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Abstract: This review focuses on ablative techniques for small renal masses (SRMs), including
radiofrequency ablation (RFA), cryoablation (CA), microwave ablation (MWA), and irreversible elec-
troporation (IRE), and discusses recurrence management. Through an extensive literature review, we
outline the procedures, outcomes, and follow-up strategies associated with each ablative method. The
review provides a detailed examination of these techniques—RFA, CA, MWA, and IRE—elucidating
their respective outcomes. Recurrence rates vary among them, with RFA and CA showing comparable
rates, MWA demonstrating favorable short-term results, and IRE exhibiting promise in experimental
stages. For managing recurrences, various strategies are considered, including active surveillance,
re-ablation, or salvage surgery. Surveillance is preferred post-RFA and post-CA, due to slow SRM
growth, while re-ablation, particularly with RFA and CA, is deemed feasible without additional
complications. Salvage surgery emerges as a viable option for larger or resistant tumors. While
ablative techniques offer short-term results comparable to surgery, further research is essential to
understand their long-term effects fully. Decisions concerning recurrence management should con-
sider individual and tumor-specific factors. Imaging, notably contrast-enhanced ultrasounds, plays a
pivotal role in assessing treatment success, emphasizing the necessity of a multidisciplinary approach
for optimal outcomes. The lack of randomized trials highlights the need for further research.
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1. Introduction

Renal cell carcinoma (RCC) is the 14th most prevalent malignancy worldwide, ac-
cording to the Global Cancer Observatory [1]. Recently, developments in radiology have
markedly increased the incidence of RCC. In particular, the spread of ultrasounds (US),
computed tomography (CT) scans, and magnetic resonance imaging (MRI) increased detec-
tion rates of incidentalomas and small renal masses (SRMs), defined by dimensions inferior
to 4 cm [2–5].

Various strategies are applicable for managing clinically localized SRMs with sus-
pected RCC, including active surveillance, ablation therapy, and surgery (Figure 1) [6].
Current guidelines endorse nephron-sparing surgery (NSS), such as partial nephrectomy
(PN), for managing SRMs when technically feasible [2,7]. However, it is widely recognized
that SRMs usually are low-grade, slow-progressing tumors with limited metastatic po-
tential [8,9]. To mitigate surgery-related morbidity and preserve renal function, ablative
techniques have been developed as an alternative to PN in patients with SRMs [9–17].
Particularly, these techniques should be preferred in elderly patients with multiple co-
morbidities and pre-existing renal conditions, such as chronic kidney disease, hereditary
and/or multiple tumors, and cases of solitary kidneys [18,19]. Ablative techniques can
utilize either low-temperature methods, such as cryoablation, or high-temperature ap-
proaches, like radiofrequency ablation (RFA) and microwave ablation (MWA), along with a
nonthermal modality known as irreversible electroporation (IRE) [20,21].
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Since 2017, both the American Urological Association (AUA) and the European As-
sociation of Urology (EAU) guidelines have recommended ablative techniques as a valid
alternative to surgery for pT1a renal masses (<4 cm), except for those located at the hilum
or in proximity to the proximal ureter [2,22]. However, despite these recommendations,
current literature still lacks randomized clinical trials comparing ablative techniques to NSS;
indeed, only observational studies have been conducted for this purpose [9,23]. Nonethe-
less, on the one hand, previous studies suggest that the outcomes of ablative techniques are
comparable to those of surgical resection, with a 5-year cancer-specific survival rate of 95%;
on the other hand, it is crucial to note that the risk of local recurrence and metastasis tends
to be more prevalent after focal ablations than after surgical approaches [24–27].
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Consequently, the present manuscript aims to provide a narrative review of the
scientific literature on (i) current methods adopted as ablative techniques for SRMs;
(ii) short- and long-period outcomes after ablative management; (iii) imaging methods for
detecting recurrences; and (iv) lastly, focalizing evidence regarding the management of
these recurrences.

2. Materials and Methods

A comprehensive and narrative literature review was conducted by searching through
databases such as PubMed, Embase, and the Cochrane Library, which encompassed publi-
cations up to February 2024.

2.1. Search Strategy and Data Extraction

The search was structured around key terms pertinent to the objectives of the review.
The terms included “small renal masses”, “ablation therapy”, “recurrence”, “radiofre-
quency ablation”, “cryoablation”, “microwave ablation”, and “irreversible electroporation”.
These keywords were selected to ensure a broad and comprehensive retrieval of relevant
literatures that cover various aspects of ablative treatments for SRMs, including procedure
details, outcomes, and follow-up strategies.

Our review process aimed to include studies that provide detailed accounts of the
procedures, outcomes, and follow-up strategies associated with each ablative technique.
To ensure a thorough and unbiased selection, additional articles were identified through
manual searches of reference lists from pertinent studies and review articles.

Data extraction was meticulously performed by two authors independently (AA and
VI)), with a predefined strategy to resolve any discrepancies that arose. In instances of
disagreement, a third author was consulted to reach a consensus (SDP). This collaborative
approach ensured the accuracy and reliability of the data included in our review.

2.2. Data Synthesis

The gathered data were synthesized to construct a comprehensive overview of the
current landscape of ablative techniques for the management of SRMs and the strategies
employed in managing recurrences. This synthesis aims to present a narrative that encom-
passes the breadth of research in the field, highlighting procedural details, comparative
outcomes, and advancements in follow-up strategies (Table 1).

Table 1. The search strategy summary.

Items Specifications

Databases and other sources searched PubMed, Embase, and Cochrane Library

Search terms used

small renal masses, ablation therapy,
recurrence, radiofrequency ablation,
cryoablation, microwave ablation, and
irreversible electroporation.

Timeframe 1997–2024

Inclusion criteria Articles written in English and those reporting
outcomes of ablative treatments for SRMs.

Selection process
Two authors were responsible for data
collection. Any discrepancies were resolved
through discussion with a third author.

3. Ablative Techniques

Ablation procedures can be conducted using either laparoscopic or percutaneous
approaches, with the latter being preferred due to its shorter operative time and the
ability to perform under local anesthesia [28]. Various ablative techniques are available,
including those employing low temperature (cryoablation), high temperature (RFA and
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MWA), or nonthermal modalities, such as (IRE) (Table 2) [29,30]. Hereafter, we provide
a brief panoramic of each technique and highlight strengths, limitations, and differences
between them.

Table 2. Comparisons between currently available ablative techniques.

Ablative Method Advantages Disadvantages

CA
Real-time visualization
Lesions >3 cm
Less painful than RFA

Longer procedural time
More bleeding risk

RFA Shorter procedural time
Less bleeding risk

No real-time visualization
No lesions >3 cm
More painful than CA
“Heat-sink effect”

MWA

Shorter procedural time
Lesions >3 cm
No “heat sink effect”
Simultaneous ablation

More painful
No real-time visualization
Bulkier than RFA
Need for a cooling mechanism

IRE

Avoidance of change in
temperature
No “heat sink effect”
Less risk of vessel damage

Limited clinical experience

Abbreviations: CA: cryoablation; RFA: radiofrequency ablation; MWA: microwave ablation; IRE: irreversible
electroporation.

3.1. Radiofrequency Ablation

RFA was the first ablation technique adopted for the treatment of RCC, as reported by
Zlotta et al. in the year 1997 [31]. The procedure involves the placement of one or more
radiofrequency electrodes into tumoral tissue as guided by US, CT scans, or MRI [32]. These
electrodes induce ionic agitation by delivering electrical current, elevating the temperature
above 60 ◦C, ultimately resulting in cell death through coagulative necrosis. The standard
RFA protocol involves an initial electrical power of 30–40 W, increased at a rate of 10 W/min,
with two breaks/roll-offs during ablation [33]. Studies have shown that RFA provides
an excellent local control rate for T1a RCCs, ranging from 91 to 100%. The 5-year overall
survival and cancer-specific survival rates among patients with T1 RCC are 97% and 96%
to 97%, respectively.

Limitations of RFA are associated with the “heat-sink effect”, wherein heat absorbed
by flowing blood or air is carried away from the ablation area, leading to the dissipation
of hyperthermia and a reduction in RFA efficacy [32]. Therefore, RFA is considered less
effective for tumors larger than 3 cm, centrally located masses, and masses located in
proximity to the ureteropelvic junction or large blood vessels [34].

3.2. Cryoablation

Cryoablation (CA) is a technique using argon-based cryoprobes to lower the tumor
temperature below −40 ◦C, which will be subsequently thawed by using helium. The
procedure involves double freeze–thaw cycles, comprising 15 min of freezing followed by
10 min of thawing [35]. Monitoring the cryoablation process involves real-time imaging
of the created “ice ball” through US, CT, or MRI. The temperature on the tumor margin is
actively controlled by real-time sensors [36].

As the RFA approach, renal mass CA can be carried out either percutaneously or
laparoscopically. However, the current recommendation from the NCCN favors the percu-
taneous approach, due to its quicker execution and the avoidance of general anesthesia [37].
The laparoscopic approach may be warranted in specific instances, such as with periureteral
or upper pole masses that cannot be effectively targeted percutaneously. Compared to
RFA, this approach ensures better outcomes for lesions > 3 cm, and, due to the anesthetic
properties of the cold, it is less painful for the patient [38]. However, CA is associated with
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higher risks of bleeding, since blood arteries surrounding the mass cannot be cauterized as
in RFA; moreover, the complete freezing of the renal mass, with the creation of an adequate
“ice-ball”, requires the insertion of multiple probes, increasing both procedure timing and
risks of damaging surrounding tissues [39].

3.3. Microwave Ablation

MWA has been approved in the United States since 2008 [40].
Similar to RFA, MWA utilizes electromagnetic waves to generate heat and induce

cell death through hyperthermic injury. A needle-like probe (antenna) is intratumorally
placed, producing microwave energy that generates an electromagnetic field, resulting in
frictional heating exceeding 100 ◦C [41]. Unlike RFA, MWA excels in heating larger tumor
volumes because during RFA, the active heating zone is limited to a few millimeters around
the electrode, whereas MWA can heat tissues up to 2 cm away from the antenna [42,43].
MWA also allows the use of multiple antennas to enhance the ablative effect, facilitating
the simultaneous ablation of larger or multifocal tumors; this synergistic capability is
not available with RFA [42]. However, MWA systems are bulkier than RFA systems and
use larger cables, and the antenna may require cooling mechanisms because of potential
overheating [44].

Lastly, Klapperich et al. highlighted that MWA, when compared to RFA and CA, may
result in increased pain for the patient. However, the results of their study conducted on
96 patients undergoing MWA demonstrated that this technique had minimal impact on
renal function and few ablation-related complications [45].

3.4. Irreversible Electroporation

IRE represents a novel nonthermal ablation technique that relies on electrical pulses
transmitted between electrodes strategically placed in the tumor area, either through
a percutaneous approach (under imaging guidance) or during open surgery [46]. The
electric field generated induces changes in the electrochemical potential across the cell
membrane, destabilizing the lipid bilayer and creating openings termed “nanopores” [47].
This modification alters the permeability of the cellular matrix, leading to cell death. The
primary advantage of IRE over other thermal modalities lies in its avoidance of high-
temperature-based mechanisms, thereby reducing the risk of collateral damage due to the
heat-sink effect near vasculature. Consequently, IRE is considered the safest technique for
tumors located in proximity to large vessels [48]. However, clinical experience with IRE is
currently limited, contributing to its classification as an experimental method.

4. Imaging in Post-Ablative Techniques Follow-Up: Strategies and Timing

The most important point to evaluate after the use of an ablation technique is the
completeness of lesion ablation to achieve an effective therapeutic response. Radiologists
play a crucial role in distinguishing between complete ablation and local tumor progression
(LTP) [49].

Currently, there is no consensus on the radiological technique and timing to be used
in the follow-up after ablative techniques. Conventional techniques such as CT or MRI are
frequently employed to evaluate the therapeutic efficacy of ablation [50]. However, the
nephrotoxicity of contrast in CT and the high frequencies in poorly collaborating patients
in MRI pose limitations for these procedures [51,52]. Furthermore, although exceedingly
rare, the potential occurrence of nephrogenic systemic fibrosis associated with the use of
gadolinium-based contrast agents has been observed in patients with chronic renal failure
undergoing MRI [53].

In recent years, contrast-enhanced ultrasound (CEUS) emerged as a safe and well-
tolerated imaging method with real-time multiplanar imaging using a non-toxic contrast
agent [54]. It is a reproducible technique with high predictive values and specificity
in evaluating the ablation effect. Compared to CT and MRI, CEUS may offer potential
superiority in detecting LTP by providing real-time visualization of the ablation zone,
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surrounding renal parenchyma, and renal vessels, despite being negatively influenced by
intestinal gas and operator dependency, as in conventional ultrasounds [55].

Regardless of the type of instrumental investigation used, various imaging features
enable radiologists to interpret follow-up images. Typically, most studies on post-ablation
imaging features focus on tumor-enhancement characteristics and size measurement on
follow-up CTs or magnetic resonance (MR) images [56,57].

Focal or curvilinear enhancement within or around the tumor often indicates LTP.
However, while clear-cell RCCs demonstrate strong enhancement, non-clear-cell RCCs
exhibit limited enhancement in case of LTP [58].

Distinguishing local recurrence from post-ablation inflammation is particularly crucial,
especially in the case of endophytic tumors; it can be challenging to ascertain whether
they are completely ablated or not. In this context, it is important to highlight that a
persistent contrast enhancement can be detected up to 9 months after the cryoablation,
although it may not necessarily indicate malignancy [59]. Indeed, a weak or moderate
enhancement surrounding the residual ablated tumor, resembling a geographic lesion,
imperatively indicates the need for a percutaneous biopsy to differentiate LTP from post-
ablation inflammation. If this result is negative, the possibility of a false negative is
considered, and further evaluation with a short-term follow-up is warranted [60,61]. When
focal intra-lesion enhancement is present, LTP should be considered, even if the tumor is
not growing. In such cases, a percutaneous biopsy targeting the affected area should be
contemplated [49].

Furthermore, changes in the dimensions of an SRM during thermal ablation also
contribute to predicting the likelihood of LTP [13,62]. As the RCC shrinks, there is a
reduction in the probability of local recurrence, owing to the decreased number of viable
tumor cells. This phenomenon is more pronounced in cases of RFA and MWA, compared
to cryoablation [63].

Establishing the optimal timing for imaging to assess therapeutic efficacy following
ablation techniques constitutes another pivotal point in enhancing diagnostic capabilities
and improving the tumor-free survival rate. Currently, there is no consensus on the surveil-
lance intervals for repeating imaging; the choice should be based on the characteristics
of the lesion and the patient, adjusting it according to the suspicion of LTP [64]. Some
authors suggest an initial radiological assessment after 6 weeks, while others delay the
first follow-up to 3 months [65,66]. Hoeffel et al. advocate for obtaining the initial imaging
evaluation within 24 h from treatment to exclude early complications and for obtaining
the second assessment after 6 weeks [67]. Following these early evaluations, most authors
agree on a follow-up at 6 or 9 months after the procedure. Moreover, AUA guidelines
recommend an assessment every 12 months for approximately 5 years [22].

5. Recurrence Rates Following Ablative Techniques

According to the treatment employed, local recurrence (LR) rates range from 1% to
9% [68]. Specifically, LR rates after the aforementioned ablative techniques are higher than
those after surgery (2–10% vs. 1–2%) [69]. However, even though PN is superior to ablation
in terms of overall survival (OS) and LR, ablative techniques result in lower complication
rates [70]. In general, regardless of the technique used (PN vs. Ablation), most recurrences
occur within 5 years and rarely decades after primary treatment [71]. Furthermore, LR
mostly occurs at the site of the primary treatment within the kidney, while extrarenal local
recurrences are uncommon [72].

Regarding CA, Zargar et al. analyzed data from 139 patients undergoing CA with
a median follow-up of 24 months. The authors observed LTP in 10 (7.2%) patients and
reported that for each increase of 1 cm in tumor size, patients were 1.5 times more likely
to have a tumor recurrence [73]. Similarly, Breen et al. analyzed outcomes from ablative
CA performed on 171 tumors in 147 patients, reporting an initial incomplete treatment
rate of 7.6%, which improved to 2.4% with CA retreatment [74]. Overall, RFA and CA
present comparable recurrence rates, which are higher than those associated with PN,
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yet they exhibit fewer complications than PN, probably due to their minimally invasive
nature (RR: 0.72, 95%CI 0.55–0.94, p = 0.004) [44]. Typical complications following ablation
comprise procedural bleeding, perirenal hematoma, temporary hematuria, and visceral
injury. Among these, bleeding stands out as the most frequent complication [75].

In the specific case of RFA, Psutka et al. conducted a retrospective analysis of long-
term oncologic outcomes of 185 patients with T1 RCC with an average tumor size of
3 cm. Of them, 143 (77%) presented with T1a tumors and 42 (23%) with T1b tumors.
Overall, 12 (6.5%) experienced LR, with 6 out of 143 (4.2%) in T1a patients and 6 out of
42 (14.3%) in T1b patients. Therefore, tumor stage is a significant predictor of the higher
risk of recurrence (stage T1b vs. T1a: univariate HR 3.38, p = 0.0072; multivariate HR
4.3, p = 0.0085) [34]. Similar findings were reported by Lam CJ et al. in a retrospective-
fashioned study conducted between October 2011 and May 2019 involving 141 patients.
The mean ± standard deviation (SD) tumor size was 2.6 ± 0.8 cm, and the mean follow-up
was 67 (81–161) months. After RFA, the authors reported recurrence rates of 6.4% [76].

Similar LR rates have been reported for MWA. Indeed, McClure et al. conducted a
meta-analysis to compare outcomes in terms of LR between MWA and more traditional
ablative techniques, such as CA. The authors found low rates of LR for MWA, compared to
traditional ablative techniques; in particular, these rates ranged from 2% to 5% at 1 year and
5 years, respectively, for MWA, while rates stood at 6% at both times for CA. Consequently,
the one-year local recurrence was significantly improved with MWA compared to CA, while
at five years, the rates of local recurrence were similar. This short-term lower recurrence
rate is probably attributed to the higher intertumoral temperature and larger ablation zone
achieved with MWA. Regarding other outcomes, such as overall survival, disease-free
survival, overall/major complications, procedure/ablation time, 1- to 3-month primary
technique efficacy, and technical success, the authors reported no significant differences
between MWA and other techniques [77].

The most recently developed ablation technique is the IRE, which is still considered
an experimental technique; indeed, the majority of available studies involve 10 or fewer
patients. Additionally, the limited available follow-up times pose a challenge in establishing
reliable oncological outcomes, as most studies had a follow-up duration of less than a year,
which we consider the minimum necessary duration. The largest study reported in the
current literature is by Canvasser et al., in which 41 patients, with a median tumor size of
2 cm, underwent IRE. With a mean follow-up of 22 months, the 2-year local recurrence-
free survival (LRFS) was 83%. Therefore, although IRE has low morbidity, according to
the available preliminary studies, this technique has suboptimal short-term local disease
control when compared with conventional thermal ablation techniques [78]. A Larger
series and longer follow-up studies will need to be conducted to determine long-term
outcomes [79].

6. How to Address SRMs Following Unsuccessful Ablative Therapy?

When SRMs are selected for ablative techniques, the rates of persistence or recurrence
are very low. Consequently, there is limited information regarding management strategies
on how to address residual tumors following unsuccessful ablative therapy. As discussed by
Breda et al. in their review, surgeons have three options at their disposal: active surveillance,
repeated ablation, or salvage surgery, typically involving salvage nephrectomy [26].

As mentioned earlier, contrast enhancement after renal ablation does not exclusively
indicate a recurrence; on the contrary, it may be an expression of inflammation or volume-
averaging discrepancies in imaging [80]. Active surveillance, especially in the case of RFA
and CA, appears to be the most appropriate option, considering that even untreated SRMs
show growth rates of 0.2 cm per year [81]. Moreover, in case of recurrence after one year, it
does not seem to limit or alter future treatment options [82].

Approximately 66% to 73% of patients undergoing initial ablative treatment and expe-
riencing LTR are estimated to undergo repeated ablation [81]. Indeed, approximately 7.4%
to 8.5% of all RFA-treated lesions and 0.9% to 1.3% of CA-treated lesions are managed by
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repeating ablations [83]. The higher rates of re-ablation after RFA may be explained by the
type of procedure used for the initial treatment, typically employing a percutaneous ap-
proach compared to CA, which is primarily performed using a laparoscopic technique [84].
Firstly, the laparoscopic technique allows for the better placement of the probe under
direct vision; secondly, the percutaneous approach presents lower morbidity and risk than
repeated laparoscopic procedures. Therefore, physicians are more inclined to repeat the
percutaneous procedure than the laparoscopic one [83].

Contrary to expectations, performing a repeated ablation poses no additional technical
challenges when compared to the primary ablation procedure [85]. In this regard, Okhunov
et al. have reported outstanding outcomes in salvage CA for T1a SMRs, emphasizing
that salvage CA is simpler than the primary treatment, due to the presence of identifiable
landmarks resulting from the post-ablation tissue reaction, which aids in targeting the
tumor more effectively. In their smaller multicentered report, they also demonstrated
a 100% cancer-specific survival rate [86]. Similarly, Matin et al. reported a notably low
incidence of therapeutic shortcomings, standing at 4.2% among individuals subjected to
salvage ablative interventions. Within the subgroup manifesting recurrent pathology, the
research revealed an overarching survival rate of 82.5% and a metastasis-free survival rate
of 97.4% over a span of two years for patients harboring localized, unilateral tumors [87].

It is crucial to communicate to the patient that ablative salvage procedures generally
have the potential for lower success rates. In this context, Loloi et al. documented failure
rates of approximately 6% for primary ablation, around 25% for secondary ablation, and
approximately 50% for tertiary ablation [88]. Hence, considering on the one hand the rarity
of LR and on the other hand the absence of level I recommendations from international
guidelines, the decision on the most appropriate approach is still challenging for both
clinicians and patients. Generally, surgery is the most suitable therapeutic option in case of
large tumor size or disease progression after an initial failed ablative treatment. The choice
between PN and radical nephrectomy (RN) depends not only on the type of lesion but
also on the patient and, most importantly, on the surgeon’s experience. Accordingly, the
fibrosis surrounding the residual tumor resulting from the ablative procedure undoubtedly
influences the choice of salvage surgery [89]. This was highlighted in a study provided by
Nguyen et al., where in half of the patients initially considered for PN, the procedure was
converted to RN due to extensive scarring and fibrosis [90].

In contrast, Kowalczyk et al. stated that open PN could be considered a safe approach
in these patients. Indeed, none of the 16 patients operated on were converted; however, PN
after radio-frequency ablation had a higher reintervention rate compared to other series of
primary or repeated PN [89].

In 2010, Breda et al. suggested that PN should be recommended in selected patients
after unsuccessful ablative therapy, preferably opting for an open approach. Moreover, in
the case of RN, they proposed a laparoscopic approach, considering it equally safe [26].

Additionally, Karam et al. reported oncological outcomes in 14 patients, of whom
11 underwent PN and 3 underwent RN. Most surgeries were performed using an open
approach, with one laparoscopic and one robotic-assisted surgery. Over a median follow-up
of 26.5 months, no deaths were observed. However, a high rate of overall perioperative
complications was recorded, in particular an intra-operative complication in one patient (a
pleurotomy) and postoperative complications in nine patients (64%), with four complica-
tions being Clavien grade III [91].

Similar rates of complications were observed by Jimenez et al. in 27 patients who
underwent salvage surgery. Six patients (22%) experienced major complications (Clavien
grade III-IVb), including four with hemorrhagic complications, while minor complications
(Clavien grade II) were reported in four patients (15%). They emphasized that salvage
surgery is complex but feasible, with adequate preservation of renal function, even in
patients with a solitary kidney, severe chronic kidney disease (CKD), or high-complexity
tumors [92].
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Additional investigations are necessary to assess the long-term effectiveness of salvage
techniques, especially concerning robotic surgery. The largest caseload of salvage robotic
renal surgery after failed tumor ablation was conducted by Martini et al. They assessed
the role of salvage robotic surgery, based on a multi-institutional collaborative dataset
promoted by the Junior ERUS/YAU robot-assisted surgery working group of the European
Association of Urology. They recorded an intraoperative complication rate of 6% and a
postoperative complication rate of 20%. Furthermore, it was revealed that the prior ablative
technique did not negatively impact the pathologist’s ability to detect tumor cells in the
samples [93]. In conclusion, robotic-assisted surgery proves to be a valuable tool in salvage
surgery after ablative treatment when performed by experienced surgeons in high-volume
centers [94].

7. Limitations

This review has several limitations that warrant attention. Firstly, the non-systematic
nature of data collection and analysis limits the ability to perform direct comparisons
among the various ablative techniques discussed. Secondly, variations in the methodolo-
gies of included studies, including study designs, sample sizes, and follow-up durations,
may compromise the uniformity of presented results. Thirdly, most studies rely on retro-
spective data, which can be subject to selection bias. Lastly, the absence of randomized
controlled trials further limits the strength of the conclusions that can be drawn regarding
the comparative efficacy and safety of ablative techniques in managing SRMs and in the
management of recurrences. Therefore, the findings of this review should be interpreted
with caution and considered as a starting point for more in-depth and systematic future
research on the topic.

8. Conclusions

Ablative techniques offer viable alternatives to surgery, with each presenting unique
benefits and considerations. While short-term outcomes demonstrate comparable efficacy
between ablative techniques and surgical interventions, the long-term implications, espe-
cially regarding local recurrence and metastasis, warrant further investigation. The absence
of randomized clinical trials comparing ablative methods to surgery underscores the need
for further research to support evidence-based decision-making. The management of
residual SRMs following ablative treatment necessitates a discerning approach considering
individual patient factors, lesion characteristics, and evolving technological advancements.
As the field continues to evolve, a personalized and multidisciplinary approach remains
crucial in optimizing outcomes and minimizing the impact of recurrent SRMs.
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