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Abstract
Efficient and accurate characterization of an experimental setup is a critical requirement in any
physical setting. In the quantum realm, the characterization of an unknown operator is
experimentally accomplished via Quantum Process Tomography (QPT). This technique combines
the outcomes of different projective measurements to reconstruct the underlying process matrix,
typically extracted from maximum-likelihood estimation. Here, we exploit the logical
correspondence between optical polarization and two-level quantum systems to retrieve the
complex action of structured metasurfaces within a QPT-inspired context. In particular, we
investigate a deep-learning approach that allows for fast and accurate reconstructions of
space-dependent SU(2) operators by only processing a minimal set of measurements. We train a
convolutional neural network based on a scalable U-Net architecture to process entire
experimental images in parallel. Synthetic processes are reconstructed with average fidelity above
90%. The performance of our routine is experimentally validated in the case of space-dependent
polarization transformations acting on a classical laser beam. Our approach further expands the
toolbox of data-driven approaches to QPT and shows promise in the real-time characterization of
complex optical gates.

1. Introduction

Quantum Process Tomography (QPT) is the extension of system identification to the quantum realm [1]. A
quantum operator can be characterized by measuring how a set of inputs evolve under its action, the same
way a dynamical system is classified based on measured outputs [2]. For experimental purposes, the
tomography is crucial in verifying the proper functionality of a quantum device. It found applications in
various experiments, from nuclear magnetic resonances [3] to cold atoms [4], trapped ions [5, 6], and
photonic setups [7–18]. As in the case of state tomography, some optimization routine is typically needed to
solve the problem of non-physical reconstructions, which are a consequence of experimental noise [19].

In photonic setups, the characterization of a set of waveplates acting on light polarization is a practical
challenge. The well-established analogy between polarized light and two-level quantum systems can be used
to map the optical problem into the reconstruction of an SU(2) gate acting on a single qubit, allowing it to be
formulated within the mathematical framework of QPT [20].

In this paper, we address the more challenging scenario of characterizing optical SU(2) gates that are
space-dependent. These operations are relevant in all applications requiring a local control of light
polarization, such as polarization imaging [21], multiplexing [22], as well as the generation and
manipulation of vector beams [23, 24]. Assuming photons propagate along z, QPT is required at each
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transverse position (x, y), hereafter referred to as pixel. Iterative pixel-by-pixel solutions prove to be not
optimal, as the computation time grows linearly with the number of pixels. Moreover, similar approaches
overlook the overall pixel distributions, preventing the possibility of extracting richer information from the
entire experimental images.

In order to tackle the increasing complexity, optimization strategies based on evolutionary methods and
supervised learning have been recently illustrated in [17], where an optimal set of five polarimetric
measurements has also been demonstrated. Here, instead, we adopt a convolutional neural network (CNN)
to deliver real-time space-resolved reconstructions of complex unitary operators. Specifically, we train a fully
convolutional network based on the U-Net architecture to associate a minimal set of polarimetric images
with the process parameters. Originally used for bio-imaging segmentation [25], U-Nets have been adopted
for image-to-image regression tasks in optics [26], such as for super-resolution algorithms [27], aberration
correction [28], and phase retrieval [29–31]. In the context of quantum tomography, convolutional
architectures have been employed for efficient implementations of Quantum State Tomography [32].

First, we test our scheme on synthetic experiments. Then, we compare its performance with the genetic
routine devised in [17], taking into account both the reconstruction’s timing and accuracy. Finally, our
architecture is validated experimentally on different combinations of liquid-crystal metasurfaces
(LCMSs) [33, 34], realizing space-dependent polarization transformations. This ultimately demonstrates the
robustness of our approach to real experiment noise.

2. Theory

A qubit rotation of an angle 2Θ around the axis n= (nx,ny,nz), with 0⩽Θ< π and |n|= 1, is described by
an SU(2) operator

Û= e−iΘn·σ = cos(Θ)σ0− i sin(Θ)(n ·σ) , (1)

where σ0 is the 2×2 identity matrix and σ = (σx,σy,σz) is the vector of the three Pauli matrices. The gate
tomography is typically performed by processing an overcomplete set of projective measurements of the
form

Iab =
∣∣⟨b|Û|a⟩∣∣2, (2)

where |a⟩ and |b⟩ are extracted from the sets of eigenstates of the Pauli matrices, forming three sets of
Mutually Unbiased Bases in two dimensions [1]. The process matrix is then retrieved via a
maximum-likelihood approach, i.e. by minimizing a cost function expressing the distance between the
experimental outcomes I expab and the corresponding theoretical predictions I thab [9, 20, 35]:

L=
∑
ab

(
I expab − I thab

)2
. (3)

This routine is inefficient when it is independently executed on multiple gates depending on some external
parameters, such as space-dependent processes.

Specifically, a space-dependent process can be modeled as a functional Û(x,y)mapping the transverse
plane to the SU(2) group:

Û =
∑
(x,y)

Û(x,y) |x,y⟩⟨x,y|, (4)

where we have decomposed the complex unitary operator Û in local SU(2) operators.
The polarization of photons provides a natural way of encoding qubits, which can be manipulated via

optical waveplates. In the circular polarization basis, where |L⟩= (1,0)T and |R⟩= (0,1)T are left and right
circular polarization states, respectively, a waveplate Rδ,α having birefringence δ and optic axis oriented at an
angle α with respect to the horizontal direction can be expressed in the matrix form

Rδ,α =

(
cos(δ/2) i sin(δ/2)e−2iα

i sin(δ/2)e2iα cos(δ/2)

)
. (5)

Here, T stands for the transpose operator. A single waveplate thus implements a qubit rotation of an angle
−δ around the equatorial axis n= (cos2α, sin2α,0) (cf equation (1)). Nevertheless, more general operations
can be realized by cascading multiple waveplates [36, 37]. Accordingly, characterizing a set of waveplates is
mathematically equivalent to performing the QPT of an SU(2) operator. In this case, the measurements of
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equation (2) are realized as polarimetric measurements, involving the Stokes states |L⟩ and |R⟩,
|H⟩= (|L⟩+ |R⟩)/

√
2 and |V⟩= (|L⟩− |R⟩)/

√
2i (horizontal and vertical polarizations, respectively),

|D⟩= (|L⟩+ i|R⟩)/
√
2 and |A⟩= (|L⟩− i|R⟩)/

√
2 (diagonal and antidiagonal polarizations, respectively).

Space-dependent processes can be realized via waveplates exhibiting a patterned optic-axis orientation,
α= α(x,y). The tomography thus consists of determining the process parameters from a set of polarimetric
measurements. In our synthetic and experimental realizations, a minimal set of five measurements is
considered: {ILL, ILH, ILD, IHH, IHD} [17]. To the best of our knowledge, this is the first implementation of an
optimal QPT of SU(2) gates.

As discussed in previous studies [17, 38–40], the main limitation of non-interferometric approaches is
that these cannot capture any global phase. For this reason, we cannot distinguish a process Û, having
parameters (Θ,n), from eiπÛ=−Û, having parameters (π−Θ,−n), as these generate the same
experimental outcomes. We discuss how to solve this ambiguity in the next section.

3. Methodology

3.1. Parametrization of the training samples
Our network processes a set of five polarimetric images having resolution N ×N, where N = 64 pixels. For
each parameter describing an SU(2) process, we generate a random continuous two-dimensional function
f(x,y) via a discrete Fourier decomposition:

f(x,y) =
Ωx∑
i=0

Ωy∑
j=0

c(1)ij cos
2π i x

N
cos

2π j y

N
+

c(2)ij cos
2π i x

N
sin
2π j y

N
+

c(3)ij sin
2π i x

N
cos

2π j y

N
+

c(4)ij sin
2π i x

N
sin
2π j y

N
,

(6)

where all the coefficients c(m)
ij are uniformly extracted from the range [−1,1]. The maximal frequencies Ωx

and Ωy, respectively for the x and y axes, are uniformly sampled from the range [0,5], thereby ensuring
high-resolution pixelation: max(Ωx,y)≪ N. The function is then rescaled to the ranges [0,π] and [−1,1],
respectively for the rotation angleΘ and the components of the vector n. Finally, the vector n= (nx,ny,nz) is
normalized at each transverse position.

We also include a possible rotation of the reference frame:

x→ x ′ = cosξ x− sinξ y,
y→ y ′ = sinξ x+ cosξ y,

(7)

where ξ is an angle extracted from a uniform distribution in the range [−ξM, ξM], with ξM = 5◦. To remove
the ambiguity between processes U and−U, if the first pixel of the nz component turns out to be negative,
the following rule is applied:

Θ(x,y)→ π−Θ(x,y) ,

nx (x,y)→−nx (x,y) ,

ny (x,y)→−ny (x,y) ,

nz (x,y)→−nz (x,y) .

(8)

We compute the minimal set of five polarimetric measurements associated with each process (cf section 2),
which represents the input layer of the network. To simulate experimental noise, each pixel of each
polarimetric measurement is perturbed with a value extracted from a Gaussian distribution with zero mean
and standard deviation σ = 0.02. The output layer contains the parameterΘ(x,y) and the spherical
representation of the vector n:

θ (x,y) = arccosnz (x,y)

ϕ(x,y) =mod
[
atan2(ny (x,y) ,nx (x,y) ),2π

]
,

(9)

where θ(x,y) and ϕ(x,y) are the polar and azimuthal angles on the Poincaré sphere, respectively, and
atan2(x,y) is the two-argument arctangent function, which distinguishes between diametrically opposite
directions.

3
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Figure 1. Neural network architecture. A fully convolutional neural network based on the auto-encoder U-Net is employed. Our
input consists of five polarimetric measurements with the target resolution. The data is processed through a series of compression
steps, each implemented as a 2× 2 Max Pooling layer. After the bottommost layer, the data is decompressed with 2× 2
upsampling layers. The output of each encoding layer is passed as input to the decoding layer within the same level of the
architecture via skip connections, which help circumvent vanishing gradients during training. The feature maps are colored blue
and orange to indicate, respectively, the encoding and decoding blocks of the U-Net.

3.2. Neural network architecture
To perform space-resolved process tomography, we employ a fully CNN based on the U-Net architecture.
Figure 1 outlines the structure of the architecture, which can be divided into an encoder and decoder
network. The polarimetric measurements are fed into the input channels and processed through a sequence
of encoding layers, wherein they are compressed into feature representations in a latent space, capturing
global information about the images. Crucially, such a routine is capable of recognizing the local continuity
of the images. The feature representations are then fed into the decoder network, where they are eventually
converted into the three N ×N unitary parameters. To overcome the issue of vanishing gradients during
training, skip connections send residual data from the encoder to the decoder network. We also apply
Dropout regularization to prevent overfitting. The structure of the network, together with the size of the
training set, has been optimized to achieve satisfactory reconstructions on unseen data (see section 4.1). In
principle, our routine can be scaled to arbitrary spatial resolutions, at the obvious cost of increasing
computational complexity.

3.3. Training strategy
We prepare a fixed dataset of input-output training examples to perform supervised learning. The agreement
between the predicted unitary process, Ûexp, and the theoretical operator, Ûth, is quantified in terms of the
map fidelity:

F =
1

2N2
|Tr

(
Û†
thÛexp

)
|= 1

2N2

∣∣∣∣ N∑
x=1

N∑
y=1

Tr
(
U†
th (x,y)Uexp (x,y)

)∣∣∣∣. (10)
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The loss function used for training is the infidelity 1−F . This metric constitutes the natural choice for our
tomographic problem and crucially differs from the average pixel fidelity:

F̄=
1

2N2

N∑
x=1

N∑
y=1

∣∣∣∣Tr(U†
th (x,y)Uexp (x,y)

)∣∣∣∣. (11)

The latter is insensitive to relative phases between pixels. Conversely, high values of F certify that the routine
delivers accurate predictions, also embedding the continuity constraint, which was enforced by hand in
previous implementations [17]. Further details on the training hyperparameters are provided in appendix A.

4. Results

4.1. Synthetic experiments
The performance of our network is first validated on a test set of 103 ideal numerical experiments. These
synthetic processes are generated as outlined in section 3.1. The map fidelity (see equation (10)) is used to
evaluate the network predictions. In view of the assessment of the network on actual experimental data,
where there is no preliminary knowledge of the ‘true’ unitary process, we also compute what we call
polarimetric infidelity. It quantifies the discrepancy between the input polarimetric measurements and the
ones computed from the network predictions:

∆=
1

5N2

5∑
p=1

N∑
x=1

N∑
y=1

∣∣∣∣I(p)th (x,y)− I(p)exp (x,y)

∣∣∣∣2, (12)

where p labels individual measurements. Figure 2(a) report the distributions of the infidelity 1−F and∆.
The average map infidelity, 1−F̄ < 0.1, proves that our network has been successfully trained to provide
accurate reconstructions of a variety of complex processes. Correspondingly, a low value is also reported for
the average polarimetric infidelity: ∆̄< 0.05.

To assess the network performance in the presence of noise, we also compute the average infidelity when
the polarimetric measurements are affected by varying levels of Gaussian noise, with zero mean and
σ = 0.01,0.02,0.05, and0.1. The results shown in figure 2(b) certify that the network performance remains
stable even as noise strength increases. This suggests that our network effectively distinguishes relevant
process features from the noise.

A subset of 100 processes is then extracted to compare the performance of our network with the genetic
algorithm (GA) described in [17], by adapting the original version to the minimal case of five measurements.
Figures 2(c) and (d) report the infidelity distribution of the two routines when processing ideal
measurements and noisy data, respectively. In the second case, a Gaussian noise with σ = 0.02 is considered.
The average performance of our routine is closely aligned with the GA. With ideal input measurements, the
average infidelity is 1−F̄CNN = 0.140 and 1−F̄GA = 0.139 for the network and the GA, respectively. With
noise, we obtain 1−F̄CNN = 0.140 and 1−F̄GA = 0.168. This further certifies the robustness of the network
to noise. Interestingly, a poor correlation between map and pixel fidelity is observed for the GA, as shown in
the insets of figures 2(c) and (d). This is ascribed to the intrinsic pixel-by-pixel approach, which cannot
capture the continuity of the physical parameters. The network is, in fact, immune to this effect.

On an AMD Ryzen 4500U @ 2.38 GHz CPU, each reconstruction from the network takes 150 ms on
average, compared to≈ 60 s required by the GA.

4.2. Complex polarization transformations
Process tomography is experimentally engineered within the setup sketched in figure 3(a). The source is the
output of a Ti:Sa laser (central wavelength λ= 810 nm), spatially cleaned through a single-mode fiber (not
shown in the figure). Complex polarization transformations are realized via LCMSs, acting as waveplates
with patterned optic-axis modulation. The birefringence of these devices is electrically controlled [41]. In
particular, our experiments involve different combinations of linear polarization gratings, known as
g-plates [42], and plates exhibiting a uniform optic-axis orientation. In the case of g-plates acting along x,
Tx,Λ(δ), the optic-axis distribution is given by α(x,y) = π x/Λ, with Λ = 2.5 mm (and similarly along y).
Uniform plates have α(x,y) = 0, and act asW= (σ0+ iσx)/

√
2. The beam waist is adjusted to w0 ≃ 2.5 mm

to cover at least one spatial period of the optical operator. A linear polarizer, a half-wave plate, and a
quarter-wave plate (LP1-HWP1-QWP1) are needed to prepare an arbitrary polarization state. The
polarimetric measurements are completed with a mirror sequence (QWP2-HWP2-LP2) implementing the
projection. The resulting intensity distributions are collected on a camera. The latter is placed immediately
after the projection stage, so that the decomposition of equation (4) is verified with good approximation.

5



Mach. Learn.: Sci. Technol. 5 (2024) 045071 T Jaouni et al

Figure 2. Synthetic experiments. (a) Distribution of the map infidelity 1−F and the polarimetric infidelity∆ (inset) resulting
from the network reconstruction of 103 complex synthetic processes. (b) Average map infidelity for varying levels of Gaussian
noise (with standard deviation σ). The network performance does not vary significantly with increasing noise strength. Error bars
are computed as the standard deviation over 103 processes. The performance of the network is compared with the genetic
algorithm of [17] on a subset of 100 processes, in the case of (c) ideal measurements and (d) noisy input data (σ = 0.02). The
insets show the correlation between pixel fidelity F̄ and map fidelity. Limited by a pixel-by-pixel approach, the GA cannot capture
global features, which leads to no correlations.

Figure 3. Experimental process tomography. (a) A space-dependent optical operator is implemented via LCMSs. Polarimetric
measurements are realized by adjusting the preparation and projection stage. The resulting intensity distribution is collected on a
camera. (b) The set of five polarimetric measurements collected for the process U= Ty,Λ(π/2)Tx,Λ(π/2)W. The normalization
factor is the total light intensity.

This corresponds to neglecting any effect resulting from light propagation, which can be addressed via,
e.g. Fourier QPT [43].

In a first experiment, we engineer the three-plate process U= Ty,Λ(π/2)Tx,Λ(π/2)W. Figure 3(b) shows
the intensity distributions resulting from the complete set of five polarimetric measurements. In figure 4(a),
we report the comparison between the theoretical unitary parameters and the network predictions on both
synthetic and experimental data. The network successfully captures the distinctive features of all the
modulations. The polarimetric infidelities are∆s = 0.0123 (corresponding to a fidelity F = 96.6%) and
∆e = 0.0339 for the synthetic and experimental reconstructions, respectively. The second experiment is
realized by cascading six LCMSs as follows: U= Ty,Λ/2(1)Tx,Λ/2(1)WTy,Λ(π/2)Tx,Λ(π/2)W. The network

6
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Figure 4. Complex polarization transformations. By combining different LCMSs, we realize the processes
(a) Ty,Λ(π/2)Tx,Λ(π/2)W and (b) Ty,Λ/2(1)Tx,Λ/2(1)WTy,Λ(π/2)Tx,Λ(π/2)W (see main text for the description of
individual optical operators). The parameters of the theoretical process are plotted with the tomographic reconstruction resulting
from both synthetic and real experimental data.

Figure 5. Single-plate process. We perform QPT on a q-plate. As expected, the first reconstruction is poor (a), but the network
performance significantly improves after re-training the original architecture (b).

still provides satisfactory reconstructions, with very low polarimetric infidelities:∆s = 0.0185 (F = 91.9%)
and∆e = 0.0129 (see figure 4(b)). We finally prepare a third experiment reproducing a process that does not
fall into the training category examples. In particular, we perform QPT on a single q-plate [44], with δ = π.
Such a device is characterized by an azimuthal pattern featuring a singularity at the center:
α(x,y) = α(φ) = qφ, where φ = atan2(y,x) and q is the topological charge. In our case, we set q= 1/2. The
network reconstruction is generally poor, as shown in figure 5(a). This is expected for two main reasons:
(i) the unitary parameters do not feature a simple decomposition as in equation (6), and (ii) single-plate
processes feature the maximal global phase ambiguity [17], as nz(x,y) = 0. However, these problematic cases
can be better handled with a second stage of training, whereby the network is further trained on an
augmented dataset containing a small portion of such examples. After the re-training stage, the
reconstruction of the q-plate process significantly improves (see figure 6(b)), with∼ 80% and∼ 25% relative
improvement on the synthetic and experimental predictions, respectively. Further details on the re-training
procedure are provided in appendix B, where we also investigate the general improvement of the network
performance on single-plate processes. Reduced performance in the real experimental case is mainly ascribed
to fabrication issues, especially the finite-size resolution which affects the pattern quality across the
singularity.

In appendix C, we show the reconstruction of these processes performed by the same GA routine used
before [17], providing a further comparison of the two approaches.

5. Conclusions

The CNN we have trained to perform space-resolved process tomography is capable of outputting fast and
accurate reconstructions, by parallel-processing polarimetric data and extracting global features of complex
polarization transformations. We have also proven that further re-training on specialized datasets improves
the performance on out-of-training examples.

7
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Figure 6. Two-step training. Distribution of the map and the polarimetric infidelity, before and after the two-step training,
resulting from the network reconstruction of 103 synthetic processes, generated as (a) typical training samples, and (b)
single-plate processes. After the two-step training, the network performance on single-plate processes significantly improves,
without attacking the performance on general processes.

Our method has been validated on a vast set of synthetic and experimental data. The comparison with an
alternative genetic approach suggests that these methods can be used as complementary approaches to
address a wider range of problems.

Despite our implementation, these findings are not limited to optical polarization, and could be
straightforwardly adapted to other fields by specializing the training set to the particular class of
experiments. This study sets the baseline for the development of further optimization routines for
tomographic problems both in the classical and quantum domains. For instance, adaptive approaches
represent a promising direction, where future measurements are adjusted depending on the outcomes of
previous ones [45, 46]. Future generalizations of this work could be applied to non-unitary evolutions [47]
and multi-photon gates [48] in high-dimensional Hilbert spaces, where the increasing complexity poses
significant computational challenges.
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Appendix A. Training hyperparameters

The complete set of hyperparameters is listed in table 1. We generate 50 000 training samples with the
parameterization described in section 3.1. An 85:15 split between the training and the validation dataset is
used. The validation stage prevents the issue of overfitting, certifying that the network is not merely adapting
its parameters to the specific training set. The input consists of five 64× 64 polarimetric images, while the
unitary parameters form the output layer. Artificial noise is introduced on each pixel from a Gaussian
distribution with zero mean and σ= 0.02.

Table 1. Hyperparameters.

Image Resolution 64× 64
Size of Dataset 50000
Batch Size 8
Train-Validation Split 85:15
Initial Learning Rate 10−3

Dropout Rate 0.2
Number of Epochs 200
Patience 15 Epochs
Reduction Factor 0.1

Training Error at Convergence 0.07
Validation Error at Convergence 0.11

The training process is realized within the Tensorflow library [50]. Backpropagation of the network after
each epoch was performed using the Adam optimizer [51]. We adopt an adaptive training strategy, with the
learning rate that is initialized at 10−3 and is reduced by a factor of 10−1 if, after 15 epochs, no appreciable
change in the validation loss is observed. We define an early stopping criterion, where training is stopped if
the validation loss does not change appreciably within 20 epochs. Accordingly, the training was stopped after
200 epochs, in correspondence with the convergence of the validation loss. Training is carried out on the
Narval supercluster using two NVidia A100SXM4 GPUs, each with 40 GB of memory. The process was
completed in roughly 7 h, with each epoch taking≈ 2 min.

Appendix B. Training specialization

An architecture that has been trained on a specific class of processes may struggle to reconstruct the features
of more exotic examples. In our case, this occurs for single-plate optical operators. This limitation can be
overcome by re-training the original network on a specialized dataset containing a portion of problematic
examples, in reminiscence of fine-tuning Language Learning Models towards desired properties [52]. This is
known as Transfer Learning [53]. Specifically, this is accomplished by augmenting the original dataset with
6000 examples consisting of single- and two-plate processes. For each waveplate, the birefringence δ is
uniformly extracted from the range [0,2π], while the optic-axis orientation follows a decomposition similar
to equation (6):

α(x,y) =
Ωx∑
i=0

Ωy∑
j=0

c(1)ij cos
2π i x

N
cos

2π j y

N
+

c(2)ij cos
2π i x

N
sin
2π j y

N
+

c(3)ij sin
2π i x

N
cos

2π j y

N
+

c(4)ij sin
2π i x

N
sin
2π j y

N
,

(B1)
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with 0⩽ Ωx ⩽ 3, 0⩽ Ωy ⩽ 3, and each coefficient c(m)
ij is uniformly extracted from the range [−1,1].

Importantly, the ratio of these examples with the original dataset is kept reasonably small to avoid biasing
the network towards these processes. Indeed, the ability of our network to reconstruct general processes is
not diminished after Transfer Learning, as shown in figure 6(a). Conversely, the network demonstrates
improved performance in predicting complex single-plate processes, as can be seen in figure 6(b) by the shift
of the initial infidelity distributions towards smaller values. Finally, we observe that the two-step training
process proves successful due to the robustness conferred by the initial pre-training of the network (see
section 4.1), which allows it to effectively absorb the features of the new dataset while mitigating the risk of
overfitting or bias towards it.

Appendix C. Genetic tomography

The GA implements a pixel-by-pixel optimization. Crucially, the initial population [54] undergoing the
genetic workflow is not picked at random (except for the first pixel), but sampled from neighboring pixels
that have already been reconstructed. This enforces a local continuity constraint, which can greatly improve
the quality of final reconstructions. Further details can be found in [17], the only difference being that the
implementation discussed here only takes 5 input polarimetric measurements.

The tomographic reconstruction operated by the GA on the same experimental processes considered in
the main text is shown in figures 7 and 8. In general, we observe a better quality of the experimental
reconstructions, also quantified by the low polarimetric infidelity. This is mainly due to enhanced
performances on the single-pixel level, at the cost of a much longer (three orders of magnitude) processing
time.

Figure 7. GA tomography of complex polarization transformations. We perform QPT for the same processes of figure 4 using the
GA of [17].

Figure 8. GA tomography of a single-plate process. QPT results for the GA reconstruction of the q-plate process. In the synthetic
implementation, the global phase continuity is broken, resulting in a poor reconstruction.
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An interesting case is provided by the synthetic q-plate experiment, which proves extremely challenging
for the GA. The low polarimetric infidelity and high map infidelity imply that there has been a flip of the
global phase across a large domain, clearly visible in figure 8. This result further proves that our architecture,
while not necessarily outperforming alternative methods under all possible metrics, is better suited for
identifying global features of the process.
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[16] Bouchard F, Hufnagel F, Koutný D, Abbas A, Sit A, Heshami K, Fickler R and Karimi E 2019 Quantum 3 138
[17] Di Colandrea F, Amato L, Schiattarella R, Dauphin A and Cardano F 2023 Opt. Express 31 31698
[18] Goel S, Leedumrongwatthanakun S, Valencia N H, McCutcheon W, Tavakoli A, Conti C, Pinkse P W and Malik M 2024 Nat. Phys.

20 1
[19] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[20] Aiello A, Puentes G, Voigt D and Woerdman J P 2006 Opt. Lett. 31 817
[21] Solomon J E 1981 Appl. Opt. 20 1537
[22] Davis J A, Evans G H and Moreno I 2005 Appl. Opt. 44 4049
[23] Zhan Q 2009 Adv. Opt. Photonics 1 1
[24] Rosales-Guzmán C, Ndagano B and Forbes A 2018 J. Opt. 20 123001
[25] Ronneberger O, Fischer P and Brox T 2015U-Net: Convolutional Networks for Biomedical Image Segmentation (Springer) pp 234–41
[26] Wang K et al 2024 Light Sci. Appl. 13 4
[27] Luo Z, Yurt A, Stahl R, Lambrechts A, Reumers V, Braeken D and Lagae L 2019 Opt. Express 27 13581
[28] Zhang G, Guan T, Shen Z, Wang X, Hu T, Wang D, He Y and Xie N 2018 Opt. Express 26 19388
[29] Nguyen T, Xue Y, Li Y, Tian L and Nehmetallah G 2018 Opt. Express 26 26470
[30] Sinha A, Lee J, Li S and Barbastathis G 2017 Optica 4 1117
[31] Proppe A H, Thekkadath G, England D, Bustard P J, Bouchard F, Lundeen J S and Sussman B J arXiv:2402.06063
[32] Schmale T, Reh M and Gärttner M 2022 npj Quantum Inf. 8 115
[33] Rubano A, Cardano F, Piccirillo B and Marrucci L 2019 J. Opt. Soc. Am. B 36 D70
[34] Di Colandrea F, Babazadeh A, Dauphin A, Massignan P, Marrucci L and Cardano F 2023 Optica 10 324
[35] Fiurá̌sek J and Hradil Z 2001 Phys. Rev. A 63 020101
[36] Simon R and Mukunda N 1990 Phys. Lett. A 143 165
[37] Sit A, Giner L, Karimi E and Lundeen J S 2017 J. Opt. 19 094003
[38] Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D-S, Sengstock K and Weitenberg C 2016 Science 352 1091
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