,11,14,15,33] for similar results) and later used also in the nonlinear framework.

Analogous 1 and 3D models have indeed already been studied in details in the literature [2–5]: it has been proven 
that the weak Cauchy problem associated to (1.1) in 1 or 3D (or rather to its rigorous analogue) admits a unique 
solution in the proper energy space for short times and that, under additional assumptions on the parameters μj (e.g., 
in the defocusing case), such a solution is in fact global in time (thanks to the mass and energy conservation). Further 
results about the possible emergence of blow-up solutions have also been established, so that the 1 and 3D models are 
basically completely understood. On the opposite, no results about the well-posedness (neither local nor global) of 
the 2D equation are available so far, mostly due to hard technical difficulties emerging in 2D (see the discussion at the 
end of next Sect.). It is also worth mentioning that the 1D and 3D analogues of the model above have been rigorously 
derived in [9,10] from the ordinary NLS equation in a suitable scaling limit of nonlinearity concentration.

1.1. The model

We specify now more precisely the model we want to investigate. We are interested in discussing a specific form 
of 2D NLS equation with concentrated nonlinearities at finitely many points y1, . . . , yN ∈ R2, with yi �= yj for i �= j . 
The precise definition of the model is similar to the 3D one, with some small but relevant modifications mostly due to 
the peculiar behavior of the 2D Green function (see below).

We start by recalling the properties of the linear version of the evolution problem (1.1), which has been studied in 
[11]: the idea (see [6, Theorem 5.3] for further details) is to reformulate (1.1) as the Schrödinger equation i∂tψt =
Hα(t)ψt associated to a time-dependent Schrödinger operator Hα(t) on L2(R2), defined as(

Hα(t) + λ
)
ψ = (−� + λ)φλ, (1.2)

with domain

D
(
Hα(t)

) =
{
ψ ∈ L2(R2)

∣∣ψ = φλ + 1

2π

N∑
j=1

qj (t)K0

(√
λ|x − yj |

)
, φλ ∈ H 2(R2),

lim
x→yj

φλ(x) =
(
αj (t) + 1

2π
log

√
λ

2 + γ
2π

)
qj (t) − 1

2π

∑
k �=j

K0

(√
λ|yj − yk|

)
qk(t)

}
, (1.3)
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where λ > 0, K0(
√

λ|x|) denotes the inverse Fourier transform of (|p|2 + λ)−1, i.e., the modified Bessel function of 
second kind of order 0 (a.k.a. Macdonald function [1, Sect. 9.6]), γ is the Euler constant and the function α(t) =
(α1(t), . . . , αN(t)) is assumed to be of class C1.

Wave functions in the operator domain are thus decomposable into a regular part φλ, belonging to the domain of 
the free Laplacian, plus a more singular term proportional to the Green function of −� +λ, which shows logarithmic 
singularities at the points y1, . . . , yN (see [11]). The interaction is replaced with a boundary condition linking the 
values of the regular part φλ at points y1, . . . , yN to the coefficients of the singular one.

Remark 1.1 (Domain decomposition). In the definition of the domain (1.3) a first difference with the 3D case emerges: 
the operator domain D(Hα(t)) is obviously independent of the parameter λ, but, while in 3D one is allowed to take 
λ = 0 (with some little care about the large |x| decay), the same is not possible in 2D. Due to its infrared singularity, 
the 2D Green function actually diverges when λ → 0 and therefore such a choice is forbidden.

The Cauchy problem for the linear evolution equation, i.e.,{
i∂tψt = Hα(t)ψt ,

ψt=0 = ψ0,
(1.4)

with ψ0 ∈ D(Hα(0)), was studied in [11], where it was proven that Hα(t) generates a two-parameter unitary group 
U(t, s) and therefore, if φ ∈ D(Hα(0)), then also ψt ∈ D(Hα(t)) for any time t ∈R.

Equivalently (see [18]) one can consider the quadratic form Fα(t) associated to the operator Hα(t),

Fα(t)[ψ] :=
∫
R2

dx
{
|∇φλ|2 + λ |φλ|2 − λ|ψ |2

}
+

N∑
j=1

(
αj (t) + 1

2π
log

√
λ

2 + γ
2π

)
|qj |2

− 1

2π

N∑
j=1

∑
k �=j

q∗
j qkK0(

√
λ
∣∣yj − yk

∣∣) (1.5)

with time-independent domain

D[F] :=
{
ψ ∈ L2(R2)

∣∣ψ = φλ + 1

2π

N∑
j=1

qjK0

(√
λ|x − yj |

)
, φλ ∈ H 1(R2), qj ∈C

}
,

and the weaker version of the Cauchy problem (1.4):{
i d
dt

〈χ |ψt 〉 =Fα(t)[χ,ψt ], ∀χ ∈ D[F],
ψt=0 = ψ0,

(1.6)

where the initial datum ψ0 also belongs to the form domain D[F], 〈 · | · 〉 stands for the scalar product in L2(R2) and 
Fα(t)[ · , · ] is the sesquilinear form associated to Fα(t) defined, e.g., by polarization. The well-posedness of the above 
Cauchy problem is also proven in [11]. Note that, unlike the operator domain, functions in the form domain D[F] do 
not have to satisfy any boundary condition.

A solution to both linear problems (1.4) and (1.6) (see [11, Sect. 2.2]) is provided by the following ansatz

ψt(x) := (U0(t)ψ0) (x) + i

2π

N∑
j=1

t∫
0

dτ U0
(
t − τ ; |x − yj |

)
qj (τ ), (1.7)

where U0(t) = ei�t denotes the free propagator, whose integral kernel is given by

U0(t; |x|) = e− |x|2
4it

2it
, t ∈R, x ∈R2,

and the function q(t) = (q1(t), . . . , qN(t)) is the solution of a Volterra-type equation of the form
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qj (t) + 4π

t∫
0

dτ I(t − τ) αj (τ )qj (τ ) +
N∑

k=1

t∫
0

dτ Kjk(t − τ) qk(τ ) = fj (t)

(see below for more details).
The nonlinear model we plan to investigate in this article is the analogue of (1.4) (resp. (1.6)), where the parameters 

α(t) depend themselves on the values of the charge q(t), i.e.,

αj (t) = βj

∣∣qj (t)
∣∣2σj , βj ∈R, σj ∈R+. (1.8)

Hence for any wave function in the nonlinear operator domain, the above nonlinearity can be translated into N non-
linear boundary conditions, i.e.,

lim
x→yj

φλ(x) =
(
βj

∣∣qj (t)
∣∣2σj + 1

2π
log

√
λ

2 + γ
2π

)
qj (t) − 1

2π

∑
k �=j

K0(
√

λ|yj − yk|)qk(t). (1.9)

Consequently, the goal is to prove that a weak solution to the Cauchy problem (1.4) (i.e., a solution to (1.6)) with 
the nonlinear condition (1.8) is provided by the very same ansatz as in (1.7), i.e.,

ψt(x) = (U0(t)ψ0) (x) + i

2π

N∑
j=1

t∫
0

dτ U0
(
t − τ ; |x − yj |

)
qj (τ ),

where q(t) is now the solution of the Volterra-type nonlinear equation

qj (t) + 4πβj

t∫
0

dτ I(t − τ)|qj (τ )|2σj qj (τ )

+
N∑

k=1

t∫
0

dτ Kjk(t − τ)qk(τ ) = 4π

t∫
0

dτ I(t − τ)(U0(τ )ψ0)(yj )

︸ ︷︷ ︸
:=fj (t)

,
(1.10)

with I denoting the Volterra function of order −1

I(t) :=
∞∫

0

dτ
tτ−1

�(τ)
, (1.11)

and where Kjk , j, k = 1, . . . , N , is defined by

Kjk(t) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2

(
log 2 − γ + iπ

4

)
I(t), if j = k,

2i

t∫
0

dτ I(t − τ)U0(τ ; |yj − yk|), if j �= k.
(1.12)

Notice that the choice of the initial time t = 0 is completely arbitrary: everything we prove in this paper holds as well 
if the initial time t = 0 is replaced with any s � 0.

For the sake of completeness we also formulate the weak counterpart of the evolution problem (1.7) and (1.10), 
which reads as follows: let the initial datum ψ0 belong to the form domain D[F], then ψt ∈ D[F] and⎧⎨⎩i d

dt
〈χ |ψt 〉 = Fα(t)

[
χ,ψt

]∣∣{
αj (t)=βj

∣∣qj (t)
∣∣2σj , j=1,...,N

} ,

ψt=0 = ψ0,

for any χ ∈ D[F].
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The form of the Volterra equation (1.10) makes apparent a major difference with the 1 and 3D cases, which is also 
one of the main reasons why the 2D one called for a more refined analysis: the integral operator with kernel I(t − τ)

defined in (1.11) is a characteristic feature of the 2D problem and poses hard technical issues (see, e.g., [12]). In 3D (in 
1D the equation is even simpler) the role of I is played by the Abel-1/2 integral operator with kernel 1/

√
t − τ , which 

enjoys a lot of useful regularizing properties, making the investigation of (1.10) much easier. In that case, by taking 
smooth enough initial data, the regularity easily propagates to q(t), so that the ansatz (1.7) belongs to the operator 
domain and therefore it provides strong solution to the Cauchy problem. The extension to rougher initial data is then 
obtained by density. In 2D already the first step, i.e., the regularity of q(t) for smooth initial data, is challenging and 
the whole proof strategy has to be dramatically changed (see Sect. 2).

Moreover, the lack of regularity of q(t) prevents the use of any density argument, which is precisely the route 
followed in 1 and 3D: indeed, it is impossible in 2D to restrict the set of initial data, prove the well-posedness and then 
extend the result to all initial data by density. On the opposite, our strategy relies on a contraction argument, which 
does not allow to propagate any additional regularity from the initial datum to q(t) (and then to ψt ). In addition, the 
appropriate contraction space is H 1/2(0, T ), which is known to have a sort of pathological behavior, i.e., failure of 
the Hardy inequality, absence of natural extensions to H 1/2(R) etc. (see below), and which makes the technical side 
of the proof really tricky.

1.2. Main results

Although, as we pointed out in Section 1.1, the model makes sense for an arbitrary number N of nonlinear point 
interactions, in the following of the paper we will only deal with the case N = 1. The reason of such a restriction is 
purely technical (see also the end of Section 2.2). Indeed, with some tricky calculations, it is possible to check that, 
due to the asymptotic diverging behavior of I (see next (2.16)) and U0( · ; |yj − yk|) (for j �= k) near the origin, the 
off-diagonal kernels in (1.12) are very singular, i.e.,

2i

t∫
0

dτ I(t − τ)U0(τ ; |yj − yk|) /∈ L1(0, T ).

This represents a main issue for the study of the integral equation (1.10), since all the “contractive theory” developed 
in Section 2.1 strongly relies on the integrability of the kernel.

It is also worth stressing that in the 1 and the 3D cases such a problem is not present, since if we replace I with the 
1
2 -Abel kernel and U0 with the one- or three-dimensional kernel of the free propagator, then the off-diagonal terms of 
the charge equation present the same qualitative behavior of the diagonal part.

Consequently, our discussion only focuses on the case of a single nonlinear interaction placed at y ∈ R2, with 
coefficient β0 ∈ R and nonlinear power σ ∈ R+ (i.e., α(t) = β0|q(t)|2σ q(t)); namely we study the properties of the 
function

ψt(x) := (U0(t)ψ0) (x) + i

2π

t∫
0

dτ U0 (t − τ ; |x − y|) q(τ ), (1.13)

where q satisfies

q(t) + 4πβ0

t∫
0

dτ I(t − τ)|q(τ)|2σ q(τ )

−2
(
log 2 − γ + iπ

4

) t∫
0

dτ I(t − τ)q(τ ) = 4π

t∫
0

dτ I(t − τ)(U0(τ )ψ0)(y).

(1.14)

More precisely, recalling that in the case of a single point interaction the quadratic form defined by (1.5) reads

Fα(t)[ψ] :=
∫

2

dx
{
|∇φλ|2 + λ |φλ|2 − λ|ψ |2

}
+

(
α(t) + 1

2π
log

√
λ

2 + γ
2π

)
|q|2,
R
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with domain

D[F] :=
{
ψ ∈ L2(R2)

∣∣ψ = φλ + 1

2π
qK0

(√
λ|x − y|

)
, φλ ∈ H 1(R2), q ∈C

}
, (1.15)

we will show that ψt is the unique solution of the weak Cauchy problem{
i d
dt

〈χ |ψt 〉 = Fα(t)

[
χ,ψt

]∣∣{
α(t)=β0|q(t)|2σ

} ,

ψt=0 = ψ0,
(1.16)

for any χ = χλ + 1
2π

qχK0(
√

λ| · −y|) ∈ D[F], where

Fα(t)

[
χ,ψt

]∣∣{
α(t)=β0|q(t)|2σ

} :=
∫
R2

dx
{∇χ∗

λ · ∇φλ,t + λχ∗
λφλ,t − λχ∗ψt

}

+
(

β0|q(t)|2σ + 1

2π
log

√
λ

2
+ γ

2π

)
q∗
χq(t).

1.2.1. Local well-posedness and conservation laws
The first result we prove concerning the evolution problem described above is a local well-posedness for initial 

data in a suitable subset of the form domain that we define as follows (we set p = |p| for short)

D :=
{
ψ ∈ D[F]

∣∣∣ (1 + pε
)

φ̂λ(p) ∈ L1(R2), for some ε > 0
}

, (1.17)

where φ̂λ stands for the Fourier transform (see (2.2)) of the regular part φλ.

Theorem 1.1 (Local well-posedness). Let ψ0 ∈ D and σ � 1
2 . Then, there exists T > 0 such that there is a unique 

solution to (1.16) belonging to D[F] for any t � T and it is given by (1.13), with q(t) the unique solution to (1.14).

Remark 1.2 (Charge q(t)). The above Theorem contains in fact two results: the most important one is the local 
well-posedness of the weak Cauchy problem (1.16), but that result actually follows from the properties of the solution 
to the Volterra-type equation (1.14). In fact, once established the existence and uniqueness of q(t) in C[0, T ] ∩
H 1/2(0, T ) (see Propositions 2.2, 2.3 and 2.4), one can prove that such a regularity transfers to the wave function 
defined by (1.13) and then, thanks to the special form of (1.13), that ψt solves (1.16). It has to be stressed that the 
regularity of q is, in fact, borderline to make this argument work and a very fine analysis has to be performed.

Remark 1.3 (Uniqueness of ψt ). One could think that the ansatz (1.13) might not be the unique solution of the weak 
problem (1.16). However, it is easy to see that this is not the case and ψt is in fact the unique solution of (1.16). Suppose 
that, for a given initial datum ψ0 ∈ D , there was another solution ψ̃t . Then, by definition, it should decompose as

ψ̃t = φ̃λ,t + 1

2π
q̃(t)K0

(√
λ|x − y|

)
,

for some bounded charge ̃q(t) different from q(t). However, one could as well decompose ψ̃t as (see, e.g., Sect. 2.2)

ψ̃t (x) = χλ,t (x) + i

2π

t∫
0

dτ U0 (t − τ ; |x − y|) q̃(τ ),

for some function χλ,t . Now, it is not difficult to see (Sect. 2.2) that this function can solve (1.16) if and only if 
χλ,t = U0(t)ψ0 and ̃q solves the charge equation (1.14). Uniqueness of the solution of (1.14) implies then the result. 
In fact, in Sect. 2.2 the previous argument is carried out in the case of strong solutions, following the original proof 
of [2] for the linear problem (and with the extra assumption q(0) = 0). However, it is possible to prove that it can be 
adapted to weak solutions.
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Remark 1.4 (Condition on the nonlinearity). Although not so relevant for most physical applications, it is worth 
discussing briefly the role of the condition σ � 1

2 . There is no analogue of such a condition in the proof of local 
well-posedness for the 1D and 3D models. We believe it is only a technical assumption needed in a single step of 
the proof. More precisely it is due to the different strategy we have to follow in the first part of the proof, i.e., the 
contraction argument used in the analysis of the charge equation, which requires to assume σ � 1

2 (see Lemma 2.1
and Remark 2.1). Obviously, the case σ = 0 is also included, corresponding to the linear evolution problem studied in 
[11].

Remark 1.5 (Condition on the initial state). We point out that the assumption on the initial state ψ0 ∈ D � D[F]
is more restrictive than one would expect, since not only φλ,0 ∈ H 1(R2), but also the Fourier transform must be in 
L1(R2). This, for instance, ensures that the time-evolution of the regular part U0(t)φλ,0 is a continuous function, in or-
der to be able to evaluate it at the singular point y. The condition is deeply related to the lack of regularizing properties 
of the operator I and in this respect the choice of D is the most reasonable. On the other hand, the further requirement 
pεφ̂λ,0 ∈ L1(R2) plays a role only in Lemma 2.9 (which is however mandatory for the proofs of Theorems 1.2 and 
1.3). No analogue of these conditions is however present in the 1 and 3D cases and it might as well be that such extra 
assumptions are not needed for a weak solution.

In addition, we can claim a conservation result, that also plays a crucial role in the proof of the global existence of 
the solutions mentioned above:

Theorem 1.2 (Conservation laws). Let ψ0 ∈ D , ψt be the wave function defined by (1.13) and (1.14) and T > 0 the 
existence time provided by Theorem 1.1. Then, the mass M(t) = ‖ψt‖2 and the energy

E(t) = ‖φ1,t‖2
H 1(R2)

+
(

β0

σ + 1
|q(t)|2σ + γ − log 2

2π

)
|q(t)|2 (1.18)

are conserved for every t ∈ [0, T ].

Remark 1.6 (Dependence on T ). We stress that, as it is, the conservation of the mass and the energy does not actually 
depend on T . We claimed that they are conserved quantities only for t ∈ [0, T ], since at this point we know that 
ψt ∈ D[F] only for t ∈ [0, T ]. However, it is clear that, as one proves that this is true for every t � 0, then one 
immediately extends the conservation to any t � 0.

Remark 1.7 (Choice of the spectral parameter λ). The decomposition of functions in the form domain D[F] defined 
in (1.15) depends on a spectral parameter λ > 0, although the domain itself is independent of λ. In (1.18) we have 
made the choice to pick λ = 1 (as suggested in [2]). It is worth recalling that this is an arbitrary choice and any other 
choice would imply an equivalent conservation law, but a different decomposition.

Remark 1.8 (Energy form). Another difference between the 2D case and the 1 and 3D ones is apparent in the form 
of the energy (1.18): instead of the L2 norm of the gradient of the regular part of the wave function, (1.18) contains 
(first term) the full H 1 norm of φ1,t . This is again a consequence of the impossibility to choose λ = 0 as a spectral 
parameter in the form domain decomposition.

1.2.2. Global well-posedness and blow-up alternative
As we are going to see, the energy conservation is the key to prove the global well-posedness of the solution for 

β0 > 0. On the opposite, in the focusing case, i.e., if β0 < 0, the solution might be non-global due to a blow-up at 
finite time. It is important to remark that, unlike the NLS with concentrated nonlinearity in 3D, one expects that no 
critical power occurs in the 2D focusing case and hence, as soon as β0 < 0, a blow-up solution might show up [2]. We 
plan to deal with this question in a forthcoming paper.

Theorem 1.3 (Global well-posedness). Let σ � 1
2 and β0 > 0. Then, the solution to (1.16) provided by ψt defined by 

(1.13) and (1.14) is global in time, for any initial datum ψ0 ∈ D .
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As anticipated, in the focusing case we have a blow-up alternative:

Proposition 1.1 (Blow-up alternative). Let σ � 1
2 , β0 < 0 and ψ0 ∈ D . Then, the solution to (1.16) provided by ψt

defined by (1.13) and (1.14) is either global in time or it blows-up in a finite time.

Remark 1.9 (Behavior as t → +∞). In fact the proofs of Theorem 1.3 and Proposition 1.1 provide more information 
than what is contained in the statements. Indeed, while in the defocusing case β0 > 0, the charge q(t) is uniformly 
bounded, i.e., lim supt→+∞ |q(t)| < +∞, in the focusing one, i.e., if β0 < 0, the global existence of the solution does 
not imply its boundedness at ∞. More precisely it may happen that the maximal existence time for q(t) is +∞ but 
lim supt→+∞ |q(t)| = +∞.
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improvement of the work.

2. Proofs

This Sect. is devoted to the proofs of our main results. We divide this section in five steps:

(i) we point out in Sect. 2.1 some relevant properties of Sobolev spaces of fractional index and of the integral 
operator I ;

(ii) we present in Sect. 2.2 a justification for the ansatz (1.7) and the charge equation (1.10);
(iii) we prove existence, uniqueness and regularity of the solution of (1.14) and show how this allows to prove Theo-

rem 1.1 (Sect. 2.3);
(iv) we prove in Sect. 2.4 mass and energy conservation (Theorem 1.2);
(v) we use the conservation laws of Sect. 2.4 to prove global existence and blow-up alternative (Theorem 1.3 and 

Proposition 1.1).

We stress that the proof strategy differs very much from the one followed in 1 or 3D. In those cases the core of the 
argument heavily relies on the regularizing properties of the Abel operator, which is involved in the integral version 
of the charge equation. Such an operator guarantees the minimal amount of regularity on q(t) needed to ensure that 
the ansatz ψt solves the weak problem (1.16), at least if the initial datum is regular enough. Unfortunately, the 2D 
analogue of the Abel operator is the integral operator I , which does not provide any improvement of regularity (see 
Lemma 2.4). Therefore the strategy itself of the proof needs to be modified: the required regularity of q(t) is indeed 
obtained by applying a suitable contraction argument to the charge equation. There are however some drawbacks 
in this approach, taking the form of additional conditions on the initial state, i.e., ψ0 ∈ D , and on the nonlinearity 
exponent, i.e., σ � 1/2.

2.1. Preliminary results

We start by recalling briefly some facts on Sobolev spaces with fractional index. Let −∞ � a < b � +∞ and 
ν ∈ (0, 1), we denote by Hν(a, b) the Sobolev space defined by

Hν(a, b) =
{
f ∈ L2(a, b)

∣∣ [f ]2
Ḣ ν(a,b)

< ∞
}

,

where

[f ]2
Ḣ ν(a,b)

:=
∫

[a,b]2

dt dτ
|f (t) − f (τ)|2

|t − τ |1+2ν
.

The space Hν(a, b) is a Hilbert space with the natural norm
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‖f ‖2
Hν(a,b) = ‖f ‖2

L2(a,b)
+ [f ]2

Ḣ ν(a,b)
. (2.1)

When a = −∞ and b = +∞, Hν(R) can be equivalently defined using the Fourier transform f̂ of f and, for any 
f ∈ L2(Rd), we will use the following convention

f̂ (p) := 1

(2π)d/2

∫
Rd

dt e−ip·t f (t). (2.2)

Consistently, the convolution of two functions f, g ∈ L2(Rd) is defined as

(f ∗ g) (x) := 1

(2π)d/2

∫
Rd

dy f (x − y)g(y).

We start by discussing a technical point concerning the extension of functions in H 1/2(0, T ): it is known that 
if f ∈ Hν(0, T ), for ν < 1/2 (also for ν > 1/2 but with the additional assumption that f (0) = f (T ) = 0), then 
1[0,T ](t)f (t) ∈ Hν(R) (see, e.g., [10, Lemma 2.1]). However, the case ν = 1/2 is very special and not included in 
the above result because the Hardy inequality, which is a key ingredient of the proof, fails in H 1/2 (see [26]). In 
the Proposition below we show that if f ∈ H 1/2(0, T ) is continuous and satisfies an additional condition, then the 
extension to an H 1/2 function of the real line supported on a compact set is possible. We introduce an ad hoc space of 
continuous functions (see also, e.g., [16]): for β > 0 we set

Clog,β [0, T ] :=
{
f ∈ C[0, T ] ∣∣ ∃C > 0 s.t. ∀t ∈ [0, T ], ∃δ > 0 s.t.

∀s ∈ (t − δ, t + δ) ∩ [0, T ], |f (t) − f (s)| � C |log |t − s||−β
}
. (2.3)

Hence, functions in Clog,β satisfies a sort of local “weak” Hölder continuity condition, which is going to play a very 
important role in the proposition below.

Proposition 2.1 (Extension of functions in Clog,β ). Let T > 0 and β > 1/2, then for any f (t) ∈ Clog,β [0, T ] ∩
H 1/2(0, T ) with f (T ) = 0, the function

fe(t) :=

⎧⎪⎨⎪⎩
f (t), if t ∈ [0, T ],
f (−t), if t ∈ [−T ,0],
0, otherwise,

belongs to H 1/2(R).

Proof. The function fe is obtained from f by reflecting it in an even way, so that supp(fe) = [−T , T ]. Of course 
fe(t) = f (t) for t ∈ [0, T ] and

‖fe‖2
L2(−T ,T )

= 2‖f ‖2
L2(0,T )

, [fe]2
Ḣ 1/2(−T ,T )

� 4 [f ]2
Ḣ 1/2(0,T )

,

and therefore, if f ∈ H 1/2(0, T ), then fe ∈ H 1/2(−T , T ). Also ‖fe‖L2(R) = ‖fe‖L2(−T ,T ). Now a simple computation 
yields

[fe]2
Ḣ 1/2(R)

= [fe]2
Ḣ 1/2(−T ,T )

+ 2

T∫
−T

dt

(
1

t + T
+ 1

T − t

)
|fe(t)|2,

and, if we show that the second term on the r.h.s. is finite, then we complete the proof. A direct inspection of those 
integrals reveals that the integrand is an integrable function with possibly some singularity at the boundary of the 
domain, where we have to verify that it still is integrable. This request can be easily seen to be that

|fe(t)|2 = |f (t)|2

T − t T − t
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is integrable at t = T . However, since by assumption f (T ) = 0, the fact that f ∈ Clog,β [0, T ] implies that, for t in a 
neighborhood of T ,

|f (t)| � C

| log(T − t)|β ,

for some β > 1/2. Hence

|fe(t)|2
T − t

� C

(T − t)| log(T − t)|2β
,

which is integrable close to t = T . �
Another useful result we prove is about the Lipschitz continuity of the map f �→ |f |2σ f w.r.t. to the Hν and L∞

norm. Such a result will play an important role when inspecting the regularity of the solution of the charge equation.

Lemma 2.1 (Lipschitz continuity of f �→ |f |2σ f ). Let σ � 1
2 , ν ∈ [0, 1] and T , M > 0. Assume also that f and g are 

functions satisfying

‖f ‖L∞(0,T ) + ‖f ‖Hν(0,T ) � M, ‖g‖L∞(0,T ) + ‖g‖Hν(0,T ) � M. (2.4)

Then, there exists a constant C > 0 independent of f, g, M and T , such that∥∥∥|f |2σ f − |g|2σ g

∥∥∥
L∞(0,T )

� CM2σ ‖f − g‖L∞(0,T ) (2.5)

and ∥∥∥|f |2σ f − |g|2σ g

∥∥∥
Hν(0,T )

� C max
{

1,
√

T
}

M2σ
(‖f − g‖L∞(0,T ) + ‖f − g‖Hν(0,T )

)
. (2.6)

Proof. Let us first focus on (2.5): denote by ϕ : C → C the function ϕ(z) = |z|2σ z. For σ � 1
2 , ϕ ∈ C2(R2; C), as a 

function of the real and imaginary parts of z. Moreover for z1, z2 ∈C,

ϕ(z1) − ϕ(z2) = (z1 − z2)ψ1(z1, z2) + (z2 − z1)
∗ ψ2(z1, z2), (2.7)

with

ψ1(z1, z2) =
1∫

0

ds ∂zϕ(z1 + s(z2 − z1)), ψ2(z1, z2) =
1∫

0

ds ∂z∗ϕ(z1 + s(z2 − z1)),

where ∂zϕ = (σ + 1)|z|2σ and ∂z∗ϕ = σ |z|2(σ−1)z2. Consequently,

|ψj (z1, z2)| � C

1∫
0

ds |z1 + s(z2 − z1)|2σ , j = 1,2. (2.8)

Thus,

|ϕ(z1) − ϕ(z2)| � C max{|z1|, |z2|}2σ |z1 − z2| (2.9)

and, then, setting z1 = f (t) and z2 = g(t), (2.4) immediately entails (2.5).
Let us now consider (2.6). Setting again z1 = f (t) and z2 = g(t) in (2.7), we have that

ϕ(f (t)) − ϕ(g(t)) = (f (t) − g(t))ψ1(f (t), g(t)) + (f (t) − g(t))∗ ψ2(f (t), g(t)).

For any pair of functions f1, f2 ∈ Hν(0, T ) ∩ L∞(0, T )

‖f1f2‖Hν(0,T ) � C
(‖f1‖L∞(0,T )‖f2‖Hν(0,T ) + ‖f2‖L∞(0,T )‖f1‖Hν(0,T )

)
,

as it can be easily seen by exploiting (2.1). Hence, since by (2.4) and (2.8),
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∥∥ψj (g(t), f (t))
∥∥

L∞(0,T )
� CM2σ , j = 1,2,

then, denoting φj (t) := ψj(f (t), g(t)) for short,

‖ϕ(f (t)) − ϕ(g(t))‖Hν(0,T ) � ‖φ1 · (f − g)‖Hν(0,T ) + ‖φ2 · (f − g)‖Hν(0,T )

� C max
{
M2σ ,

[‖φ1‖Hν(0,T ) + ‖φ2‖Hν(0,T )

]} (‖f − g‖L∞(0,T ) + ‖f − g‖Hν(0,T )

)
.

Therefore it remains to verify that φj ∈ Hν(0, T ) and estimate its norm: the L2 norm of φj can be bounded as∥∥φj

∥∥
L2(0,T )

� C
√

T M2σ , j = 1,2. (2.10)

Hence, it is left to prove that the semi-norms are also bounded. To this aim one notes that, for fixed z1, z2, w1, w2 ∈ C, 
one can write

ψj (z2,w2) − ψj(z1,w1) = ψj(z2,w2) − ψj (z2,w1) + ψj(z2,w1) − ψj (z1,w1), (2.11)

and, arguing as before,

ψj (z2,w2) − ψj(z2,w1) = (w2 − w1)

1∫
0

ds ∂zχj (w1 + s(w2 − w1))

+ (w2 − w1)
∗

1∫
0

ds ∂z∗χj (w1 + s(w2 − w1)), (2.12)

where we have set χj (z) := ψj (z2, z). Similarly

ψj (z2,w1) − ψj(z1,w1) = (z2 − z1)

1∫
0

ds ∂zξj (z1 + s(z2 − z1))

+ (z2 − z1)
∗

1∫
0

ds ∂z∗ξj (z1 + s(z2 − z1)), (2.13)

with ξj (z) := ψj(z, w1). Now, since

χ1,2(z) =
1∫

0

ds ∂z/z∗ϕ(z2 + s(z − z2)), ξ1,2(z) =
1∫

0

ds ∂z/z∗ϕ(z + s(z − w1)),

and

∂2
z ϕ(z) = σ(σ + 1) |z|2(σ−1) z∗,

∂z∂z∗ϕ(z) = σ(σ + 1) |z|2(σ−1) z,

∂2
z∗ϕ(z) = σ(σ − 1) |z|2(σ−2) z3,

plugging (2.12) and (2.13) into (2.11), one sees that∣∣ψj(z2,w2) − ψj(z1,w1)
∣∣� C max{|z1|, |z2|, |w1|, |w2|}2σ−1 (|z2 − z1| + |w2 − w1|) , (2.14)

which yields[
φj

]
Ḣ ν(0,T )

= [
ψj(f (t), g(t))

]
Ḣ ν(0,T )

� CM2σ−1
(

[f ]Ḣ ν(0,T ) + [g]Ḣ ν(0,T )

)
� CM2σ .

Thus, combining with (2.10),∥∥ψj (f (t), g(t))
∥∥

Hν(0,T )
� C max

{
1,

√
T
}

M2σ ,

so that (2.6) is proved. �
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Remark 2.1 (Condition σ � 1
2 ). We stress that assuming σ � 1

2 is crucial in the proof (2.6), in particular when 
assuming that |z|2σ z ∈ C2(R2; C) or, equivalently, in assuring that the exponent 2σ − 1 in (2.14) is positive and 
therefore the functions f (t) and g(t) can be replaced in the upper bound with their suprema.

On the other hand, (2.5) only requires |z|2σ z ∈ C1(R2; C) and hence is valid for σ � 0. In fact the estimate (2.8)
holds true for σ � 0 as well, but the stricter request σ � 1

2 enters into the derivation of the bounds on the Hν-norm of 
φj , as explained above.

In the second part of the section, we investigate some properties of the integral operator I associated with the 
Volterra function of order −1, defined by (1.11), i.e.,

(If )(t) :=
t∫

0

dτ I(t − τ)f (τ). (2.15)

First, we recall some basic properties of I(t) (for further details we refer to [21, Sec. 18.3], where I(t) is denoted by 
ν(t, −1)). The asymptotic expansions of I(t) as t → 0 and t → ∞ are

I(t) =
t→0

1

t log2 ( 1
t

) [1 +O(|log t |−1)
]
, (2.16)

I(t) =
t→∞ et +O(t−1).

Since I is continuous for t > 0 the previous expansions entail that

I(t) ∈ L1
loc(R

+) ∩ L∞
loc(R

+ \ {0}).
Furthermore, it is also worth to point out some features of the function N , defined as

N (t) :=
t∫

0

dτ I(τ ). (2.17)

Clearly, the fact that I(t) ∈ L1
loc(R

+) implies that the function N is absolutely continuous on any bounded interval 
[0, T ], T > 0, and N (0) = 0. In addition, as I is strictly positive, N is strictly increasing on [0, ∞) and the asymptotic 
expansion as t → 0 is

N (t) =
t→0

log t∫
−∞

dx
1

x2

(
1 +O(x−1)

)
= 1

log
( 1

t

) +O(| log t |−2). (2.18)

Another important property of N (t) is stated in the next

Lemma 2.2. Let N (t) be defined in (2.17). Then, for any T > 0, N (t) ∈ Hν(0, T ), ∀ν ∈ [
0, 1

2

]
, and

lim
T →0

‖N‖Hν(0,T ) = 0. (2.19)

Proof. The absolute continuity of N (t) in the interval [0, T ] implies that N ∈ L2(0, T ), for any finite T . Conse-
quently it is left to prove that the seminorm [N ]Ḣ 1/2(0,T ) in bounded. An easy computation shows that

[N ]2
Ḣ 1/2(0,T )

= 2

T∫
0

dt

t
2∫

0

ds

∣∣∣∣N (t) −N (s)

t − s

∣∣∣∣2 + 2

T∫
0

dt

t∫
t
2

ds

∣∣∣∣N (t) −N (s)

t − s

∣∣∣∣2 .

Looking at the first integral and recalling that N is increasing, we find∣∣∣∣N (t) −N (s)
∣∣∣∣2 � 4

N 2(t)

2 , ∀s ∈ (
0, t

2

)
.

t − s t
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Hence,

T∫
0

dt

t
2∫

0

ds

∣∣∣∣N (t) −N (s)

t − s

∣∣∣∣2 � 2

T∫
0

dt
N 2(t)

t
< ∞,

since, by (2.18), N
2(t)
t

∼ I(t), when t → 0, and thus is integrable over [0, T ], for any T finite.
Applying Cauchy inequality to the second integral, we get

T∫
0

dt

t∫
t
2

ds

∣∣∣∣N (t) −N (s)

t − s

∣∣∣∣2 =
T∫

0

dt

t∫
t
2

ds

∣∣∣∣∣∣ 1

t − s

t∫
s

dτ I(τ )

∣∣∣∣∣∣
2

�
T∫

0

dt

t∫
t
2

ds
1

t − s

t∫
s

dτ I2(τ ).

Furthermore since I is positive and convex (see [12]), it is I2(τ ) � I2(t) + I2(s) for every τ ∈ [s, t], so that

T∫
0

dt

t∫
t
2

ds
1

t − s

t∫
s

dτ I2(τ ) �
T∫

0

dt

t∫
t
2

ds (I2(t) + I2(s)).

Now, noting that log−4(1/s) � log−4(1/t) for all s ∈ (t/2, t) and using again (2.16),

T∫
0

dt

t∫
t
2

ds I2(s) ∼
T∫

0

dt

t∫
t
2

ds
1

s2 log4( 1
s
)
� C

T∫
0

dt
1

t log4( 1
t
)

< ∞,

whereas, on the other hand,

T∫
0

dt

t∫
t
2

ds I2(t) � C

T∫
0

dt t I2(t) ∼ C

T∫
0

dt
1

t log4( 1
t
)

< ∞.

Thus
T∫

0

dt

t∫
t
2

ds

∣∣∣∣N (t) −N (s)

t − s

∣∣∣∣2 < ∞.

In conclusion we proved that [N ]Ḣ 1/2(0,T ) < ∞. The same inequalities also imply (2.19). �
In [12] the operator I is investigated in details and several useful properties are established. Here, we only show 

the most relevant ones for our application (we also mention some proofs for the sake of completeness).

Lemma 2.3. Let T > 0 and f ∈ L∞(0, T ). Then, If ∈ C[0, T ] and

‖If ‖L∞(0,T ) � CT ‖f ‖L∞(0,T ) , (2.20)

with CT > 0 independent of f and such that CT −−−→
T →0

0.

Proof. Recalling (2.15) and (2.18), (2.20) is immediate. Then, it is left to prove that If is continuous. To this aim, fix 
t0 ∈ [0, T ) and t ∈ (t0, T ]. Easy computations yield

If (t) − If (t0) =
T∫

0

dτ I(t − τ)1[t0,t](τ )f (τ ) −
T∫

0

dτ (I(t0 − τ) − I(t − τ))1[0,t0](τ )f (τ )

and therefore
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|If (t) − If (t0)| �
T∫

0

dτ I(t − τ)1[t0,t](τ )|f (τ)| +
T∫

0

dτ |I(t0 − τ) − I(t − τ)|1[0,t0](τ )|f (τ)|

�N (t − t0)‖f ‖L∞(0,T ) + ‖f ‖L∞(0,T )

t0∫
0

dτ |I(τ ) − I(t − t0 + τ)| . (2.21)

Therefore, the first term converges to zero by the continuity of N , while the second one tends to zero by dominated 
convergence. Indeed, it suffices to bound from above the integrand in the second term by an integrable function 
independent of t . Since t varies in a bounded set and I(t) is bounded for t > 0 finite, we have

|I(τ ) − I(t − t0 + τ)| � I(τ ) + sup
δ∈[0,T ]

I(τ + δ),

and the r.h.s. is integrable for τ ∈ [0, t0].
Since the same holds if t < t0, one has that If (t) → If (t0) as t → t0, which concludes the proof. �

Lemma 2.4. Let f ∈ H 1/2(0, T ) ∩ L∞(0, T ), T > 0. Then, If ∈ H 1/2(0, T ) and, in particular, there exists CT > 0
independent of f and satisfying CT −−−→

T →0
0, such that

‖If ‖H 1/2(0,T ) � CT

(‖f ‖L∞(0,T ) + ‖f ‖H 1/2(0,T )

)
. (2.22)

Proof. Let us divide the proof in two parts: we first estimate the L2 norm of If and then the semi-norm [If ]H 1/2(0,T ).
Let T > 0 be finite and f ∈ H 1/2(0, T ) ∩ L∞(0, T ). In order to extend the operator I to an operator on the line, 

we set fe(t) := 1[0,T ](t)f (t) and define

(Ief )(t) :=
t∫

0

dτ Ie(t − τ)fe(τ ), t ∈ R,

where

Ie(t) := 1[0,T ](t)I(t).

Since (Ief )(t) = (If )(t) for all t ∈ [0, T ],
‖If ‖L2(0,T ) = ‖Ief ‖L2(0,T ) � ‖Ief ‖L2(R). (2.23)

Now, applying the Fourier transform on R to Ief and using the identity

1[0,t](τ ) = 1R+(τ ) − 1R+(τ − t),

one gets

Îef = ̂Ie ∗ (1R+fe) − ̂(1R−Ie) ∗ fe = Îe1̂R+fe − 1̂R−Ief̂e = Îef̂e,

since by construction 1R+(t)fe(t) = fe(t) and 1R−(t)Ie(t) = 0. Hence by (2.23) and the above identity

‖If ‖2
L2(0,T )

�
∫
R

dk
∣∣Îe(k)

∣∣2 ∣∣f̂e(k)
∣∣2,

but |Îe(k)| � CN (T ) and therefore

‖If ‖2
L2(0,T )

� CN 2(T )‖fe‖2
L2(R)

= CN 2(T )‖f ‖2
L2(0,T )

, (2.24)

which implies the result via Lemma 2.2.
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We now focus on the seminorm [If ]Ḣ 1/2(0,T ). First, we note that, for every 0 < s < t < T ,

(If )(t) − (If )(s) =
t∫

s

dτ I(τ )f (t − τ) +
s∫

0

dτ I(τ )(f (t − τ) − f (s − τ)),

so that

[If ]2
Ḣ 1/2(0,T )

� 4

T∫
0

dt

t∫
0

ds

∣∣∣∣∣∣ 1

t − s

t∫
s

dτ I(τ )f (t − τ)

∣∣∣∣∣∣
2

+ 4

T∫
0

dt

t∫
0

ds

∣∣∣∣∣∣
s∫

0

dτ I(τ )
f (t − τ) − f (s − τ)

t − s

∣∣∣∣∣∣
2

. (2.25)

Now, one can easily see that, since f ∈ L∞(0, T ),

4

T∫
0

dt

t∫
0

ds

∣∣∣∣∣∣ 1

t − s

t∫
s

dτ I(τ )f (t − τ)

∣∣∣∣∣∣
2

� 4‖f ‖2
L∞(0,T )

T∫
0

dt

t∫
0

ds

∣∣∣∣N (t) −N (s)

t − s

∣∣∣∣2
= 2‖f ‖2

L∞(0,T )[N ]2
Ḣ 1/2(0,T )

� 2‖f ‖2
L∞(0,T )‖N‖2

H 1/2(0,T )
(2.26)

where the last factor ‖N‖H 1/2(0,T ) is finite by Lemma 2.2. On the other hand by Cauchy–Schwarz inequality, mono-
tonicity of N and positivity of I , we have

4

T∫
0

dt

t∫
0

ds

∣∣∣∣∣∣
s∫

0

dτ I(τ )
f (t − τ) − f (s − τ)

t − s

∣∣∣∣∣∣
2

� 4N (T )

T∫
0

dt

t∫
0

ds

s∫
0

dτ I(τ )

∣∣∣∣f (t − τ) − f (s − τ)

t − s

∣∣∣∣2

� 4N (T )

T∫
0

dτ I(τ )

T −τ∫
0

dt

t∫
0

ds

∣∣∣∣f (t) − f (s)

t − s

∣∣∣∣2 � 2N 2(T ) [f ]2
Ḣ 1/2(0,T )

and plugging the above inequality and (2.26) into (2.25),

[If ]2
Ḣ 1/2(0,T )

� C max
{
‖N‖2

Ḣ 1/2(0,T )
,N 2(T )

}(
‖f ‖2

L∞(0,T ) + ‖f ‖2
Ḣ 1/2(0,T )

)
.

Finally, the above estimate in combination with (2.24) yields

‖If ‖Ḣ 1/2(0,T ) � C max
{
‖N‖Ḣ 1/2(0,T ),N (T )

}(
‖f ‖L∞(0,T ) + ‖f ‖Ḣ 1/2(0,T )

)
and, since both N (T ) and ‖N‖Ḣ 1/2(0,T ) converges to zero as T → 0 by Lemma 2.2, the proof is complete. �

Finally, we point out some relevant properties of the integral operator J , defined by

(Jf )(t) :=
t∫

0

dτ J (t − τ)f (τ), J (t − τ) := −γ − log(t − τ). (2.27)
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Lemma 2.5. For any t ∈R+ and f ∈ L1(0, t),

(J If ) (t) = (IJf ) (t) =
t∫

0

dτ f (τ). (2.28)

Proof. For the meaning of Jf , when f is only an integrable function we refer the reader to [12, proof of Theorem 
5.3]: the argument is similar to the one in the first part of the proof of Lemma 2.4 and exploits the properties of 
convolutions on R, via a suitable extension of the functions involved.

In addition, we observe that one has the identity

t∫
0

dτ I(τ ) (−γ − log(t − τ)) =
t∫

0

dτ I(t − τ) (−γ − log τ) = 1. (2.29)

In [35, Lemma 32.1] it is indeed proven that (in the formula stated in the cited Lemma one has to take α = 1, h = 0)

t∫
0

dτ (log τ − ψ(1)) ∂t ν(t − τ) = −1,

where ν here denotes the Volterra function of order 0. However, using [21, Eq. (12), Sect. 18.3], one can recognize 
that ∂tν(t) = I(t) (and that ψ(1) = −γ ).

Let us then prove the identity involving IJ . The proof of the other one is perfectly analogous and we omit it for 
the sake of brevity. First of all, in the expression

(IJf ) (t) =
t∫

0

dτ

t−τ∫
0

dσ I(τ )J (t − τ − σ)f (σ ),

one can exchange the order of the integration, since

t∫
0

dτ

t−τ∫
0

dσ I(τ )J (t − σ − τ)f (σ ) =
t∫

0

dσ

t−σ∫
0

dτ I(τ )J (t − σ − τ)f (σ ).

Using (2.29), we conclude that

(IJf ) (t) =
t∫

0

dσ

t−σ∫
0

dτ I(τ )J (t − σ − τ)f (σ ) =
t∫

0

dσ f (σ ). �

2.2. A derivation of the charge equation

Before starting to discuss the charge equation, it is worth making a brief excursus on a heuristic computation, 
which motivates ansatz (1.7) and equation (1.10). Note that we derive them in the case of an arbitrary number N on 
interactions for the sake of generality. In the following, we also assume for the sake of simplicity that qj(0) = 0, for 
every j = 1, . . . , N . However, one can prove that such an assumption is not restrictive.

Neglecting any regularity issue, we can compute the time derivative of (1.7) and obtain that, at least formally,

i∂tψt (x) = (−�U0(t)ψ0)(x) − 1

2π

N∑
j=1

qj (t) + 1

2π

N∑
j=1

t∫
0

dτ ∂τU0(t − τ ; |x − yj |) qj (τ )

= (−�U0(t)ψ0)(x) − 1

2π

N∑
j=1

t∫
0

dτ U0(t − τ ; |x − yj |) q̇j (τ ), (2.30)
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where we used the fact that (as qj (0) = 0) ψ0 ∈ H 2(R2) and that (by definition) i∂tU0(t)ψ0 = −�U0(t)ψ0. Hence, 
applying the Fourier transform on R2, the above expression becomes (we set p = |p|)

i∂̂tψt (p) = p2e−ip2t ψ̂0(p) − 1

2π

N∑
j=1

t∫
0

dτ e−ip·yj e−ip2(t−τ) q̇j (τ ). (2.31)

The l.h.s. of (2.30) equals the action of H0 on the regular part of the wave function ψt (see (1.2) and (1.3)), i.e.,

p2
(

ψ̂t (p) − 1

2π

N∑
j=1

qj (t)e
−ip·yj

p2 + λ

)
− λ

2π

N∑
j=1

qj (t)e
−ip·yj

p2 + λ

= p2e−ip2t ψ̂0(p) + 1

2π

N∑
j=1

t∫
0

dτ e−ip·yj ∂τ

(
e−ip2(t−τ)

)
qj (τ ) − 1

2π

N∑
j=1

qj (t)e
−ip·yj

= p2e−ip2t ψ̂0(p) − 1

2π

N∑
j=1

t∫
0

dτ e−ip·yj e−ip2(t−τ) q̇j (τ ), (2.32)

which is equal to (2.31). Therefore, for any q(t) and ψ0 such that the r.h.s. of (2.32) makes sense, the ansatz (1.7)
does solve the time-dependent Schrödinger equation, at least in a weak sense.

Under restrictive assumptions on ψ0, however, the ansatz ψt must belong to the (nonlinear) operator domain 
D(Hα(t)), with αj = βj |qj (t)|2σj , j = 1, . . . , N , i.e., it must satisfy the boundary conditions (1.9), which can be cast 
in the form

1

2π

∫
R2

dp eip·yj φ̂λ,t (p) =
(
βj |qj (t)|2σj + 1

2π
log

√
λ

2 − γ
2π

)
qj (t) − 1

2π

∑
k �=j

qk(t)K0

(√
λ|yj − yk|

)
.

In fact, as we are going to see, the above condition will force q(t) to be a solution to the charge equation (1.10). 
Indeed, since

φλ,t = ψt − 1

2π

N∑
k=1

qk(t)K0

(√
λ| · −yk|

)
,

by (1.7),

1

2π

∫
R2

dp eip·yj

{
e−ip2t ψ̂0(p) + i

2π

N∑
k=1

t∫
0

dτ e−ip·yk e−ip2(t−τ) qk(τ ) − 1

2π

N∑
k=1

qk(t)e
−ip·yk

p2 + λ

}

=
(
βj |qj (t)|2σj + 1

2π
log

√
λ

2 − γ
2π

)
qj (t) − 1

2π

∑
k �=j

qk(t)K0

(√
λ|yj − yk|

)
.

The last off-diagonal term cancels exactly and thus the identity becomes

1

2π

∫
R2

dp eip·yj

{
e−ip2t ψ̂0(p) + i

2π

N∑
k=1

t∫
0

dτ e−ip·yk e−ip2(t−τ) qk(τ ) − 1

2π

qj (t)e
−ip·yj

p2 + λ

}

=
(
βj |qj (t)|2σj + 1

2π
log

√
λ

2 + γ
2π

)
qj (t).

Combining the last diverging term on the l.h.s. with the second one via an integration by parts (here we implicitly 
assume that the charge is regular enough), we get
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1

2π

∫
R2

dp
{
eip·yj e−ip2t ψ̂0(p) − 1

2π(p2 + λ)

t∫
0

dτ e−ip2(t−τ)
[
q̇j (τ ) − iλqj (τ )

]

+ i

2π

∑
k �=j

t∫
0

dτ eip·(yj −yk)e−ip2(t−τ) qk(τ )

}
=

(
βj |qj (t)|2σj + 1

2π
log

√
λ

2 + γ
2π

)
qj (t).

The p integral of the second term on the l.h.s. contains an infrared singularity for t = τ which is proportional to 
log(t − τ): in fact by [22, Eqs. 3.722.1 & 3.722.3]

2π
(
U0(t)K0

(√
λ · )) (0) =

∫
R2

dp
e−ip2(t−τ)

p2 + λ
= −πeiλ(t−τ) [ci(λ(t − τ)) − i si(λ(t − τ))]

= −πeiλ(t−τ) (γ + logλ + log(t − τ)) + eiλ(t−τ)Q(λ; t − τ), (2.33)

where si( · ) and ci( · ) stand for the sine and cosine integral functions [1, Eqs. 5.2.1 & 5.2.2] and (see, e.g., [1, Eq. 
5.2.16])

Q(λ; t − τ) := −π

( ∞∑
n=1

(−(t − τ)2λ2)n

2n(2n)! − i si((t − τ)λ)

)
(2.34)

(note that Q(0; t − τ) = − iπ2

2 ). Hence, we obtain

(U0(t)ψ0) (yj ) + i

2π

∑
k �=j

t∫
0

dτ U0(t − τ ; |yj − yk|) qk(τ ) −
(
βj |qj (t)|2σj + 1

2π
log

√
λ

2 + γ
2π

)
qj (t)

= − 1

4π

t∫
0

dτ
(
γ + log(t − τ) + logλ − 1

π
Q(λ; t − τ)

)
∂τ

(
eiλ(t−τ)qj (τ )

)
and taking the limit λ → 0 (notice the exact cancellation of the diverging logλ terms)

(U0(t)ψ0)(yj ) + i

2π

∑
k �=j

t∫
0

dτ U0(t − τ ; |yj − yk|) qk(τ )

−
(
βj |qj (t)|2σj − 1

2π
log 2 + γ

2π
− i

8

)
qj (t) = − 1

4π

t∫
0

dτ (γ + log(t − τ)) q̇j (τ ).

If we now apply to both sides the integral operator I defined in (2.15) and exploit the property proven in Lemma 2.5, 
we find

t∫
0

dτ I(t − τ)(U0(τ )ψ0)(yj ) + i

2π

∑
k �=j

t∫
0

dτ I(t − τ)

τ∫
0

dμ U0(τ − μ; |yj − yk|)qk(μ)

−
t∫

0

dτ I(t − τ)βj |qj (τ )|2σj qj (τ ) + 1

2π

(
log 2 − γ + iπ

4

) t∫
0

dτ I(t − τ)qj (τ ) = qj (t)

4π

and thus multiplying each term by 4π and exchanging the integration order in the sum one obtains (1.10).
This formal derivation deserves two further comments. The first one concerns the limit λ → 0 that one performs in 

order to arrive to the actual form of the charge equation. The two issues concerning this point are both that the choice 
λ = 0 is forbidden in the 2D case (for the domain decomposition) and that the charge equation must be independent 
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of the choice of λ. However, using the Laplace transform (see, e.g., [2]) one can check (with long computations) that 
the same form of the charge equation can be obtained for any other choice of λ > 0.

Finally, it is worth giving some further details on the reason why the off-diagonal terms cannot be treated in this 
paper. As we stressed at the beginning of Section 1.2, the point is that the kernel of the off-diagonal terms, i.e.,

t∫
0

dτ I(t − τ)U0(τ ; |yj − yk|) (2.35)

is not integrable. The mathematical reason for such a lack of integrability is the following. Using the asymptotics 
provided by (2.16), one can check that, up to some constants, the local singularity of (2.35) is given by

1

t log2 t

1∫
0

dτ
ei

|yj −yk |2
4tτ

τ (1 − τ)

1(
1 + log(1−τ)

log t

)2 . (2.36)

If we split the integral in two parts, one can see that the integral between 0 and 1
2 converges to a constant when t → 0, 

whereas the integral between 1
2 and 1 yields a logarithmic divergence as t → 0, thus implying that (2.36) behaves like 

1
t log t

as t → 0 and therefore it is not integrable.
As a further remark, one could note that, in fact, the term which is logarithmic-divergent is multiplied by a factor 

that is strongly oscillating as t → 0. This, although not relevant concerning the integrability of the kernel, could pro-
vide nevertheless the possibility of studying this types of kernels, but the corresponding theory is yet to be developed.

2.3. Local well-posedness

In order to prove Theorem 1.1, the first step is to discuss existence, uniqueness and Sobolev regularity of any 
solution of (1.14). We split the results into two separate propositions to make the proof strategy clearer: by general 
arguments about Volterra-type integral equations and the properties of (1.14), we obtain existence and uniqueness of a 
continuous solution q(t) up to some maximal existence time T∗, which might as well be +∞. Then, in order to derive 
the Sobolev regularity of q(t), we use the aforementioned contraction, which works on some a priori shorter interval 
[0, T ], T < T∗. In Proposition 2.4 we will however show how one can extend such a regularity to the whole existence 
interval, provided a property of the source term holds true.

Preliminarily, note that (1.14) can be written in a compact form as

q(t) +
t∫

0

dτ

(
g(t, τ, q(τ )) + κI(t − τ) q(τ )

)
= f (t), (2.37)

where κ := −2
(

log 2 − γ + i π
4

)
and g and f are defined respectively by

g(t, τ, q(τ )) = 4πβ0I(t − τ)|q(τ)|2σ q(τ ), (2.38)

f (t) = 4π

t∫
0

dτ I(t − τ)(U0(τ )ψ0)(y). (2.39)

Proposition 2.2 (Continuity of q(t)). Let σ � 1
2 and ψ0 ∈ D . Then, there exists T∗ > 0 such that (2.37) admits a 

unique solution q(t) ∈ C[0, T∗). Moreover either T∗ = +∞, i.e., the solution is global in time, or T∗ < +∞ and 
limt→T∗ |q(t)| = +∞.

Remark 2.2. The assumptions σ � 1
2 and ψ0 ∈ D are not necessary in the above statement: indeed, everything works 

as well even if we require only that σ � 0 and φ̂λ,0 ∈ L1(R2). However, since the main results of the paper request 
those more limiting assumptions, we keep them even in the intermediate results, in order to not give rise to misun-
derstandings. Analogous considerations hold for Proposition 2.3 concerning the smoothness of the regular part of the 
initial datum.
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Proof. The result is obtained by directly applying [30, Corollary 2.7]: it claims that there exists T∗ > 0 for which 
(2.37) admits a unique solution q ∈ C[0, T ∗), with the claimed properties, provided

(i) f is continuous on R+;
(ii) for every t ′ > 0 and every bounded set B ⊂C, there exists a measurable function m(t, τ) such that

|g(t, τ, q) + κI(t − τ)q| � m(t, τ ), ∀ 0 � τ � t � t ′, ∀q ∈ B,

with

sup
t∈[0,t ′]

t∫
0

dτ m(t, τ ) < ∞,

t∫
0

dτ m(t, τ ) −−−→
t→0

0;

(iii) for every compact interval I ⊂R+, every continuous function ϕ : I → C and every t0 ∈ R+,

lim
t→t0

∫
I

dτ [g(t, τ, ϕ(τ )) − g(t0, τ, ϕ(τ )) + κ(I(t − τ) − I(t0 − τ))ϕ(τ)] = 0; (2.40)

(iv) for every t ′ > 0 and every bounded B ⊂C, there exists a measurable function h(t, τ) such that

|g(t, τ, q1) − g(t, τ, q2) + κI(t − τ)(q1 − q2)| � h(t, τ ) |q1 − q2| ,
for all 0 � τ � t � t ′ and all q1, q2 ∈ B, with h(t, · ) ∈ L1(0, t) for all t ∈ [0, t ′] and

t+ε∫
t

dτ h(t + ε, τ ) −−−→
ε→0

0.

Let us now verify all the hypothesis. First, consider point (i): since ψ0 ∈ D[F],
4π(U0(τ )ψ0)(y) = 4π

(
U0(τ )φλ,0

)
(y)︸ ︷︷ ︸

:=A1(τ )

+2q(0)
(
U0(τ )K0

(√
λ| · −y|

))
(y)︸ ︷︷ ︸

:=A2(τ )

. (2.41)

Observing that

A1(τ ) = 2
∫
R2

dp eip·ye−ip2τ φ̂λ,0(p)

and recalling that φ̂λ,0 ∈ L1(R2) by assumption, one sees that A1 is bounded and therefore IA1 is continuous as well 
by Lemma 2.3. On the other hand, exploiting (2.27), (2.33) and (2.34),

A2(τ ) = 1

π
q(0)

∫
R2

dp
e−ip2τ

p2 + λ
= q(0)

[
−eiλτ (γ + logλ + log τ) + eiλτ

π
Q(λ; τ)

]

= q(0) eiλτJ (τ )︸ ︷︷ ︸
A2,1(τ )

+qj (0) eiλτ

π
(−π logλ + Q(λ; τ))︸ ︷︷ ︸

A2,2(τ )

. (2.42)

Now, it is clear that A2,2(τ ) is smooth, so that IA2,2 is continuous. Furthermore, by (2.29),

(IA2,1)(t) = 1 +
t∫

0

dτ I(t − τ)a2,1(τ ), a2,1(τ ) :=
(
eiλτ − 1

)
J (τ ).

Since a2,1 is continuous (actually belongs to H 1(0, T )), then IA2,1 is continuous too. Summing up, we have thus 
shown that f (defined by (2.39)) is continuous.
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For every q ∈ B, with B bounded,

|g(t, τ, q) + κI(t − τ)q| � C I(t − τ)

and, since I ∈ L1
loc(R

+), (ii) is satisfied.
In addition, let I = [a, b] be an interval, ϕ : I → C a continuous function and t0 ∈ R+. The integral in (2.40)

consists, up to some constants, of terms like

b∫
a

dτ [I(t − τ) − I(t0 − τ)]
[
β0|ϕ(τ)|2σ ϕ(τ) + κϕ(τ)

]
.

Hence (iii) is satisfied by dominated convergence (see, e.g., the discussion of (2.21)).
Finally, we see that, as q1, q2 ∈ B,

|g(t, τ, q1) − g(t, τ, q2) + κI(t − τ)(q1 − q2)|
� CI(t − τ)

∣∣∣|q1|2σ q1 − |q2|2σ q2

∣∣∣+ |I(t − τ)||q1 − q2|� C I(t − τ)|q1 − q2|.
Consequently, setting h(t, τ) = C I(t − τ), (iv) is satisfied. �
Proposition 2.3 (Sobolev regularity of q(t)). Let σ � 1

2 and ψ0 ∈ D . Then, there exists 0 < T < T∗, such that q(t) ∈
H 1/2(0, T ).

Proof. The key observation is that, if one proves that the map

G(q)[t] = f (t) −
t∫

0

dτ

(
g(t, τ, q(τ )) + κI(t − τ)q(τ )

)
(2.43)

is a contraction in a suitable subset of C[0, T ] ∩ H 1/2(0, T ), for a sufficiently small T ∈ (0, T ∗), then (2.37) has a 
unique solution in this subset. Hence such a solution must coincide with the unique continuous solution provided by 
Proposition 2.2, which thus belongs to H 1/2(0, T ).

For fixed 0 < T < T ∗, the first point is to investigate the Sobolev regularity of the forcing term f . We know that 
4π(U0(τ )ψ0)(y) = A1(τ ) + A2(τ ), with Ai defined in (2.41). Concerning A1, we write

A1(τ ) = 2
∫
R2

dp eip·ye−ip2τ φ̂λ,0(p) = 2
∫
R2

dp e−ip2τ
(

̂T−yφλ,0

)
(p)

= 2π

∞∫
0

d� e−i�τ
〈
̂T−yφλ,0

〉
(
√

�) = (2π)3/2
|G1(−τ)

where Ty is the translation operator, i.e., (Tyψ)(x) := ψ(x − y),

G1(�) := 1[0,+∞)(�)
〈
̂T−yφλ,0

〉
(
√

�),

and 〈f 〉 denotes the angular average of a function on R2, i.e.,

〈f 〉 (�) = 1

2π

2π∫
0

dϑ f (� cosϑ,� sinϑ).

Consequently, one finds that
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‖A1‖2
Hν(R) = (2π)3

∫
R

d�
(

1 + �2
)ν |G1(−�)|2 = 16π3

∞∫
0

dp
(

1 + p4
)ν

p

∣∣∣〈 ̂T−yφλ,0

〉
(p)

∣∣∣2
� C

∫
R2

dp
(

1 + p4
)ν ∣∣∣( ̂T−yφλ,0

)
(p)

∣∣∣2
so that A1 ∈ H 1/2(0, T ), since φλ,0 ∈ H 1(R2) by assumption. As A1 is bounded too we have, by Lemma 2.4, that 
IA1 ∈ H 1/2(0, T ). On the other hand, since A2,2 is smooth, IA2,2 is smooth as well and, as IA2,1 = 1 + Ia2,1
with a2,1 ∈ H 1(0, T ), we have that IA2,1 ∈ H 1/2(0, T ). Summing up, recalling (2.39) and (2.41), we proved that 
f ∈ H 1/2(0, T ).

We introduce now the contraction space: let

AT =
{
q ∈ C[0, T ] ∩ H 1/2(0, T )

∣∣ ‖q‖L∞(0,T ) + ‖q‖H 1/2(0,T ) � bT

}
,

with bT = 2 max{‖f ‖L∞(0,T ) + ‖f ‖H 1/2(0,T ), 1}. The set AT is a complete metric space with the norm induced by 
C[0, T ] ∩ H 1/2(0, T ), i.e.,

‖·‖AT
= ‖·‖L∞(0,T ) + ‖·‖H 1/2(0,T ) .

In order to prove that G defines a contraction on AT , we need to show that G maps AT into itself and that the 
contraction condition on the norms is satisfied.

We start by proving that G(AT ) ⊂AT . Letting q ∈ AT , one immediately sees that G(q)[t] is continuous. Then, we 
split the homogenous part of G(q)[t] into two terms:

G1(q)[t] =
t∫

0

dτ g(t, τ, q(τ )), G2(q)[t] = κ

t∫
0

dτ I(t − τ)q(τ ).

From (2.5) and (2.6), (2.15), (2.22), one obtains

‖G1(q)‖H 1/2(0,T ) � C

∥∥∥I |q|2σ q

∥∥∥
AT

� CT

∥∥∥|q|2σ q

∥∥∥
AT

� CT b2σ
T ‖q‖AT

� CT b2σ+1
T ,

where, from now on, CT stands for a generic positive constant such that CT → 0, as T → 0, and which may vary 
from line to line. In addition, using (2.5) and (2.20), one sees that

‖G1(q)‖L∞(0,T ) � C

∥∥∥I |q|2σ q

∥∥∥
L∞(0,T )

� CT

∥∥∥|q|2σ q

∥∥∥
L∞(0,T )

� CT b2σ+1
T ,

so that

‖G1(q)‖AT
� CT b2σ+1

T . (2.44)

On the other hand, we find that ‖G2(q)‖H 1/2(0,T ) � CT ‖q‖AT
� CT bT , while, from (2.20), ‖G2(q)‖L∞(0,T ) �

CT ‖q‖L∞(0,T ) � CT bT . Thus, we have

‖G2(q)‖AT
� CT ‖q‖AT

� CT bT .

Putting it together with (2.44), we finally get

‖G(q)‖AT
� bT

[
1

2
+ CT

(
1 + b2σ

T

)]
.

Consequently, as the term in brackets is equal to 1
2 + o(1) as T → 0, for T sufficiently small G(q) ∈AT .

Therefore, it is left to prove that G is actually a norm contraction. Given two functions q1, q2 ∈AT , we have

G(q1) − G(q2) = G1(q1) − G1(q2) + G2(q1 − q2).

Arguing as before, one sees that ‖G2(q1 − q2)‖AT
� CT ‖q1 − q2‖AT

. On the other hand, using again (2.20) and 
Lemma 2.1 and 2.4,
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∥∥∥I (
|q1|2σ q1 − |q2|2σ q2

)∥∥∥
AT

� CT

∥∥∥|q1|2σ q1 − |q2|2σ q2

∥∥∥
AT

� CT b2σ
T ‖q1 − q2‖AT

.

Then,

‖G(q1) − G(q2)‖AT
� CT

(
1 + b2σ

T

)‖q1 − q2‖AT
.

Hence, since CT → 0 as T → 0 and bT is bounded, G is a contraction on AT , provided that T is small enough. �
The contraction time T provided by Proposition 2.3 is a priori shorter than the maximal existence time of a contin-

uous solution T∗ given by Proposition 2.2. However, we can extend the Sobolev regularity of q(t) up to T∗. In order 
to do that, however, two further auxiliary results are required. The first one concerns the log-Hölder regularity of the 
solution of the charge equation.

Lemma 2.6. Let q(t) be the solution of (1.14) provided by Proposition 2.3 and T∗ the maximal existence time given 
in Proposition 2.2, then

q(t) ∈ Clog,β [0, T ], ∀β � 1,

for any T < T∗.

Proof. Fix T < T∗. We first remark that the proof of f ∈ Clog,β [0, T ] is equivalent to show that there exists C > 0 for 
which

lim
δ→0

| log δ|β |f (s + δ) − f (s)| � C < +∞, (2.45)

for any s ∈ [0, T ] (where at the extreme points the limit has to be suitably adjusted).
From the charge equation (1.14), we get

q(t) = −4πβ0

t∫
0

dτ I(t − τ)|q(τ)|2σ q(τ )

+ 2
(
log 2 − γ + i π

4

) t∫
0

dτ I(t − τ)q(τ ) + 4π

t∫
0

dτ I(t − τ)(U0(τ )ψ0)(y),

i.e., q(t) = I1(t) + I2(t) + I3(t) (with obvious meaning of the three terms).
Let us consider first I1(t). The case t = 0, δ > 0 is easier to deal with: since q(t) is bounded on [0, T ],

|I1(δ) − I1(0)| � C ‖q‖2σ+1
L∞(0,T )

δ∫
0

dτ I(δ − τ) � CN (δ) ∼
δ→0

C

| log δ|

where we recall the definition of N given by (2.17) and its asymptotic behavior in (2.18). On the other hand, if we 
consider the case t ∈ (0, T ), δ > 0 (δ < 0 is analogous), then we see that

I1(t + δ) − I1(t) = C

t+δ∫
t

dτ I(t + δ − τ)|q(τ)|2σ q(τ )

+ C

t∫
0

dτ [I(t + δ − τ) − I(t − τ)] |q(τ)|2σj q(τ ) := C
(
I1,1(δ, t) + I1,2(δ, t)

)
.

Now, arguing as before, one easily finds that I1,1(δ, t) ∼ 1
| log δ| as δ → 0 (independently of t ). Furthermore, again by 

the boundedness of q , one has
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∣∣I1,2(δ, t)
∣∣� C

t∫
0

dτ |I(τ + δ) − I(τ )| . (2.46)

Since I is continuous, coercive and strictly convex [12,23], it has a unique minimum point tmin > 0. If t + δ � tmin, 
then

t∫
0

dτ |I(τ + δ) − I(τ )| = N (δ) +N (t) −N (t + δ) ∼
δ→0

1

| log δ|

independently of t , by the log-Hölder continuity of N . Thus, combining with (2.46), one has I1,2(δ, t) ∼ 1
| log δ| as 

δ → 0. If, on the opposite, t � tmin (the case t < tmin < t + δ can be excluded for δ small enough), then

t∫
0

dτ |I(τ + δ) − I(τ )| =
tmin−δ∫

0

dτ (I(τ ) − I(τ + δ)) +
tmin∫

tmin−δ

dτ |I(τ + δ) − I(τ )|

+
t∫

tmin

dτ (I(τ + δ) − I(τ )) �N (tmin − δ) −N (tmin) +N (δ)

+N (t + δ) −N (t) −N (tmin + δ) +N (tmin) + Cδ �N (t + δ) −N (t) +N (δ) + Cδ

and, arguing as before, we obtain I1,2(δ, t) ∼ 1
| log δ| , as δ → 0.

Therefore, it is left to investigate the behavior of I2(t) and I3(t). First, one can easily see that I2(t) can be studied 
in the same way as I1(t). On the contrary, I3(t) requires some further remark, since (U0(τ )ψ0)(y) is not bounded on 
[0, T ]. However, from (2.41) it can be split into the sum of two terms A1 and A2. The first one is bounded and hence 
it is possible to use the previous strategy to prove that IA1 have the needed property. Concerning A2, arguing as in 
the proof of Proposition 2.2, one sees that it can be split, in turn, in two terms A2,1 and A2,2, where the second one is 
bounded and the first one satisfies the following property

t∫
0

dτ I(t − τ)A2,1(τ ) = 1 +
t∫

0

dτ I(t − τ)a2,1(τ ) (2.47)

with a2,1(τ ) bounded. Consequently, IA2 can be bounded exactly as above. �
The second auxiliary result is a slight modification of Lemma 2.3 and Lemma 2.4.

Lemma 2.7. Let T > 0 and h ∈ C[0, T ] ∩ H 1/2(0, T ). Then

h̃(t) :=
T∫

0

dτ I(t + T − τ)h(τ)

belongs to C[0, ̃T ] ∩ H 1/2(0, ̃T ) for any T̃ > 0.

Remark 2.3. The key point in Lemma above is that, unlike in Lemma 2.3 and Lemma 2.4, the integration kernel do 
not present singularities, being shifted of T > 0. In addition, in Lemma 2.7 only the preservation of the regularity is 
investigated and not the contractive properties.

Proof. One can easily see that ̃h ∈ L2(0, ̃T ) for all T̃ > 0. In addition, simply repeating the argument of Lemma 2.3, 
one finds that ̃h ∈ C[0, ̃T ].
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Then, it is left to prove that

1
2

[̃
h
]2
Ḣ 1/2(0,T̃ )

=
T̃∫

0

dt

t∫
0

ds

∣∣̃h(t) − h̃(s)
∣∣2

|t − s|2 < ∞. (2.48)

Preliminarily, we note that ̃h can be rewritten as

h̃(t) =
t+T∫
t

dτ I(τ )h(t + T − τ)

and hence that, when s � t � s + T ,

h̃(t) − h̃(s) = −
t∫

s

dτ I(τ )h(s + T − τ) +
t+T∫

s+T

dτ I(τ )h(t + T − τ)

+
s+T∫
t

dτI(τ )
[
h(t + T − τ) − h(s + T − τ)

]
. (2.49)

Assume, first, that T̃ � T (whence t � s + T ). By (2.49)

1
2 [̃h]2

Ḣ 1/2(0,T̃ )
� C

[ T̃∫
0

dt

t∫
0

ds
1

|t − s|2
∣∣∣∣

t∫
s

dτ I(τ )h(s + T − τ)

∣∣∣∣2︸ ︷︷ ︸
:=B1

+
T̃∫

0

dt

t∫
0

ds
1

|t − s|2
∣∣∣∣

t+T∫
s+T

dτ I(τ )h(t + T − τ)

∣∣∣∣2︸ ︷︷ ︸
:=B2

+
T̃∫

0

dt

t∫
0

ds
1

|t − s|2
∣∣∣∣

t+T∫
t

dτ I(τ )
[
h(t + T − τ) − h(s + T − τ)

]∣∣∣∣2︸ ︷︷ ︸
:=B3

]
.

Now, one can easily see that

B1 + B2 � ‖h‖2
L∞(0,T )

(
[N ( · )]2

Ḣ 1/2(0,T̃ )
+ [N ( · + T )]2

Ḣ 1/2(0,T̃ )

)
< ∞.

On the other hand, by Jensen inequality and monotonicity of N ,

B3 �N (T + T̃ )

T̃∫
0

dt

t∫
0

ds

s+T∫
t

dτ I(τ )
|h(t + T − τ) − h(s + T − τ)|2

|t − s|2 .

Consequently, splitting the integral in τ in the two domains [t, T ] and [T , T + s] and using twice (for each of the two 
terms) Fubini theorem, e.g., as in

t∫
0

ds

s+T∫
T

dτ F (s, τ ) =
t+T∫
T

dτ

τ−T∫
0

ds F (s, τ ),

one obtains that
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B3 � 2N 2(2T )[h]2
Ḣ 1/2(0,T )

< ∞.

Thus we proved that, if T̃ � T , then ̃h ∈ H 1/2(0, ̃T ).
Consider the opposite case when T̃ > T . Here

1
2 [̃h]2

Ḣ 1/2(0,T̃ )
=

T∫
0

dt

t∫
0

ds
|̃h(t) − h̃(s)|2

|t − s|2 +
T̃∫

T

dt

t∫
0

ds
|̃h(t) − h̃(s)|2

|t − s|2 .

First, one observes that the first term above can be managed exactly as in the case T̃ � T and therefore is finite. The 
second one on the other hand can be split as

T̃∫
T

dt

t∫
t−T

ds
|̃h(t) − h̃(s)|2

|t − s|2︸ ︷︷ ︸
:=D1

+
T̃∫

T

dt

t−T∫
0

ds
|̃h(t) − h̃(s)|2

|t − s|2︸ ︷︷ ︸
:=D2

.

The estimate of D2 is immediate since t − s � T , so that

D2 �
1

T 2

T̃∫
T

dt

t−T∫
0

ds |̃h(t) − h̃(s)|2 < ∞.

On the other hand, recalling (2.49),

D1 � C

[ T̃∫
T

dt

t∫
t−T

ds
1

|t − s|2
∣∣∣∣

t∫
s

dτ I(τ )h(s + T − τ)

∣∣∣∣2︸ ︷︷ ︸
:=D1,1

+
T̃∫

T

dt

t∫
t−T

ds
1

|t − s|2
∣∣∣∣

t+T∫
s+T

dτ I(τ )h(t + T − τ)

∣∣∣∣2︸ ︷︷ ︸
:=D1,2

+
T̃∫

T

dt

t∫
t−T

ds
1

|t − s|2
∣∣∣∣

t+T∫
t

dτ I(τ )
[
h(t + T − τ) − h(s + T − τ)

]∣∣∣∣2︸ ︷︷ ︸
:=D1,3

]
.

Now, arguing as in the first part of the proof, namely exploiting the regularity of N , the assumptions on h, Jensen 
inequality and Fubini theorem, one can check that

D1,1 + D1,2 � ‖h‖2
L∞(0,T )[N ]2

Ḣ 1/2(0,T +T̃ )
< ∞

and

D1,3 � CN 2(T + T̃ )[h]2
Ḣ 1/2(0,T )

< ∞,

which, then, concludes the proof. �
Proposition 2.4 (Regularity extension of q(t)). Let q(t) be the solution of (1.14) provided by Proposition 2.3 and T∗
the maximal existence time given in Proposition 2.2. Then, q(t) ∈ H 1/2(0, T ) for any T < T∗.
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Proof. Let q be the solution of (1.14) provided by Proposition 2.2. First, by Proposition 2.3, there exists T1 ∈ (0, T∗)
such that q ∈ H 1/2(0, T1).

Now consider the equation

q1(t) +
t∫

0

dτ

(
g(t, τ, q1(τ )) + κI(t − τ) q1(τ )

)
= f1(t), (2.50)

where

f1(t) := f (t + T1) − 4πβ0

T1∫
0

dτ I(t + T1 − τ)|q(τ)|2σ q(τ ) − κ

T1∫
0

dτ I(t + T1 − τ)q(τ ).

From the regularity properties of f established in Propositions 2.2 and 2.3 and exploiting Lemma 2.7 with T = T1
and h = 4πβ0|q|2σ q + κq , one can see that f1 ∈ C[0, T ] ∩ H 1/2(0, T ) for every T < T∗ − T1 (recall that |q|2σ q ∈
C[0, T1] ∩ H 1/2(0, T1) by Lemma 2.1). Consequently, arguing as in the proofs of Propositions 2.2 and 2.3, there 
exists T ′

1 < T∗ − T1 and q1 ∈ C[0, T ′
1] ∩ H 1/2(0, T ′

1) which solves (2.50). In addition, an easy computation shows 
that q(t) = q1(t − T1) for every t ∈ [T1, T1 + T ′

1], so that we have found a solution to the charge equation such 
that q ∈ H 1/2(0, T1) and q ∈ H 1/2(T1, T1 + T ′

1). In principle, this would not be sufficient in order to claim that 
q ∈ H 1/2(0, T1 + T ′

1) due to the non-locality of the H 1/2-norm and the failure of the Hardy inequality (as explained 
before Proposition 2.1). However, thanks to Lemma 2.6, we know a priori that q ∈ Clog,1[0, T ] for all T < T∗, so that 
one can argue as in the proof of Proposition 2.1 and obtain that actually q ∈ H 1/2(0, T1 + T ′

1).
This shows that once the regularity is proven up to a time T1 ∈ (0, T∗), then it can be extended up to T1 + T ′

1 < T∗. 
A priori this procedure could stop before T∗, e.g., because T ′

1 tends to 0 as we get closer and closer to T∗. We can prove 
however that this is not the case. Define T̂ : sup{T > 0 : q ∈ H 1/2(0, T )}, which is strictly positive by Proposition 2.3. 
In order to conclude, we must prove that T̂ = T∗. Assume, then, by contradiction that T̂ < T∗. Consequently, q ∈
H 1/2(0, T ) for every T < T̂ and ‖q‖L∞(0,T̂ ) < +∞. In addition, fix ε > 0 such that N (T̂ − Tε)

(‖q‖2σ
L∞(0,T̂ )

+ 1
)
<

1/2C, where Tε := T̂ − ε and C is a fixed constant that will be specified in the following, and 0 < δ < ε, so that 
Tδ := T̂ − δ ∈ (Tε, ̂T ).

At this point we can estimate ‖q‖H 1/2(Tε,Tδ)
by using (2.37). First we note that (let h be defined as before) for 

t ∈ (Tε, Tδ)

q(t) = f (t) −
Tε∫

0

dτ I(t − τ)h(τ) −
t∫

Tε

dτ I(t − τ)h(τ).

Since f ∈ H 1/2(0, T ) for every T > 0 (see the proof of Proposition 2.3), its H 1/2(Tε, Tδ)-norm can be easily estimated 
independently of δ. The same can be proved for the second term, arguing as in the proof of Lemma 2.7 and noting 
that I(t − τ) = I(t ′ + Tε − τ) with t ′ ∈ [0, Tδ − Tε]. Summing up,

‖q‖H 1/2(Tε,Tδ)
� CT̂ ,Tε

+
∥∥∥∥

(·)∫
Tε

dτ I(· − τ)h(τ)

∥∥∥∥
H 1/2(Tε,Tδ)

(2.51)

(precisely, CT̂ ,Tε
depends only on ‖q‖L∞(0,T̂ ) and ‖q‖H 1/2(0,Tε)

, which are finite quantities). Therefore, we have to 
estimate the last term on the r.h.s.. Since the L2 norm can be easily estimated independently of δ, it suffices to consider 
the seminorm of such a term: for any Tε < s < t < Tδ ,

t∫
Tε

dτ I(t − τ)h(τ) −
s∫

Tε

dτ I(s − τ)h(τ) =
t−Tε∫

s−Tε

dτ I(τ )h(t − τ) +
s−Tε∫
0

dτ I (τ )[h(t − τ) − h(s − τ)]

and hence, arguing exactly as in the proof of Proposition 2.4, we can find that



284 R. Carlone et al. / Ann. I. H. Poincaré – AN 36 (2019) 257–294
⎡⎢⎣ (·)∫
Tε

dτ I(· − τ)h(τ)

⎤⎥⎦
Ḣ 1/2(Tε,Tδ)

� C
(
‖h‖L∞(0,T̂ )[N ]Ḣ 1/2(0,T̂ −Tε)

+ [h]Ḣ 1/2(Tε,Tδ)
N (T̂ − Tε)

)
.

Now, we can note that

‖h‖L∞(0,T̂ ) � C
(‖q‖2σ

L∞(0,T̂ )
+ 1

)‖q‖L∞(0,T̂ )

and, using (2.9), that

[h]Ḣ 1/2(Tε,Tδ)
� C

(‖q‖2σ
L∞(0,T̂ )

+ 1
)‖q‖H 1/2(Tε,Tδ)

.

Consequently, recalling (2.51) and the definition of ε (and possibly redefining CT̂ ,Tε
)

‖q‖H 1/2(Tε,Tδ)
� CT̂ ,Tε

+ CN (T − Tε)
(‖q‖2σ

L∞(0,T̂ )
+ 1

)‖q‖H 1/2(Tε,Tδ)
� CT̂ ,Tε

+ 1
2 ‖q‖H 1/2(Tε,Tδ)

.

Hence, moving the last term to the l.h.s., we see that ‖q‖H 1/2(Tε,Tδ)
can be estimated independently of δ and thus, 

letting δ → 0, there results that ‖q‖H 1/2(Tε,T̂ ) < ∞. Summing up, we have that q ∈ H 1/2(0, Tε) and q ∈ H 1/2(Tε, ̂T )

and, by log-Hölder continuity this means that q ∈ H 1/2(0, ̂T ). However, now one can use the first part of the proof 
with T1 = T̂ thus proving that there exists the possibility of a contraction argument beyond T̂ , but this contradicts the 
definition of T̂ , so that we proved that T̂ = T∗. �

We can now prove Theorem 1.1, since the existence and uniqueness of the charge q(t) will imply that the ansatz 
(1.13) is a solution to the weak Cauchy problem (1.16). In order to see that and make the derivation of the charge 
equation discussed in Sect. 2.2 correct, we need to handle integral expressions involving the derivative of q(t). This 
will be done as explained in the following Remark.

Remark 2.4 (Integration of q̇ – part I). In the following of the paper we will often manage integrals involving the 
distributional derivative of the charge q(t). Clearly, such a notation is purely formal since we do not actually know 
whether q(t) is an absolutely continuous function. Hence, its derivatives might not be integrable in Lebesgue sense. 
However, q(t)1[0,T ] is a compactly supported distribution belonging to E ′, the dual of E = C∞(R). Hence, its dis-
tributional derivative is well defined and it still belongs to E ′. On the other hand, for any continuous function f , one 
obviously has

ḟ (t)1[0,T ] = d

dt

(
f (t)1[0,T ]

)+ f (T )δ(t − T ) − f (0)δ(t),

and since the r.h.s. is in E ′, the same holds for the l.h.s.. Hence we can give a meaning to the expression

t∫
0

dτ g(τ)q̇(τ ),

whenever g ∈ C∞(R), as the distributional pairing between E ′ and E . Of course the above is not the Lebesgue integral 
and we should have used a different symbol. However, in order to avoid a too heavy notation, we make a little abuse 
and keep the same integral symbol. Note that with such a convention we actually have

t∫
0

dτ q̇(τ ) = q(t) − q(0),

since the function 1 is smooth.
Of course if we knew a priori that q ∈ W 1,1(0, T ), then there would be no problem in the definition of any integral 

involving q̇ against a continuous function.
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Proof of Theorem 1.1. Let ψt be the function defined by (1.13) and (1.14). For the sake of simplicity we split the 
proof in two steps. In the former we show that ψt ∈ D[F], in the latter, we prove that ψt is a solution of the weak 
problem (1.16).

In order to prove that ψt ∈ D[F], it is sufficient to show that

ψt(x) − 1

2π
q(t)K0

(√
λ|x − y|

)
∈ H 1(R2). (2.52)

Exploiting (1.13) and the Fourier transform, we can see that the previous expression reads

e−ip2t ψ̂0(p) + i

2π

t∫
0

dτ e−ip·ye−ip2(t−τ)q(τ ) − 1

2π

q(t)e−ip·y

p2 + λ
.

Hence, integrating by parts (in view of Remark 2.4), one finds

e−ip2t

(
ψ̂0(p) − q(0)e−ip·y

2π(p2 + λ)

)
− e−ip·y

2π(p2 + λ)

t∫
0

dτ e−ip2(t−τ)(q̇(τ ) − iλq(τ )). (2.53)

Note that the integral of q̇ on the r.h.s. has to be understood as explained in Remark 2.4, which can be done since 
e−ip2(t−τ) is a smooth function of τ .

Now, if this function belongs to L2(R2, (p2 + 1) dp), then (2.52) is fulfilled. For the first term this is immediate 
since it represents the Fourier transform of U0(t)φλ,0, which is in H 1(R2), since φλ,0 does. Concerning the second 
term, we first set λ = 1 for the sake of simplicity, and change variables to get

∫
R2

dp (1 + p2)

∣∣∣∣ e−ip·y

2π(p2 + 1)

t∫
0

dτ e−ip2(t−τ)(q̇(τ ) − iq(τ ))

∣∣∣∣2

� C

∞∫
0

d�
1

1 + �

[∣∣∣∣
t∫

0

dτ ei�τ q̇(τ )

∣∣∣∣2 +
∣∣∣∣

t∫
0

dτ ei�τ q(τ )

∣∣∣∣2].

Now, one can check that

t∫
0

dτ ei�τ q̇(τ ) = √
2π ̂̇ξ(−�),

t∫
0

dτ ei�τ q(τ ) = √
2π 1̂[0,t]q(−�),

where

ξ(τ ) :=

⎧⎪⎨⎪⎩
q(0), if τ � 0,

q(τ ), if 0 < τ < t,

q(t), if τ � t.

(2.54)

Note that ξ̇ is a distribution belonging to E ′, as q̇1[0,t] does, therefore we can define its Fourier transform, which is in 
fact a smooth function [24, Theorem 7.1.14]. Consequently,

∞∫
0

d�
1

1 + �

[∣∣∣∣
t∫

0

dτ ei�τ q̇(τ )

∣∣∣∣2 +
∣∣∣∣

t∫
0

dτ ei�τ q(τ )

∣∣∣∣2]� 2π

∫
R

d�
|̂ξ̇ (�)|2
1 + |�| +

∫
R

d�
|1̂[0,t]q(�)|2

1 + |�| .

Now, as q ∈ Clog,1[0, T ] ∩ H 1/2(0, T ) (arguing as in the proof of Proposition 2.1) one can see that ξ ∈ H
1/2
loc (R). 

Consequently, ξ̇ ∈ H
−1/2
loc (R) and, recalling that it is also compactly supported (on [0, t]), this entails that ξ̇ ∈ H−1/2. 

Hence, the r.h.s. of the previous inequality is finite. Summing up, (2.53) belongs to L2(R2, (p2 + 1) dp) and then 
(2.52) is satisfied.
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The fact that the ansatz (1.7) provides the unique solution to the weak problem (1.6), if q(t) solves the charge 
equation, is proven in detail in a slightly different setting (linear moving point interactions) [19, Theorem 2.1] (see 
also [11]) and we omit this discussion here for the sake of brevity. �
2.4. Conservation laws

In this section we prove the conservation of mass and energy claimed in Theorem 1.2, which in turn will be the 
key to prove the global existence stated in Theorem 1.3. We recall the results proven in Propositions 2.2, 2.3 and 2.4: 
there exists some T∗ > 0 such that there is a unique continuous solution of (1.14) in [0, T∗), which also belongs to 
H 1/2(0, T ) for any 0 < T < T∗.

Before proceeding further, however, another Remark is in order about the use we will make of the derivative of q . 
In view of Remark 2.4 it can be “integrated” against smooth functions by exploiting the distributional pairing. Here 
we aim at giving a meaning to some more singular expressions:

Remark 2.5 (Integration of q̇(t) – part II). Thanks to Proposition 2.3, we know that as T < T∗, q ∈ H 1/2(0, T ). We 
claim that this is sufficient to give a rigorous meaning to the expression

T∫
0

dt f (t)q̇(t),

for any function f ∈ Clog,β [0, T ] ∩H 1/2(0, T ), β > 1/2. The idea is to use the pairing provided by the duality between 
H 1/2(R) and H−1/2(R), which allows to interpret the integral of f ∗g, with f ∈ H 1/2(R) and g ∈ H−1/2(R), as∫

R

dt f ∗(t)g(t) =
∫
R

dp

(√
p2 + 1f̂ ∗(p)

)(
1√

p2+1
ĝ(p)

)
, (2.55)

where the symbol on the l.h.s. is not the Lebesgue integral, while on the r.h.s. we are integrating the product of two 
L2 functions. Note that such a duality fails in general on a compact subset of the real line.

So, if f ∈ Clog,β [0, T ] ∩ H 1/2(0, T ), we can rewrite

T∫
0

dt f (t)q̇(t) = f (T ) (q(T ) − q(0)) +
T∫

0

dt (f (t) − f (T )) q̇(τ )

and, since both f and q are continuous, f (T ) is well defined as well as q(T ) and q(0). Next we observe that f (t) −
f (T ) satisfies the hypothesis of Proposition 2.1 with β > 1/2 and therefore there exists an extension fe ∈ H 1/2(R) of 
f (t) − f (T ), such that

T∫
0

dt (f (t) − f (T )) q̇(τ ) =
∫
R

dt fe(t)ξ̇ (τ ),

where ξ is defined in (2.54). Here we are using that supp(ξ̇ ) ⊂ [0, T ]. Now, since fe ∈ H 1/2(R) and ξ̇ ∈ H−1/2(R)

(see [11] and the proof of Theorem 1.1), then the last integral is meant as in (2.55).

Before attacking the proof, we state a technical Lemma, which is a consequence of the charge equation (1.14) and 
which will be used in the derivation of the mass and energy conservation.

Lemma 2.8. Let q(t) be the solution of (1.14) provided by Proposition 2.3 and T∗ the maximal existence time given 
in Proposition 2.2, then

(U0(t)ψ0) (y) =
(

β0|q(t)|2σ + γ − log 2

2π

)
q(t) − iq(t)

8
+ 1

4π

d

dt

t∫
0

dτ (−γ − log(t − τ))q(τ ), (2.56)

for a.e. t ∈ [0, T ] with T < T∗.
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Proof. Dividing the charge equation (1.14) by 4π , applying the operator J defined by (2.27) and recalling Lemma 2.5, 
we obtain

1

4π
(Jq)(t) +

t∫
0

dτ

(
β0|q(τ)|2σ + γ − log 2

2π
− i

8

)
q(τ) =

t∫
0

dτ (U0(τ )ψ0)(y)

and, in particular, that Jq is absolutely continuous. Then, differentiating in t and rearranging terms, we obtain 
(2.56). �

In view of Remark 2.5 the following technical results will prove to be very useful.

Lemma 2.9. Let φ be a function in H 1(R2) such that (1 + p)εφ̂ ∈ L1(R2), for some ε > 0, and let J (t) be the 
function defined in (2.27). Then, for every x, y ∈R2, x �= y, and every T ∈R+,

(U0(·)φ) (x) ∈ Clog,β [0, T ] ∩ H 1/2(0, T ), (2.57)

(U0(·)K0(| · −y|))(y) − eit

2 J (·) ∈ Clog,β [0, T ] ∩ H 1/2(0, T ), (2.58)

for any β ∈ R+.

Remark 2.6. Note that if an initial datum ψ0 ∈ D (see (1.17)), then its regular part φ1,0 satisfies (2.57), whereas its 
singular part (choosing λ = 1 for the sake of simplicity) undergoes (2.58).

Proof of Lemma 2.9. In order to prove that (U0(t)φ) (x) ∈ H 1/2(0, T ), for any finite T > 0, one can argue as in the 
proof of Proposition 2.3 (simply replacing φ1,0 with φ).

Hence, we have only to verify the other properties. By expressing the quantity using the Fourier transform, we have

|(U0(t + δ)φ) (x) − (U0(t)φ) (x)| �
∫
R2

dp
∣∣∣e−ip2δ − 1

∣∣∣ ∣∣φ̂(p)
∣∣ .

Again, in order to show that 
(
U0(t)φ1,0

)
(x) ∈ Clog,β [0, T ], it suffices to prove that the analogue of (2.45) holds true. 

To this aim we observe that, for any ε > 0,

| log δ|β
∣∣∣e−ip2δ − 1

∣∣∣� 21−ε/2pεδε/2| log δ|β −−−→
δ→0

0, ∀β ∈R+,

and thus the result is a direct consequence of the properties of φ and dominated convergence.
On the other hand, the regularity of (U0(·)K0(| · −y|))(y) can be proved simply using (2.42) and the smoothness 

of Q(1; t) (defined by (2.34)). �
Lemma 2.10. Let q(t) be the solution of (1.14) provided by Proposition 2.3 and T∗ the maximal existence time given 
in Proposition 2.2. Then,

t∫
0

dτ (−γ − log(· − τ)) q̇(τ ):= (γ + log t)q(0) + d

dt

t∫
0

dτ (−γ − log(t − τ)) q(τ ) =: Bq(t)

belongs to Clog,β [0, T ] ∩ H 1/2(0, T ) for every β ∈ (0, 1] and every 0 < T < T∗.

Proof. From (2.56), we have that

d

dt

t∫
0

dτ (−γ − log(t − τ))q(τ ) = 4π(U0(t)ψ0)(y) − 4π

(
β0|q(t)|2σ + γ − log 2

2π

)
q(t) + iπq(t)

2
.

Now, the weak derivative of the l.h.s. reads
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d

dt

t∫
0

dτ (−γ − log(t − τ)) q(τ ) = −(γ + log t)q(0) +
t∫

0

dτ (−γ − log(t − τ)) q̇(τ ),

so that

t∫
0

dτ (−γ − log(t − τ)) q̇(τ ) = 4π(U0(t)ψ0)(y) − 4π

(
β0|q(t)|2σ + γ − log 2

2π

)
q(t)

+ iπq(t)

2
+ (γ + log t)q(0). (2.59)

Consequently, using (2.57)–(2.58) and the fact that ψ0 ∈ D , we obtain

4π(U0(t)ψ0)(y) = q(0)eit (−γ − log t) + Dψ0(t)

with Dψ0 ∈ Clog,β [0, T ] ∩ H 1/2(0, T ) for every β ∈ R+. On the other hand, from Lemma 2.6, q ∈ Clog,β [0, T ] ∩
H 1/2(0, T ), for every β ∈ (0, 1], as well as |q|2σ q (arguing as in the first part of the proof of Lemma 2.1). Hence, 
observing also that the function (eit − 1)(−γ − log t) ∈ H 1(0, T ) and combining all these facts with (2.59), we obtain 
that Bq ∈ Clog,β [0, T ] ∩ H 1/2(0, T ) for every β ∈ (0, 1] and every 0 < T < T∗. �
Proof of Theorem 1.2. The proof is divided into two parts, where we prove mass and energy conservation separately.

Part 1. Let us first consider the mass conservation. Using the Fourier transform, (1.13) reads

ψ̂t (p) = e−ip2t ψ̂0(p) + ie−ip·y

2π

t∫
0

dτ e−ip2(t−τ)q(τ ).

Hence,

∣∣ψ̂t (p)
∣∣2 = ∣∣ψ̂0(p)

∣∣2 + 1

π
Im

{
eip·yψ̂0(p)

t∫
0

dτ e−ip2τ q∗(τ )

}
+ 1

4π2

t∫
0

dτ

t∫
0

ds e−ip2(s−τ)q(τ )q∗(s),

so that, denoting by F−1 the anti-Fourier transform on R2,

‖ψt‖2
L2(R2)

= ‖ψ0‖2
L2(R2)

+ 2Im

⎧⎨⎩F−1
{
ψ̂0(p)

t∫
0

dτ e−ip2τ q∗(τ )

}
(y)

⎫⎬⎭
+ 1

2π
F−1

⎧⎨⎩
t∫

0

dτ

t∫
0

ds e−ip2(s−τ)q(τ )q∗(s)

⎫⎬⎭ (0) =: ‖ψ0‖2
L2(R2)

+ � + �.

Furthermore, by the properties of the Fourier transform and the definition of U0,

� = 2Im

⎧⎨⎩
t∫

0

dτ q∗(τ )F−1{e−ip2τ ψ̂0(p)
}
(y)

⎫⎬⎭ = 2Im

⎧⎨⎩
t∫

0

dτ q∗(τ )(U0(τ )ψ0)(y)

⎫⎬⎭ ,

so that by (2.56) proven in Lemma 2.8,

� = �1 + �2 := −1

4

t∫
0

dτ |q(τ)|2 + 1

2π
Im

{ t∫
0

dτ q∗(τ )
d

dτ

τ∫
0

ds (−γ − log(τ − s)q(s))

}
.

Now, we can prove that � + � = 0. First, one sees that
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� = 1

π
F−1

⎧⎨⎩Re

{ t∫
0

dτ q∗(τ )

τ∫
0

ds q(s)e−ip2(τ−s)

}⎫⎬⎭ (0),

then we compute

τ∫
0

ds q(s)e−ip2(τ−s) = i
d

dτ

τ∫
0

ds
e−ip2(τ−s)

p2 + 1
q(s) − iq(τ )

p2 + 1
+

τ∫
0

ds
e−ip2(τ−s)

p2 + 1
q(s),

thus obtaining

� = − 1

π
F−1

⎧⎨⎩Im

{ t∫
0

dτ q∗(τ )
d

dτ

τ∫
0

ds
e−ip2(τ−s)

p2 + 1
q(s)

}⎫⎬⎭ (0)

+ 1

π
F−1

⎧⎨⎩Re

{ t∫
0

dτ q∗(τ )

τ∫
0

ds
e−ip2(τ−s)

p2 + 1
q(s)

}⎫⎬⎭ (0).

Hence, using again the properties of the Fourier transform, the above expression can be rewritten as

� = − 1

π
Im

⎧⎨⎩
t∫

0

dτ q∗(τ )eiτ d

dτ

{
e−iτ

τ∫
0

ds q(s)F−1
[
e−ip2(τ−s)

p2 + 1

]}
(0)

⎫⎬⎭
= − 1

2π
Im

⎧⎨⎩
t∫

0

dτ q∗(τ )eiτ d

dτ

τ∫
0

ds q(s)e−is (−γ − log(τ − s))

⎫⎬⎭
− 1

2π2 Im

⎧⎨⎩
t∫

0

dτ q∗(τ )eiτ d

dτ

τ∫
0

ds q(s)e−isQ(1; τ − s)

⎫⎬⎭ =: �1 + �2,

where we have made use of (2.33) and (2.34). Notice that the quantity

eiτ

τ∫
0

ds q(s)e−is (−γ − log(τ − s))

is a priori only continuous and therefore its derivative must be interpreted in distributional sense via

eiτ d

dτ

τ∫
0

ds q(s)e−is (−γ − log(τ − s)) = d

dτ

τ∫
0

ds q(s)(−γ − log(τ − s))−
τ∫

0

ds q(s)
ei(τ−s) − 1

τ − s
(2.60)

whose regularity is proven in Lemma 2.10. Now, with some computations, one finds that

�2 + �2 = − 1

2π2 Im

{ t∫
0

dτ q∗(τ )

τ∫
0

ds q(s)ei(τ−s)Q̇(1; τ − s)

}

= − 1

2π
Im

{ t∫
0

dτ q∗(τ )

τ∫
0

ds q(s)
ei(τ−s) − 1

τ − s

}
,

since Q̇(1; τ − s) = π 1−e−i(τ−s)

τ−s
, as it follows from (2.33) and the definition of the sine and cosine integral functions 

[1, Eqs. 5.2.1 & 5.2.2]. Similarly, (2.60) leads to �2 + �1 + �1 = −�2 and thus completing the proof of the mass 
conservation.
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Part 2. Let us turn our attention to energy conservation. Since ψ0 ∈ D[F], taking λ = 1, (1.13) yields

ψt(x) = (
U0(t)φ1,0

)
(x) + q(t)

2π
K0(|x − y|) − 1

2π

t∫
0

dτ (q̇(τ ) − iq(τ )) (U0(t − τ)K0 (| · −y|)) (x),

where we have integrated by parts and used the simple formula

d

dτ

[
e−i(t−τ) (U0(t − τ)K0) (x)

]
= ie−i(t−τ)U0(t − τ ;x),

which can be easily verified by rewriting the quantities via Fourier transform. In light of Remark 2.5, Lemma 2.9 and 
Lemma 2.10, the terms involving q̇ have to be understood as discussed in Remark 2.5, i.e., as the pairing between a 
function in H−1/2(R) and another in H 1/2(R). In the very same way we get

φ1,t (x) = (
U0(t)φ1,0

)
(x) − 1

2π

t∫
0

dτ (q̇(τ ) − iq(τ )) (U0(t − τ)K0 (| · −y|)) (x).

Then, we can compute the H 1 norm of φ1,t as∥∥φ1,t

∥∥2
H 1(R2)

= ‖φ1,0‖2
H 1(R2)

+ �̃t + �̃t , (2.61)

where

�̃t = −2Re

( t∫
0

dτ (q̇(τ ) − iq(τ ))∗ (U0(τ )φ1,0)(y)

)
(2.62)

and

�̃t = 1

2π

t∫
0

dτ (q̇(τ ) − iq(τ ))∗
( t∫

0

ds (U0(τ − s)K0(| · −y|))(y)(q̇(s) − iq(s))

)

= 1

π
Re

{ t∫
0

dτ (q̇(τ ) − iq(τ ))∗
( τ∫

0

ds (U0(τ − s)K0(| · −y|))(y)(q̇(s) − iq(s))

)}
. (2.63)

Lemmas 2.9 and 2.10 guarantee that the r.h.s. of (2.62) and (2.63) are well defined expressions, which should be 
understood as explained in Remark 2.5: indeed, (2.33) yields an explicit expression of the quantity (U0(τ − s)K0(| ·
−y|))(y), which is continuous up to a logarithmic term (see also (2.42) and the lines below). On the other hand, using 
(2.33), we can immediately rewrite (2.63) as (recall the definition of Q(· ; ·) in (2.34))

�̃t + �̃t = Re

{ t∫
0

dτ (q̇(τ ) − iq(τ ))∗
[
�(τ) + �(τ)

]}
, (2.64)

where

�(τ) := 1

2π2

τ∫
0

ds ei(τ−s)
[
Q(1; τ − s) − π(γ + log(τ − s))

]
(q̇(s) − iq(s))

and �(τ) = −2(U0(τ )φ1,0)(y), so that we have to better investigate the quantity �(τ) + �(τ). Now, using again 
ψ0 ∈ D[F] and (2.56), we find that(

U0(τ )φ1,0
)
(y) = −q(0)

2π
(U0(τ )K0(| · −y|)) (y) +

(
β0|q(τ)|2σ + γ − log 2

2π

)
q(τ) − iq(τ )

8

+ q(0)

4π
(−γ − log τ) + 1

4π

τ∫
0

ds (−γ − log(τ − s))q̇(s)
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where Lemma 2.10 guarantees the well-posedness of last term. Plugging into the definition of �(τ), we can split it 
into four terms as �(τ) = �1(τ ) + �2(τ ) + �3(τ ) + �4(τ ), where

�1(τ ) := q(0)

π
(U0(τ )K0(| · −y|))(y),

�2(τ ) := −2

(
β0|q(τ)|2σ + γ − log 2

2π

)
q(τ),

�3(τ ) := −q(0)

2π
(−γ − log τ) + iq(τ )

4
=: �3,r (τ ) + �3,i (τ ),

�4(τ ) := − 1

2π

τ∫
0

ds (−γ − log(τ − s))q̇(s)

(arguing as before one can see that all the previous expressions are well-posed, via, e.g., Lemma 2.10).
Furthermore, using the definition of the free propagator U0(τ ) and (2.33), one sees that

�1(τ ) = q(0)eiτ

2π

(− γ − log τ + 1
π
Q(1; τ)

)
,

with Q defined by (2.34), and thus (summing and subtracting (−γ − log τ) and setting �(t) := (eit − 1)(−γ − log t))

�1(τ ) + �3,r (τ ) = q(0)

2π

(
�(τ) + eiτ

π
Q(1; τ)

) =: R1(τ ).

On the other hand, we observe that �(τ) + �4(τ ) = R2(τ ) + R3(τ ), where

R2(τ ) := 1

2π

τ∫
0

ds q̇(s)
[
�(τ − s) + ei(τ−s)

π
Q(1; τ − s)

]
,

R3(τ ) := − i

2π

τ∫
0

ds q(s)ei(τ−s)
[−γ − log(τ − s) + 1

π
Q(1; τ − s)

]
.

As a consequence, we have that �1(τ ) + �3(τ ) + �4(τ ) + �(τ) = R1(τ ) + R2(τ ) + R3(τ ) + �4(τ ) =: �(τ). Now, 
an integration by parts shows that

τ∫
0

ds q̇(s)
[
�(τ − s) + ei(τ−s)

π
Q(1; τ − s)

]
= − iπ

2 q(τ) − q(0)
(
�(τ) + eiτ

π
Q(1; τ)

)

+ i
π

τ∫
0

ds q(s)ei(τ−s)Q(1; τ − s) +
τ∫

0

ds q(s)
[
�̇(τ − s) + ei(τ−s)

π
Q̇(1; τ − s)

]
and then, plugging into the definition of R2(τ ), there results

�(τ) = − i

2π

τ∫
0

ds q(s)ei(τ−s)(−γ − log(τ − s)) + 1

2π

τ∫
0

ds q(s)
[
�̇(τ − s) + ei(τ−s)

π
Q̇(1; τ − s)

]
.

However, easy computations (see (2.33)) exploiting the definition of the trigonometric integral functions (see, e.g., 
[1,22]) yield

�̇(t) + eit

π
Q̇(1; t) = ieit (−γ − log t)

and thus � ≡ 0.
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Summing up, we proved that

�(τ) + �(τ) = �2(τ ). (2.65)

In addition, observing that

2Re
[
(q̇(τ ) − iq(τ ))∗|q(τ)|2σ q(τ )

]
= 1

σ + 1

d

dτ

(
|q(τ)|2σ+2

)
and

2Re
[
(q̇(τ ) − iq(τ ))∗q(τ)

] = d

dτ
|q(τ)|2,

one can see that

Re

{ t∫
0

dτ (q̇(τ ) − iq(τ ))∗�2(τ )

}
= −

(
β0|q(t)|2σ

σ + 1
+ γ − log 2

2π

)
|q(t)|2

+
(

β0|q(0)|2σ

σ + 1
+ γ − log 2

2π

)
|q(0)|2.

Consequently, combining the last identity with by (2.61), (2.64) and (2.65), we get∥∥φλ,t

∥∥2
H 1(R2)

= ∥∥φλ,t

∥∥2
H 1(R2)

−
(

β0
σ+1 |q(t)|2σ + γ−log 2

2π

)
|q(t)|2 +

(
β0

σ+1 |q(0)|2σ + γ−log 2
2π

)
|q(0)|2.

Finally, in view of (1.18), this means that E(t) = E(0), for any t � T < T∗. �
2.5. Global well-posedness and blow-up alternative

Finally, a simple combination of the energy conservation and the blow-up alternative principle allows to prove 
Theorem 1.3 and Proposition 1.1.

Proof of Theorem 1.3. Preliminarily, we note that, in view of Proposition 2.4, the energy conservation proven in 
Theorem 1.2 holds true up to any T < T∗ (with T∗ provided by Proposition 2.2). Moreover, it yields that, if β0 > 0

|q(t)| � C < +∞, ∀t ∈ [0, T ],
and any T < T∗, since the function g(x) = β0

σ+1x2σ+2 + γ−log 2
2π

x2 diverges as x → +∞.
Hence, since q remains bounded as t → T by a quantity which is independent of T , it must be (recall that T∗ is by 

definition the maximal existence time of q(t))

lim sup
t→T ∗

|q(t)| � C < +∞,

which implies that q can be extended to the whole positive half-line and that q is the unique solution of (1.14) in 
C[0, ∞), i.e., it is global in time (see [30, Theorem 2.3]). In addition, Proposition 2.4 implies that q ∈ H 1/2(0, T ), for 
every finite T > 0.

Consequently, arguing as before, one can prove that the function ψt defined by (1.13) and (1.14) is in D[F] and 
solves (1.16) for every t � 0, thus proving Theorem 1.3. �
Proof of Proposition 1.1. If β0 < 0, then we have the following alternative: either lim supt→T∗ |q(t)| < +∞, which 
implies that T∗ = +∞ and the solution is global in time, or

lim sup
t→T∗

|q(t)| = +∞.

In this second case we can still have two opposite alternatives: either T∗ = +∞ and, in spite of not being bounded, 
the solution is nevertheless global in time, or T∗ < +∞ and the blow-up occurs. Indeed, by the energy conservation 
and the diverging limit of q , we obtain
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lim sup
t→T∗

∥∥φλ,t

∥∥
H 1(R2)

= +∞,

i.e., ψt blows-up at a finite time. �
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