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Abstract We perform a joint analysis of gravity and magnetic data sets in the Tyrrhenian Sea region to infer
the rock physical properties of several volcanic seamounts. We propose a moving‐window application using
Poisson's theorem, which relates the total gradient of the magnetic field to the total gradient of the first‐order
vertical derivative of the gravity field data. In volcanic environments, where strong intensity of remanent
magnetization is expected, the total gradient of the magnetic field is particularly useful since it is almost
independent on the direction of the total‐magnetization. The moving‐window approach resulted necessary due
to the heterogeneous magnetization distribution of the volcanoes. First, we perform synthetic tests based on
realistic seamount models which exhibit inhomogeneous magnetization intensity and orientation. Using the
total gradients, we demonstrate that our approach can provide an appropriate magnetization‐to‐density ratio in
different subareas of seamounts. The results of the correlation analysis for the Palinuro, Marsili, Vavilov, and
Magnaghi seamounts provide interesting information on the variability of magnetization associated with
different epochs of formation and demagnetization effects due to hydrothermal alteration processes.

Plain Language Summary We analyzed gravity and magnetic data sets to determine the rock
properties of the main seamounts in Southern Tyrrhenian Sea. This study shows that the correlation analysis
based on a window‐by‐window approach is an efficient tool for studying potential field anomalies in areas
where inhomogeneous distribution of magnetization is expected. We also show that, by studying the total
gradients of the magnetic field and the first order vertical derivative of the gravity field, the correlation analysis
is almost insensitive to the direction of the remanent magnetization. We obtain interesting information on the
variability in magnetization for each seamount and identify possible areas of demagnetization due to
hydrothermal alteration processes.

1. Introduction
The study of the complex geological architecture of the Tyrrhenian Sea back‐arc basin is of great interest for
understanding the processes involved in the geodynamics of the Afro‐European plates. Extensional movements
and seafloor spreading have had a great impact on the present‐day structural setting of this region, as they led to
the formation of small ocean basins and numerous submarine volcanic districts (e.g., Carminati et al., 1998;
Faccenna et al., 2003; Malinverno & Ryan, 1986).

Geophysical measurements have proved to be crucial for investigating the structural framework of the deep and
shallow crust of the Tyrrhenian Sea (e.g., Contrucci et al., 2001; Contrucci et al., 2005; Finetti, 2005; Panza
et al., 2007; Prada et al., 2014). In particular, potential field investigations represent non‐invasive approaches to
explore large areas with high resolution and allow effective modeling of subsurface sources in terms of density
and magnetization distributions (e.g., Barbosa & Silva, 2011; Blakely, 1996; Cella et al., 2008; Florio et al., 2021;
Hinze et al., 2013; Kelemework et al., 2021; Milano et al., 2020; Olesen et al., 2010; Zuo et al., 2019). These
methods are particularly useful for remotely studying areas that are difficult to access, where other geophysical
techniques might be too expensive and where in‐situ sample collection is difficult, such as regions characterized
by submarine volcanic activity. In this scenario, the Tyrrhenian Sea hosts numerous submarine mountains and a
complex pattern of potential field’s anomalies (e.g., Cella et al., 2008). As a result, in last decades potential fields
have been widely used as alternative and complementary methods to other geophysical techniques, helping to
improve knowledge of Tyrrhenian volcanic edifices and the structural evolution of the entire basin (e.g., Caratori
Tontini et al., 2009; Cella et al., 1998; Cocchi et al., 2023; De Ritis et al., 2010; Faggioni et al., 1995; Fedi
et al., 1994; Florio et al., 2011; Savelli & Schreider, 1991).
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Inverse techniques are commonly used to model potential field data. However, to reduce the inherent ambiguity of
potential field problems, we need a priori information consisting of direct information on the source property or
on general features of the source model, such as compactness or other (e.g., Liu et al., 2018). Here, we use a
different method for seamounts investigation that is the correlation analysis between the magnetic and gravity
anomaly fields (e.g., von Frese et al., 1982; von Frese et al., 1997). Obviously, also this method requires a priori
information, consisting in assuming the same volume for both the potential field problems and, in our case, to
estimate the magnetization intensity contrast assuming the density contrast. While the volume requirement is
discussed in this paper (Section 3.1), the density contrast may be reasonably considered constant for the sea-
mounts. It follows that a rapid estimate of the average source density can be performed from the correlation
analysis between topography and gravity data (e.g., Nettleton, 1939), assuming that the gravity anomaly is mainly
related to the shape of a seamount and that the rock density is fairly homogeneous; conversely, similar assumption
is not valid for the seamount magnetic properties. For instance, numerous studies have proved that the Tyrrhenian
seamounts are affected by hydrothermal activity, which produces mineral alteration and permanent effects on
rocks magnetization (e.g., Caratori Tontini et al., 2014; Cocchi et al., 2021; Ligi et al., 2014; Loreto et al., 2019).
In addition, volcanic activity, that often extends over time, can induce significant variability of the remanent
magnetization effect of mafic rocks. Consequently, the associated magnetic anomalies present a more complex
behavior than the gravity ones, which are certainly more related to the morphology of the seamount. So, the
correlation method between potential field anomalies seems appropriate to give a first estimate of the magne-
tization contrast, useful also for further investigations involving data inversion (e.g., Milano et al., 2021).

This approach, based on the properties of Poisson's theorem (Blakely, 1996), allow the determination of the
Magnetization‐to‐Density Ratio (MDR) of potential field sources. The theorem consists of the relationship be-
tween the directional derivatives of magnetic and gravity potentials produced by uniform and homogeneous
source distributions of magnetization and density (Garland, 1951). The Poisson's analysis has been successfully
applied for several purposes, including, for example, the evaluation of the source physical features (Alencar de
Matos & Mendonça, 2020; Garland, 1951; Kanasewich & Agarwal, 1970; Mendonca, 2004; Milano et al., 2021)
or of the source magnetization direction (Cordell & Taylor, 1971; Ross & Lavin, 1966).

In the Tyrrhenian Sea, De Ritis et al. (2010) performed a correlation analysis of first order vertical derivative of
gravity and reduced‐to‐pole (RTP) magnetic data. However, on a regional basis, they found a nearly zero cor-
relation coefficient and concluded that there is a lack of correlative anomaly features. At a smaller scale, Fedi
et al. (1994) studied the Magnaghi seamount with the Poisson's theorem applied to pseudogravity and gravity
fields and magnetic data inversion, concluding that the magnetization distribution is complex, while the density
distribution may be assumed as nearly homogeneous.

In this scenario, we propose a study of the magnetization of the Tyrrhenian seamounts through a moving‐window
correlation analysis (Chandler et al., 1981) by involving the total gradient transformations of potential field data
(Doo et al., 2009). This transformation is very useful for the magnetic data since it is relatively unsensitive to the
remanent magnetization direction (Nabighian, 1972; Stavrev & Gerovska, 2000). In fact, when remanent
magnetization is strong, the RTP transformation is likely to fail and cannot be safely used for removing the dipolar
effects of magnetic anomalies. On the other hand, the window‐based analysis is very useful in the case of a
complex distribution of magnetization, as it allows the inhomogeneity of the seamount to be determined.

We start from formulating the Poisson's relation in terms of total gradients of the magnetic anomalies and first
order vertical derivative of gravity data. We test our approach on synthetic data relative to a source with uniform
density distribution, inhomogeneous magnetic properties and strong remanent magnetization.

We then conduct the proposed analysis on the magnetic and free‐air gravity anomalies of four different seamounts
in the Southern Tyrrhenian Sea: Palinuro, Marsili, Vavilov and Magnaghi. The seamounts magnetization in-
tensities are computed from the estimated MDR by assuming the average rock densities obtained through Net-
tleton's method (Nettleton, 1939).

2. Geological Setting
The Tyrrhenian Sea (Figure 1a) is a back‐arc basin developed as consequence of the W‐to‐NW subduction of the
African lithospheric plate under the Apennines, Calabrian Arc, and Maghrebides orogenic belts (Faccenna
et al., 2001; Gvirtzman & Nur, 2001; Malinverno & Ryan, 1986; Patacca et al., 1990; Patacca & Scandone, 2001;
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Figure 1. (a) Sketch map with the main structural and geological units (modified after Mancini & Cavinato, 2009; Cavinato & Celles, 1999): 1, subduction‐related and
high‐K volcanic rocks; 2, extension‐related volcanic rocks; 3, oceanic crust; 4, foreland areas; 5, subsurface and surface thrust front; 6, strike‐slip fault; 7, extensional
fault. (b) Bathymetric, (c) free‐air and (d) aeromagnetic field maps of Southern Tyrrhenian Sea (blue box in subpanel a). The red squares indicate, from East to West, the
location of Palinuro (PL), Marsili (MS), Vavilov (VV) and Magnaghi (MG) seamounts.
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Royden, 1988). Since the Tortonian (11.6− 7.2 Ma), the Southern Tyrrhenian basin evolved with an eastward
retreat of the subduction system with a rate of about 5–6 cm/yr (Doglioni et al., 1994; Patacca et al., 1990).
Rollback processes involving the heavy Ionian oceanic lithosphere favored E–W and N–S extension and the
formation of intra‐slope basins and the Vavilov back‐arc basin (Doglioni et al., 2004). In middle Pliocene, new
rifting events took place and E‐W to NE–SW trending normal faulting affected the coastal morphology of
Northern Sicily (e.g., Faccenna et al., 1997; Patacca et al., 1990; Royden, 1988). Later, throughout the late
Pliocene‐Quaternary, the crustal thinning and oceanic crustal accretion moved southeastward and culminated
with the development of seamounts and seafloor spreading. These processes let the formation of the Marsili back‐
arc basin and the migration of the volcanism to the Aeolian arc, which gave the present‐day configuration of the
Southern Tyrrhenian region (e.g., Kastens et al., 1988; Ligi et al., 2014).

Research on hydrothermal activity in the Tyrrhenian Sea contributes to our understanding of the geological
processes associated with submarine volcanic systems. It has also implications for the study of deep‐sea eco-
systems and mineral resources. Hydrothermal activity in Southern Tyrrhenian Sea (Figure 1b) has been widely
documented by the presence of a wide range of oxyhydroxide and sulfide deposits (e.g., Bonatti et al., 1972;
Dekov et al., 2009; Dekov & Savelli, 2004; Gamberi et al., 1997). As a result, mineralogical, chemical, and
textural alterations have been observed due to the interaction between hot fluids and the volcanic rocks (e.g.,
Beccaluva et al., 1990; Trua et al., 2002). However, further explorations and studies are needed to fully
comprehend the extent and dynamics of Tyrrhenian Sea seamounts and their hydrothermal activity.

The Palinuro volcanic complex (PL in Figure 1) is characterized by an almost E‐W linear trend, whose structural
origin is still debated (e.g., Chiarabba et al., 2008; Colantoni et al., 1981; Del Ben et al., 2008; Milano et al., 2012;
Milia et al., 2009). The shallowest portion of the volcanic edifice is located at about 90 m b.s.l. and has a lateral
extension of about 70 by 20 km2, with its southern flank merging with the Marsili basin. The Palinuro seamount is
mostly constituted of rocks with basalt‐andesite compositions (Trua et al., 2004) and is also characterized by a
collapsed caldera structure in the western region.

The Marsili seamount (MS in Figure 1) consists of an imposing volcanic edifice rising for approximately 3,000 m
from the basin seafloor, with lateral extension of about 70 by 30 km2. It was formed during the emplacement of
oceanic‐type basalts (Kastens et al., 1988; Marani & Trua, 2002) following the extensional tectonics. Its for-
mation was interpreted as due to strong magma upwelling from the subducting Ionian slab (e.g., Marani &
Trua, 2002), or to the change from extensional to compressive tectonics with its emplacement on top of a relict
back arc basin (e.g., Ventura et al., 2013).

The Vavilov volcano (VV in Figure 1), located about 180 km SW of Vesuvius, is a large volcanic structure mostly
consisting of tholeiitic to alkali basalts (Robin et al., 1987) of Late Pliocene age (Kastens et al., 1988;
Savelli, 2002). Its formation occurred during the oceanization of the Vavilov basin about 3 Ma (Kastens
et al., 1988). The volcano manifests a visible asymmetry consisting of an irregular topography of the eastern flank
and a smooth and steep western flank; one possible cause involves the collapse of a portion of the seamount.

The Magnaghi seamount (MG in Figure 1) is a large elliptical volcanic structure extending NNE–SSW from a
depth of about 2,800 m to about 1,880 m b.s.l and classified as a giant fissural volcano (e.g., Sartori et al., 2004).
Its lava products mostly consist of alkaline to weakly alkaline basaltic composition with a MORB/OIB affinity
(Cocchi et al., 2008; Robin et al., 1987; Savelli, 1988; Serri et al., 2001). K/Ar dating of these samples analysis of
the Magnaghi seamount suggested ages between 2.7 and 3.1 Ma, which took place during normal and reverse
polarity periods C2An.1n‐C2An.2r (Cocchi et al., 2008; Schreider, 1993).

2.1. Potential Field Data Sets

The potential field data sets used in this work derive from the gravity and aeromagnetic maps of Italy
(AGIP, 1981; Carrozzo, 1981; Carrozzo et al., 1981; Chiappini et al., 2000; ISPRA et al., 2009). The gravity
measurements were collected by the Osservatorio Geofisico Sperimentale (OGS) with a 3 km track spacing and
an accuracy of about ±3 mGal (Gantar et al., 1968; Morelli et al., 1975a, 1975b). These data have been
supplemented with marine satellite altimetry measurements obtained by the GEOSAT and ERS‐1 missions
(Sandwell & Smith, 1997). The aeromagnetic survey was carried out between 1977 and 1979 by the Italian oil
company (AGIP, now ENI) covering both the onshore and offshore areas of the Italian territory (Chiappini
et al., 2000). In particular, the Tyrrhenian Sea has been covered by eight separate surveys at a constant
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observation level of 1,463 m a.s.l. (e.g., Cassano et al., 1986a, Cassano et al., 1986a). The data were acquired
using a cesium magnetometer with an average sampling step of 100 m along a set of parallel track‐line NE–SW
with a spacing of 2–5 km, intersected by orthogonal control tie‐lines spaced about 5–10 km (Caratori Tontini
et al., 2004).

Here, we use a limited portion of the free‐air gravity and aeromagnetic data sets covering the main basins of the
Southern Tyrrhenian Sea and the related seamounts, with a 2 km data spacing. We show the analyzed maps of the
potential field anomalies in Figures 1c and 1d; we can clearly observe the dominant effect of the volcanic edifices
on the gravity and magnetic features of the region. The free‐air gravity anomalies are visibly associated with the
density contrast between the dense volcanic rocks and the surrounding water column. The shape of these
anomalies, in fact, strongly correlates with the sharp morphology of the seamounts and of the intermediate
Tyrrhenian Sea basins. The aeromagnetic map has a more complex behavior (e.g., Cella et al., 1998; Cella
et al., 2008; Florio et al., 2022). More specifically, the aeromagnetic map shows distinct magnetic signatures in
the Palinuro volcanic area, indicating a difference in the rock magnetization of the volcanic edifice. According to
Caratori Tontini et al. (2009), we may find evidence of inhomogeneous rocks magnetization in the Palinuro
seamount between the less magnetized eastern area and the intensely magnetized central and western regions.
Areas with low magnetic signatures have been also interpreted in correspondence with hydrothermal deposits and
alteration of the volcanic rocks (e.g., Caratori Tontini et al., 2009; Caratori Tontini et al., 2010; Colantoni
et al., 1981; Minniti & Bonavia, 1984). Above the Marsili seamount, the magnetic field map shows two distinct
anomalies corresponding to the southern and northern tips of the volcanic edifice.

The Vavilov seamount presents a more complex magnetic field with anomalies associated with the different
spreading phases of the basin (Savelli & Schreider, 1991). The most evident magnetic signature is represented by
an intense anomaly with reverse polarity, which is consistent with the estimated age and rock magnetization
direction (Robin et al., 1987). Reversely magnetized rocks have been found West, North and East of the volcanic
edifice, while normally magnetized rocks characterize the areas all around the basin (e.g., Savelli & Ligi, 2017).
Finally, the aeromagnetic field above the Magnaghi seamount shows an intense and tilted magnetic anomaly with
the high along the western flank of the volcano and the low north‐eastward (Cella et al., 2008).

3. Method
Consider a body source with homogeneous density contrast ∆ρ and homogeneous magnetization intensity
contrast ∆J and uniform direction t. Poisson showed that its magnetic potential Vm and Newtonian gravity po-
tential ϕg are related as (Blakely, 1996):

Vm =
μ0
4πγ

∆J
∆ρ

∂
∂t
ϕg (1)

where ∆J/∆ρ is the Poisson's ratio, here called MDR, μ0 and γ are the magnetic and gravitational constants,
respectively.

A first and more practical form of the Poisson's relation can be defined between the pseudo‐gravity magnetic field
(Vg) and the vertical component of the gravity field (gz). In this case Equation 1 becomes:

Vg =
μ0
4πγ

∆J
∆ρ

gz (2)

A second and commonly used form of Poisson's relation can be obtained by deriving both members of Equation 2
along the z‐direction, as follows:

∆Trp =
μ0
4πγ

∆J
∆ρ

gzz (3)

which relates the RTP transform of magnetic field (∆Trp) and the first order vertical derivative of the gravity field
(gzz); we can achieve other valid relations by further increasing the differentiation order of both members of
Equation 3 (e.g., Milano et al., 2021). Both Equations 2 and 3 are obtained by setting t = z, which implicitly
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assumes that the source is mainly induced‐only magnetized. On the other hand, if the source remanent magne-
tization intensity is not negligible, information about the magnetization direction is required, which however is
rarely available.

For this reason, we use an alternative form of the Poisson's relation based on the total magnetic gradient (|∇T|)

which is defined as |∇T| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

( ∂T∂x)
2
+ (∂T∂y)

2
+ (∂T∂z)

2
√

(Doo et al., 2009; Milano et al., 2019; Nabighian, 1972;

Stavrev & Gerovska, 2000). Specifically, according to Roest et al. (1992), this transformation, in a 3D problem, is
almost independent of the direction of source body magnetization and the direction of the geomagnetic field. We
thus can write the Poisson's relation in the following form:

|∇T|≅
μ0
4πγ

∆J
∆ρ
|∇gzz| (4)

where |∇gzz| is the total gradient of the first order vertical derivative of the measured gravity field. The advantage
of using Equation 4 is that we can compute the MDR regardless of the intensity of the source remanent
magnetization component since the total gradient evaluation does not require this information.

3.1. Estimation of the Source Physical Properties

The Poisson's relation states that we can easily infer the source physical properties when the magnetic potential is
proportional to the component of gravity attraction in the direction of magnetization (Blakely, 1996), which
implies that the source boundaries of the gravity and magnetic anomalies source are the same and the magne-
tization and density are uniform. Nevertheless, according to Blakely (1996), Equation 1 is still valid in the case of
no uniform distribution of J and ρ by considering both the gravity and magnetic sources as composed of
elementary volumes. To do that, in this study, we perform the Poisson's analysis by using the moving‐window
correlation approach (Chandler et al., 1981, 1991) that is particularly suitable to study multisource cases.

The approach is based on a least squares linear regression between magnetic and gravity data sets within a
moving‐window. Without loss of generality, we can use the following linear equation to express any chosen form
of the Poisson's relation:

Θ = MDR ·Γ + K (5)

where Θ and Γ are any proper transformations for the Poisson's analysis of the magnetic and gravity data sets
respectively, MDR is the slope coefficient of the linear relation, and K is the intercept. K should be approximately
constant, as it should represent contributions on a regional scale with much longer wavelengths than those of the
analyzed anomaly, or account for variations in the base level of the anomaly. In this view, the approach evaluates
the coefficients of the magnetic and gravimetric data sets linear regression for each window.

Specifically, we calculate the correlation (R), K and, following Chandler et al. (1981), we estimate an average
MDR (slope parameter) in the areas where R is high and K is stable. Finally, to infer the source magnetization, we
multiply the MDR values, obtained at each window, for the density contrast, which is assumed constant for each
volcanic structure. We specify that the moving‐window step is here considered to be equal to the sampling step of
the analyzed data set (2 km).

The density value of the seamount rocks is here estimated using to the Nettleton's method (Nettleton, 1939). This
approach is based on a correlation analysis between the topographic/bathymetric surface and the related Bouguer
anomaly estimated assuming a range of different ρ values. Hence, we find as correct ρ the value that ensures the
lowest correlation between the calculated Bouguer anomaly and bathymetry. The obtained ρ is then transformed
into ∆ρ by considering the contrast between the volcanic edifice and the surrounding seawater, that is about
1,000 kg/m3. Similarly, we may retrieve the J distribution from the evaluated ∆J by taking into account that the
seawater magnetization is equal to 0 A/m, so implying ∆J = J.
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3.2. Synthetic Modeling

Here, we test the method in the case of the inhomogeneously magnetized seamount. To do this, we use the ba-
thymetry of the Palinuro seamount to generate a geometrically irregular model characterized by three regions with
different magnetization intensities. The source ∆ρ is fixed to 1,500 kg/m3, while total ∆J varies, from West to
East, from 4 to 10 and 1 A/m (Figure 2a), and we assume a Koenigsberger ratio Q = 40, according to the average
value of rock samples from the Tyrrhenian seamounts having strong remanent magnetization (Faggioni et al.,
1995). We set the induced magnetic field with the average values of declination (DI) and inclination (II) of the
Tyrrhenian area, that is, DI = 3° and II = 57°, while DR = − 10° and IR = − 30° are the declination and inclination
of the source remanent magnetization. We thus estimated the gravity and magnetic responses using the
Parker (1972) algorithm. To better simulate real‐world conditions, we included a zero‐mean random Gaussian
noise equal to 5% of the maximum amplitude in each data set. In Figures 2b and 2c we show the forward gravity
and magnetic responses of the above model computed at the sea level with a 2 km data spacing. We then apply
upward continuation procedure in order to reduce the high‐frequency noise affecting both the data sets. The
measurements level is therefore changed to an altitude of 1,500 m a.s.l.

We consider now three different cases (Figure 3):

1. The first is based on the most used form of the Poisson's analysis between the RTP magnetic field (Figure 3a)
and the first order vertical derivative of the gravity field (Figure 3d), assuming that we know the correct values
of DR and IR. However, in the real world, little information is available on the remanent magnetization of the
rocks. Moreover, the complexity of the magnetic property distribution, as simulated here, makes even more
challenging the local knowledge of this information;

2. The second is when we have no information about remanent magnetization and the RTP transformation is
performed assuming thatDR=DI and IR= II (Figure 3b); this approach leads to obvious error in the calculation
of the RTP magnetic anomaly;

3. The third case is using the Poisson's analysis based on the total gradients of the magnetic field (Figure 3c) and
the first vertical derivative of the gravity field (Figure 3e).

For all the cases, we use a small 4 × 4 km2 window. Although the suggested size should be between 0.5 and 1
times the half‐width of the anomaly wavelength of primary interest (Chandler et al., 1981), we choose the smallest

Figure 2. Simulated scenario. (a) ∆J source distribution of the simulated seamount; the gray lines are the contours of the seamount bathymetry; the vertical scale is
exaggerated. The ∆ρ of the model is 1,500 kg/m3. (b) Magnetic and (c) gravity anomalous fields produced by the body source in (a). Both potential fields data sets are
contaminated with a 5% random Gaussian noise.
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Figure 3. Synthetic model example. RTP magnetic field (a) computed using the correct DR and IR values and (b) assuming DR = DI and IR = II. (c) Total gradient of the
magnetic field. (d) First order vertical derivative of the gravity field and (e) its total gradient transformation. The black and gray contour lines represent the simulated
seamount bathymetry. Field transformations are computed starting from noisy data sets referred to a measurements level with 1,500 m a.s.l. of altitude, as described in
the main text.
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window size to simulate real case analysis where several inhomogeneities cause anomalous and interfering fields
with variable wavelength.

In Figure 4 we provide the maps of R andK coefficients and ∆J distribution within the simulated seamount for the
three different cases. The magnetization is estimated in the areas where R > 0.7, which, according to Fedi
et al. (1994), is a suitable lower boundary for this kind of analysis. In the following, we describe the main results
obtained for each case and provide the magnetization estimates with their uncertainty σ. In particular, σ is
calculated from the estimates of ∆J in each different sector, where R > 0.7.

The results show that:

‐ In the first case, using the correct RTP data we yield three major areas with high correlation (Figure 4a)
separated by twominima; in these sectors,K (in nT) is stable (Figure 4b) and the slope coefficient can be used to
estimate the ∆J distribution (Figure 4c); we estimate a mean magnetization contrast ∆J about 5.04 A/m with
standard deviation σ= 0.75 A/m for the western subpart, ∆J = 9.88 A/m with σ= 1.96 A/m for the central area,
and ∆J = 2.39 A/m with σ = 1.16 A/m for the eastern zone;

‐ In the second scenario, the wrong assumption used for the computation of the RTP magnetic field yields a low
R, as observed in the map in Figure 4d; also, K (Figure 4e) assumes variable values and the identification of the
source inhomogeneities is unclear; as a result, the estimated ∆J distribution (Figure 4f) mostly consists in
unrealistic negative values; we only observe highly correlated areas for the western sector, where ∆J = 4.33 A/
m with σ = 3.75 A/m, and for the central zone, with estimate of ∆J = 5.15 A/m with σ = 7.65 A/m;

‐ In the last case, the analysis between the total gradients of the gravity and magnetic data shows a correlation
map (Figure 4g) characterized by three main areas with high values corresponding with stable K (in nT/m)
(Figure 4h); the inferred ∆J is about 3.28 A/m with σ = 0.45 A/m for the western sector, 9.62 A/m with
σ = 2.53 A/m for the central area, and 0.94 A/m with σ = 0.23 A/m for the eastern zone.

These results show that our approach is well suitable for complex magnetic source distributions, regardless the
disturbing noise effect. In fact, we observe that, in the last case, it is possible to infer the correct magnetization
distribution with low uncertainty, without providing information about the source magnetization direction. On the
other hand, we also note that the moving‐window approach may have limitations in the interference regions

Figure 4. Results of the simulated Poisson's analyses. Evaluated distribution of the (a–d–g) correlation (R), (b–e–h) intercept (K) coefficients and (c–f–i) ∆J parameter
for the three different simulated scenario, respectively. Black lines delineate the three areas with different ∆J distribution.
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among anomalies of nearby sources. In fact, according to Chandler et al. (1981), the results show two positive and
negative peaks of the slope coefficient in the transition areas among rocks with different magnetization
(Figures 4c, 4f, and 4i). This effect therefore prevents a correct estimation of the MDR and interpretation must be
restricted to areas outside the interference regions. Nevertheless, we also note that the use of the total gradient
favors the enhancement of the signal on a local scale, thus reducing such disturbing effect.

4. Results
We here discuss the results of the proposed analysis in the Tyrrhenian region to characterize the physical
properties of the Palinuro, Marsili, Vavilov and Magnaghi seamounts.

4.1. Density Estimation for Tyrrhenian Seamounts

First, we use the Nettleton's method (Nettleton, 1939) for a fast characterization of the representative seamount
densities. Specifically, for each seamount, we calculate the Bouguer anomaly from the free‐air gravity for
1,700 < ρ < 2,700 kg/m3. Considering the contrast with the seawater column (ρw ∼ 1,000 kg/m3) above the
volcanic structures, we actually use a density contrast ranging from 700 to 1,700 kg/m3. We then compute their
correlation coefficient with respect to the seamount bathymetry and select those providing to the lowest corre-
lation values.

In Figure 5 we show the average values obtained for the seamounts: ρ = 2,100 kg/m3 for Palinuro (Figure 5a);
ρ = 2,100 kg/m3 for Marsili (Figure 5b); ρ = 2,500 kg/m3 for Vavilov (Figure 5c) and ρ = 2,600 kg/m3 for

Figure 5. Density estimation for Tyrrhenian seamounts. Correlation analysis between bathymetry and Bouguer anomaly computed by considering different density
values for (a) Palinuro, (b) Marsili, (c) Vavilov and (d) Magnaghi seamounts. The black dashed lines highlight the zero correlation line, while the red dots represent the
retrieved seamount density.
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Figure 6. Total gradient maps (a) of the magnetic field and (b) of the first order vertical derivative of the gravity field at
Palinuro, (c–d) Marsili, (e–f) Vavilov and (g–h) Magnaghi seamounts. The black and gray contour lines represent the
seamounts bathymetry.
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Magnaghi (Figure 5d). For the Marsili seamount we confirm the density value estimated by Fedi (1997) with a
totally different approach.

4.2. Magnetization Estimation for Tyrrhenian Seamounts

To perform the Poisson's analysis to the four selected Tyrrhenian seamounts, we first compute the total gradients
of the potential field data sets shown in Figures 1c and 1d. Figure 6 shows the total gradient maps of the magnetic
field and of the first order vertical derivative of the gravity data for Palinuro (Figures 6a and 6b), Marsili
(Figures 6c and 6d), Vavilov (Figures 6e and 6f) and Magnaghi (Figures 6g and 6h) seamounts.

In Figure 7, we show the maps of the correlation (Figures 7a, 7d, 7g, and 7j), intercept (Figures 7b, 7e, 7h, and 7k)
and slope coefficients obtained using a 4 × 4 km2 moving‐window that are multiplied by the above indicated
average ∆ρ in order to map the ∆J distribution of each seamount (Figures 7c, 7f, 7i, and 7l).

The results show that:

‐ Palinuro seamount (Figures 7a–7c): we observe at least three highly correlated areas (Figure 7a) with stable K
values (Figure 7b) around the seamount summit, where we evaluate a maximum ∆J ∼ 10 A/m for the northern
central, eastern and southern regions of the seamount (“A,” “B,” “C” in Figure 7c); moving eastward, we
observe a rapid decrease of rock magnetization reaching very low values above the eastern crest of the seamount
(“D” in Figure 7c). On the north‐westward area, we also note the typical interference effect similar to what
discussed in the previous synthetic case (“E” in Figure 7c). Here, we observe coupled negative and positive
peaks that preclude the estimation of the magnetization in this restricted area.

‐ Marsili seamount (Figures 7d–7f): we observe zones with high correlation (Figure 7d) and stable K (Figure 7e)
coefficients mostly located in the lateral portions of the seamount. In Figure 7f, we find mostly high rock
magnetization reaching values of about 15–20 A/m at the northern and southernmost sub‐portions of the
seamount (“F,” “G” in Figure 7f). We also note interference effects which mostly interest the central area of the
volcanic edifice (“H” in Figure 7f).

‐ Vavilov seamount (Figures 7g–7i): the maps show several small highly correlated areas (Figure 7g) charac-
terized by stable K values (Figure 7h), negative (“K” in Figure 7i) and positive ∆J distribution (Figure 7i) both
at and around the volcanic edifice; specifically, a maximum ∆J ∼ 2 A/m value characterizes the north‐western
sector of the seamount (“J” in Figure 7i), while higher values occur in the outwards basin (“I” in Figure 7i). In
general, in contrast with previous cases, we infer very low magnetization values characterizing the main
volcanic edifice.

‐ Magnaghi seamount (Figures 7j–7l): we observe at least three areas with high R (Figure 7j), stableK (Figure 7k)
and positive ∆J at its Northern, Southern and Western subparts (“M,” “N,” “O” in Figure 7l), with maximum
∆J ∼ 5 A/m; in the central region, we also observe negative ∆J values which can be again associated with the
effect of interference among gravity and magnetic anomalies (“P” in Figure 7l).

5. Discussion
Our approach allows to overcome some limitations usually encountered in the Poisson's analysis, such as the not
uniform orientation of the rock magnetization and the inhomogeneous distribution of the crustal physical
properties. In fact, standard Poisson's analysis is based on homogeneity and uniformity criteria about the gravity
and magnetic fields source distributions, which makes itself not suitable for multisource detection; moreover,
when using RTP magnetic data the results are often limited due to the difficult access of information about the
remanent magnetization.

These limitations are crucial when studying the seamounts geophysical properties, as inhomogeneities in terms of
magnetization distribution are expected, mostly due to hydrothermal activity and resulting demagnetization (e.g.,
Caratori Tontini et al., 2010; Faggioni et al., 1995). In addition, the progressive evolution of the seamounts
structure may result in a different orientation of the rocks magnetization associated with the change in the induced
geomagnetic field (e.g., Cocchi et al., 2023).

Simulating the case of an inhomogeneous seamount is necessary to show the suitability of the method. To this
end, we considered a seamount composed of three adjacent sectors with different magnetization intensity and
orientation. The resulting magnetic map clearly showed the strong effect of source remanent magnetization. This
case in fact is very similar to what observed above different seamounts in the aeromagnetic map of Southern
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Figure 7. Results of the Poisson's analysis for Tyrrhenian seamounts. Maps of the (a, d, g, j) correlation, (b, e, h, k) intercept (K) coefficients and (c, f, i, l) the estimated
∆J for the Palinuro, Marsili, Vavilov and Magnaghi seamounts, respectively. The black and gray contour lines represent the seamounts bathymetry. Solid squares
indicate the main magnetized sectors of the seamounts; dashed squares are the areas of negative values and those of anomalies interference (see text).
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Tyrrhenian Sea (e.g., Faggioni et al., 1995). We have verified the results of the analysis first computing the RTP
anomalies using the correct inclination and declination of the magnetization. In this case, we were able to suc-
cessfully identify the ∆J with low uncertainty. We also note that more accurate results are inferred where the
expected ∆J was higher, that is, at the central area, with ∆J ∼ 10 A/m. The simulation also points out the lim-
itation of the analysis with the RTP computation when there is no information available about the source remanent
magnetization. Using instead the total gradients of potential fields we achieved a good identification of the
inhomogeneous areas of the seamount.

Therefore, the proposed approach turns out to be the best choice to study the Tyrrhenian seamounts for several
reasons:

1. A window‐by‐window analysis allows the inhomogeneity of seamounts to be inferred and it is appropriate to
reduce the interference effects among anomalies (Chandler et al., 1981);

2. The approach based on the total gradients of the fields, Equation 4, ensures high resolution and a better
discrimination of the single effects associated with adjacent sources

3. The performed Poisson's analysis is almost independent of the inclination and declination of the source
magnetization, providing a more robust interpretation of anomalies having strong effects of remanent
magnetization (e.g., Milano et al., 2019).

However, this analysis has also provided unsuitable areas for ∆J estimation, mainly located nearby the transition
zones with different ∆J, which may reproduce the effect of rock demagnetization due to hydrothermal activities.
Although these areas, characterized by negative MDR values, must be excluded for the evaluation of the physical
properties of the source, they can nevertheless help to determine the region of inhomogeneous magnetization.

We found different densities for Palinuro and Marsili (ρ ∼ 2,100 kg/m3) and for Vavilov and Magnaghi
(ρ ∼ 2,600 kg/m3) seamounts. These results are in good agreement with previous interpretation based on forward
and inverse modeling of gravity data (e.g., Caratori Tontini et al., 2010; Fedi, 1997; Ligi et al., 2014). In
particular, several studies dealt with the surprisingly low rocks density of the Marsili and Palinuro seamounts
(e.g., Caratori Tontini et al., 2010; Innangi et al., 2016; Italiano et al., 2014; Ligi et al., 2014; Paltrinieri
et al., 2022; Trua et al., 2002). The most reliable explanation lies in the intense hydrothermal circulation and
subsequent alteration of the basalts (e.g., Caratori Tontini et al., 2010; Ligi et al., 2014; Lupton et al., 2008). The
flow of hydrothermal fluids in seamount rocks, in fact, can produce physicochemical alterations followed by the
formation of secondary hydrated phases (e.g., Woodward & Mumme, 1993) and new mineral groups that reach
equilibrium through dissolution and precipitation processes (e.g., Pirajno, 2010). Moreover, hydrothermal
alteration largely impacts the porosity and permeability of the rocks as well as its density/magnetization (e.g.,
Wyering et al., 2014).

For example, DTM‐based morphometry study has shown areas of Palinuro with fine grained sediment infilling
(Passaro et al., 2010); low density sediments have been observed also at Marsili (Del Monte et al., 1972), where
dredged samples have revealed a high vesicularity reaching 30 vol. percentage (Trua et al., 2002). Submarine
eruptions can, in fact, produce low density products as pillow lavas, sheet flows and hyaloclastites also reaching
ρ ∼ 2,000 kg/m3 (Bonatti & Harrison, 1988; Schiffmann et al., 2006), and hydrothermal activity acts for a further
decrease (Woodward & Mumme, 1993). Similar cases have also been found in other marine hydrothermal dis-
tricts, such as at the Axial seamount off the Oregon coast, where porous features and hydrothermal vents have
been observed on the seafloor, considered indicators of high subsurface permeability associated with low‐density
zones (Gilbert et al., 2007).

Similarities can also be found with studies conducted along the seamounts of the Bonin Arc (Western Pacific).
Here, Ishihara (1987) discussed about the relationship between the seamount rock density and its average depth.
According to the author, density increases rapidly at about 1 km depth, probably associated with a decrease in
porosity. This observation seems to fit well with the densities we estimated and their relationship to seamount
depth. Accordingly, we observe a good correspondence between the low rock densities, the high porosity and the
shallow depth to the top of the Marsili and Palinuro seamounts (about 570 m b.s.l and 70 m b.s.l, respectively),
while higher density values correspond well to the deeper Magnaghi and Vavilov seamounts (about 1,500 m b.s.l
and 800 m b.s.l, respectively).

Poisson's analysis proved to be challenging compared to the problems already emerged from the synthetic case.
Indeed, the agreement between total gradient magnetic and gravity anomalies is complicated due to: (a) the
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interference from nearby sources (Palinuro seamount); (b) the magnetization distribution is much more complex
than the density distribution (Marsili seamount, Vavilov seamount), as we may observe demagnetized areas or
interferences with deep and/or lateral cone sources (Magnaghi seamount). For these reasons, we observed a good
agreement between the volcanic bathymetry and the total gradient of the gravity field, while the magnetic
anomalies are often shifted versus the volcanic edifices and present two or more highs.

In the case of Palinuro seamount, we have identified three areas with ∆J up to 10 A/m. These are located at the
central western (“A” in Figure 7c), central eastern (“B” in Figure 7c) and southern (“C” in Figure 7c) subportions of
the seamount which, according to Colantoni et al. (1981), represent the regions with highest magnetization. The
areas “B” and “C” are also compatible with the presence of magnetic morphological and dike‐like structures, as
argued by Caratori Tontini et al. (2009). On the contrary, the observed alternation of negative, positive and van-
ishing ∆J values at the western sector (“E” in Figure 7c) is probably related to strong inhomogeneities and
demagnetization phenomena; this is supported by previous studies which interpreted the western area of this
seamount as being strongly influenced by hydrothermal activity (e.g., Caratori Tontini et al., 2009;Caratori Tontini
et al., 2014; Cocchi et al., 2021; Colantoni et al., 1981; Ligi et al., 2014).We also observe∆J∼ 0 at the eastern crest
of Palinuro (“D” in Figure 7c), in agreement with the hypothesis of nonmagnetic sediments (Caratori Tontini
et al., 2009). Our estimated values are compatible with the J ∼ 5 and 8 A/m obtained by Cocchi et al. (2021) and
Caratori Tontini et al. (2009), respectively, from the inverse and forward modeling of magnetic data.

For the Marsili seamount, we have clearly identified a central portion (“H” in Figure 7f) characterized by the
alternation of negative, positive and very low ∆J values, suggesting rocks inhomogeneities; indeed, this sector is
characterized by a strong hydrothermal activities leading to both collapses and strong demagnetization (e.g.,
Caratori Tontini et al., 2010; Caratori Tontini et al., 2014; Faggioni et al., 1995); moreover, several studies
indicated also the presence of a shallow and active nonmagnetic magma chamber below this area (e.g., Caratori
Tontini et al., 2010; Caratori Tontini et al., 2014; Trua et al., 2002); it follows that in this portion of the seamount it
is not possible to determine the effective rock magnetization. Nevertheless, we note that the resulting magneti-
zation distribution is within the ∼3–20 A/m range estimated from the analysis of rock samples (Table 1 in
Faggioni et al., 1995). In particular, we identified two strongly magnetized areas to the southern (“G” in Figure 7f)
and northern (“F” in Figure 7f) ends of the volcanic edifice, in agreement with results obtained from 3D inverse
modeling of magnetic data by Cocchi et al. (2009), who considered these zones as those with the highest values of
rock magnetization.

The Vavilov seamount has certainly represented the most complicated case study; indeed, several strong in-
homogeneities and the presence of reversely magnetized rocks are expected, which resulted in a strong magnetic
anomaly with reversed dipolarity with respect to the present geomagnetic field orientation. In general, the
spreading of the volcanic edifice occurred during different magnetic epochs where deep and shallow bodies with
different magnetic features produces fields overlapping each other (e.g., Cocchi et al., 2023). Possible past hy-
drothermal activities were hypothesized (e.g., Bertand et al., 1990; Caratori Tontini et al., 2010; Faggioni
et al., 1995) aswell a collapse of itswestern flank (e.g., Cocchi et al., 2023). These phenomenamay affect the results
of the Poisson's analysis leading to alternation of negative (“K” in Figure 7i), positive and vanishing∆J values.We
estimated ∆J ∼ 2 A/m along the main volcanic edifice (“J” in Figure 7i) and ∆J ∼ 7 A/m in the surrounding basin
(“I,” “L” in Figure 7i), which are again consistent with previous interpretations (Faggioni et al., 1995).

Finally, in the last case (the Magnaghi seamount) we have identified two subportions as most magnetized regions,
with estimated ∆J that can reach 5 A/m (“M,” “O” in Figure 7l). In the southern part (“N” in Figure 7l), we instead
estimated lower values of about ∼2 A/m, in agreement with Faggioni et al. (1995) and Fedi et al. (1994), who
identified rock magnetization from 1 to 2 A/m in the southern slope of the seamount; the presence of negative
values at its central subpart (“P” in Figure 7l) confirmed the detected rocks inhomogeneities. Table 1 summarizes
the comparison of our results and the previously published values of rock magnetization.

6. Conclusions
Our approach based on the Poisson's analysis of potential field data represents a successful strategy to map
geological structures trough the non‐invasive and low‐cost geophysical techniques, which can be particularly
suitable in areas of difficult access. In particular, the study of the total gradient anomalies proved to be an effective
approach to overcome the problems of the strong remanent magnetization and to reduce the effect of anomalies
interference.
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The test of the Poisson's window‐based analysis and on the total gradients of potential fields allowed a good
identification of the three inhomogeneous areas of the model with a reduced ∆J uncertainty. However, we
showed that the method may fail nearby the transitions of ∆J. At the same time this limitation can be used for
individuating areas of rocks demagnetization because of hydrothermal activities since in these areas we expect
sudden ∆J changes. In the real case, the total gradient maps show an unclear correspondence between magnetic
and gravity anomalies due to interference from nearby sources (Palinuro seamount), complex magnetization
distribution versus uniform density distribution (Marsili seamount, Vavilov seamount) including demagnetized
areas, and possible deep interfering magnetic sources lateral to the cone (Magnaghi seamount). Thus, while the
total gradient of the gravity field mainly reflects the volcanic bathymetry, the total gradient of the magnetic
field is characterized by two or more highs, not centered on the volcanic edifices. Nevertheless, based on the
criteria established from the synthetic tests, we were able to provide ∆J estimates in local subregions of the
seamounts.

We may conclude that, despite the complexity of the geological structures, a window‐by‐window correlation
analysis allows inferring the main seamounts rocks properties. The best advantage of this technique is that it does
not require a‐priori information and involves low computational costs. In the case of the main seamounts of the
Southern Tyrrhenian Sea, our analysis provides useful insights on the inhomogeous magnetization of the sea-
mounts, also associated with hydrothermal activity, which can be used as a starting information for further inverse
and forward modeling of potential field data.

Data Availability Statement
The total gradient data sets used for the correlation analysis of the Tyrrhenian seamounts are available at Barone
et al. (2024). The gravity and magnetic unprocessed data sets were digitalized from the raster maps available at the
ISPRA website: http://portalesgi.isprambiente.it/index.php/en/elenco‐base‐dati/15.
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