
DOI: 10.1002/jwmg.22588

COMMENTARY

Wild birds and the ecology of antimicrobial
resistance: an approach to monitoring

Tullia Guardia1,2 | Lorena Varriale1 | Adriano Minichino1,2 |

Rosario Balestrieri3,4 | Danila Mastronardi1,5 |

Tamara Pasqualina Russo1 | Ludovico Dipineto1,2 |

Alessandro Fioretti1,2 | Luca Borrelli1,2

1Department of Veterinary Medicine and

Animal Production, University of Naples

Federico II, Via Federico Delpino 1,

80137 Naples, Italy

2Wildlife Rescue and Rehabilitation Center

(CRAS) Federico II, University of Napoli

Federico II, Via Marco Rocco di Torrepadula,

35, 80145 Naples, Italy

3Anton Dohrn Zoological Station, Villa

Comunale 80121 Naples, Italy

4Association for Research, Dissemination and

Environmental Education (ARDEA), Via

Ventilabro 6, 80126 Naples, Italy

5Southern Italy Ornithological Studies

Association (ASOIM), Via Cavalli di Bronzo

95, 80046 Naples, Italy

Correspondence

Ludovico Dipineto and Luca Borrelli,

Department of Veterinary Medicine and

Animal Production, University of Naples

Federico II, Via Federico Delpino 1, 80137,

Naples, Italy.

Email: ludovico.dipineto@unina.it

and luca.borrelli@unina.it

Abstract

Tackling the global threat of antimicrobial resistance (AMR)

requires joint efforts according to the principles of the One

Health approach. In this context, wildlife, and especially wild

birds, are recognized as an important bridge between environ-

ment, humans and livestock in perpetuating AMR. Over the

last decades, important progress has been made in under-

standing the role of wild birds as carriers of antibiotic‐resistant

bacteria and their genes (ARGs) within ecosystems; however,

there are still many knowledge gaps regarding transmission

sources and routes. This commentary summarizes studies from

recent years focusing on AMR in wild birds, highlighting the

most frequently found zoonotic bacteria harboring ARGs and

the possible exchange scenarios between humans, livestock,

and wild birds. We emphasize the need to standardize and

optimize a wild bird monitoring approach for AMR surveillance

that includes non‐invasive sampling methods, culture‐

independent techniques for identification of ARGs, database

integration and implementation, and machine learning technol-

ogy. This multidisciplinary perspective, which could involve

veterinarians, biologists, ornithologists, conservationists, and

managers, may represent part of the solution, not only for

wildlife conservation but also for global health, considering

that the goal is to reverse the route of AMR.
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Antimicrobial resistance (AMR) refers to the property of bacteria that become less susceptible to an antimicrobial

agent (Tang et al. 2023). Bacteria can gain AMR by overexpressing or duplicating some genes, undergoing

chromosomal mutation, or obtaining resistance genes from other bacteria by horizontal gene transfer. Although

AMR is a natural phenomenon, anthropogenic pressures, such as human wastewater systems or animal husbandry

facilities, may increase the development, multiplicity, and quantity of antibiotic‐resistant bacteria and genes in the

environment (Berendonk et al. 2015). Inadequate treatment of waste from humans and livestock containing

antimicrobial drugs leads to the environmental spreading of antibiotic‐resistant bacteria and antimicrobial

resistance genes (ARGs), thus resulting in one of the major threats to public health worldwide. The prevalence of

multidrug‐resistant (MDR) bacteria is globally increasing (Yuan et al. 2016). Some recent investigations outlined the

emergence of MDR bacterial pathogens from different origins, including humans, birds, livestock, and water

organisms, which leads to the need for routine antimicrobial susceptibility testing and improved screening of

emerging MDR strains (Yuan et al. 2016).

Transmission is a cardinal element in antimicrobial resistance spread; identifying the sources and detecting

the transmission routes is fundamental to address the antimicrobial resistance issue. Almost every ecosystem in

the biosphere can play a role, in different degrees, in the origin, evolution, and spread of AMR (Larsson

et al. 2018). The environment may act as a reservoir for ARGs, collectively constituting the antibiotic resistome,

and promotes horizontal gene transfer and the sharing of resistance genes as a bacterial adaptation response

(Samreen et al. 2021). Wildlife is considered an environmental reservoir and potential melting pot of AMR,

contributing to its transmission across different ecosystems. The antimicrobial‐resistant genes harbored by

pathogens, causing problems in medical settings, might spread among the bacteria present in the microbiomes

of ubiquitous animals that could be in turn bioreactors for antimicrobial‐resistant genes among human

pathogens (Lagerstrom and Hadly 2021, Laborda et al. 2022). Importantly, 61% of human pathogens are

zoonotic (Taylor et al. 2001), 60.3% of emerging infectious diseases are zoonoses and, of these, 71.8% originate

from wildlife (Jones et al. 2008).

Wild sedentary and migratory birds are important reservoirs of zoonotic pathogens (Benskin et al. 2009). The

anthropization of ecosystems has forced many wild birds to adapt their biology to human presence and the

possibility of contact with humans has increased (Martín‐Maldonado et al. 2022). The transmission of resistant

microorganisms between wildlife and humans is currently being documented (Laborda et al. 2022). The isolation of

antimicrobial‐resistant bacteria (AMRB) in wild birds results from a spill‐over phenomenon through environmental

pollution with human or domestic animal‐origin strains (Benskin et al. 2009). The prevalence of AMRB and ARGs in

wildlife is higher in areas with a significant human presence, indicating that AMR in wildlife is an important indicator

of anthropic pollution (Marcelino et al. 2019, Laborda et al. 2022, Martín‐Maldonado et al. 2022). Wild birds can

also be involved in the dissemination of ARGs through horizontal gene transfer among different bacteria, which can

later disseminate among different hosts (Laborda et al. 2022).

Sedentary birds could move along short distances and the transfer will take place locally (Laborda et al. 2022).

Among sedentary birds, synanthropic species live in contact with humans and depend on human resources for

nutrition and habitat because urban areas provide resources to feed and reproduce (Martín‐Maldonado et al. 2022).

Migratory birds are in the spotlight for their ability to carry bacteria, viruses, parasites, and fungi over long

distances through their routes between countries and continents, twice a year (Giorgio et al. 2018, Elsohaby

et al. 2021). Migratory birds, via their migration routes and during migration stopovers, may interact with sedentary

birds, which in turn can interact with ornamental, domestic, or poultry species. This establishes a possible avian
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circulation of several antimicrobial‐resistance pathogens. This behavior introduces a high risk of spreading diseases

beyond local outbreaks to become a global health issue (Giorgio et al. 2018, Şahan Yapicier et al. 2022).

The scientific community has investigated the role of wild birds with regard to AMR worldwide, but data are

still lacking (Vittecoq et al. 2016, Martín‐Maldonado et al. 2022). The role of migratory birds in the spread of MDR

bacteria needs to be understood, considering the effect that AMR has on the economy and global health (Yuan

et al. 2016, Elsohaby et al. 2021). We recognize that fully understanding the role that each component (i.e.,

domestic animals, human populations, wildlife, and environmental reservoirs) plays in the maintenance and the

dispersal of AMR within bacterial populations, must be prioritized.

Our objective is to emphasize the importance and usefulness of a holistic approach to stem the silent pandemic

of antimicrobial resistance through the monitoring of wild birds. We argue for a synchronous work among different

professionals, researchers, and managers, who can together monitor antimicrobial resistance trends. It could

represent an integrated system to predict the phenomenon and help target interventions. With this surveillance

strategy of AMR monitoring, we could acquire additional information about zoonotic antimicrobial‐resistant

bacteria circulating among wild birds, how wild birds acquire antimicrobial‐resistant bacteria, and which exchanges

of antimicrobial‐resistant bacteria occur between humans, domestic animals, and wildlife.

ANTIMICROBIAL‐RESISTANT PATHOGENS CARRIED BY WILD BIRDS

Wild birds could carry in their microbiome AMRB that is recognized as a public health concern (Russo et al. 2022).

Many recent studies could give a clear idea of which zoonotic bacterial species are the most frequently found in

wild birds and which possible resistance determinants they harbor. For example, gram‐positive methicillin‐resistant

Staphylococcus aureus (MRSA), vancomycin‐resistant enterococci, and extended‐spectrum beta‐lactamase (ESBL)‐

producing gram‐negative bacteria could be some of the main key indicator pathogens to delineate the evolution of

AMR within a variety of environments and wildlife (Zhanel et al. 2008, Laborda et al. 2022).

Golden staph (Staphylococcus aureus) is a commensal bacteria that could be an opportunistic pathogen of

humans and animals (Rossi et al. 2020). In particular, MRSA is a life‐threatening pathogen in humans and its

presence in animals represents a public health issue (Becker 2021). Often MRSA is multidrug‐resistant, especially

towards most beta‐lactam antibiotics, and birds (e.g., Ciconiidae family) seem to have a significantly higher

prevalence of golden staph when compared to other wild animals (Abdullahi et al. 2021). The occurrence of golden

staph in wild birds has 18% of phenotypic and 64% of genotypic methicillin resistance, and strong biofilm formation

(90%; Tareen and Zahra 2023).

Escherichia coli is the most commonly targeted bacteria in AMR studies and its resistance to carbapenems in

wild birds and other wild animals has been largely identified (Vittecoq et al. 2016). Escherichia coli sequence type 38

is the most frequently reported carbapenem‐resistant clone in wild birds (especially in birds from Laridae, Anatidae,

Gruidae and Ciconidae families), and is argued to be exchanged intercontinentally between humans, wild birds and

the environment (Ahlstrom et al. 2023b). Recent data arising from whole‐genome sequencing and phylogenomic

analysis revealed the presence of E. coli clones (ST295 and ST388) producing CTX‐M‐55 and CTX‐M‐1 ESBLs from

migratory and resident Franklin's gulls (Leucophaeus pipixcan) in Chilean Patagonia; the same clones were also

detected from the environment, companion animals, and livestock in the United States, which indicates a possible

trans‐hemispheric spread of international clones of ESBL‐producing bacteria considered by the World Health

Organization to be critical priority threats (Fuentes‐Castillo et al. 2023).

Furthermore, fecal samples of wild birds collected along the Jinjiang River in Chengdu, China had a great

prevalence of antimicrobial‐resistant E. coli (59.4% to tetracycline, 65.3% to levofloxacin, 49.0% to ampicillin and

54.0% to nalidixic acid; Lin et al. 2022). Another study conducted in different regions of China showed that E. coli

isolates from migratory birds exhibited high resistance to β‐lactams (43.7%) and tetracycline (22.6%), and 15.3% of

them were MDR (Yuan et al. 2016).
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Multidrug resistance patterns were found in 44.8% of E. coli isolated from chicks of Canarian Egyptian vulture

(Neophron percnopterus majorensis) in a supplementary feeding station in Fuerteventura (Suárez‐Pérez et al. 2023).

In Spain, the importance of supplementary feeding stations for Eurasian griffon vultures (Gyps fulvus) in the

dissemination of AMRB from pig carcasses was also confirmed (Sevilla et al. 2020). Landfills and farm animal

carcasses are significant points for the dissemination of AMR or particles of antibiotics and other drugs into

ecosystems, sometimes resulting in problems for biodiversity (Sharma et al. 2018, Sevilla et al. 2020).

In Malaysia, isolated E. coli strains showed resistance to all the antibiotics tested, with 100% MDR E. coli from

cloacal swabs of wild birds in Orang Asli villages and 44.4% from wild birds in Malay villages (Mohamed et al. 2022).

The researchers also reported the presence of the eae gene in 12.1% of the E. coli isolates from the Malay villages,

of which 71.4% identified as MDR. The latter finding could be attributed to various factors, including the feeding

habits of these birds. These groups of birds in Malay villages fed on human garbage that was likely contaminated by

bacteria that carry the eaeA and other ARGs or might become infected by contact with animal farms (Mohamed

et al. 2022). The presence of commensal E. coli with resistance to third‐generation cephalosporins,

fluoroquinolones, and colistin was reported in samples from wild ducks and geese in Germany (Plaza‐Rodríguez

et al. 2021). In Alaska, the isolation from gull (Larus spp.) fecal samples of ≥1 resistant E. coli from 16% of the

collected samples and 58 different ARGs was documented (Ahlstrom et al. 2021).

Salmonella bacteria (Salmonella spp.) are a considerable cause of foodborne disease worldwide and can be found

mostly in the intestinal tract of poultry and wild birds. During the last 20 years, a lot of clones of Salmonella showed

increasing multi‐resistance at global scale. Salmonella enterica serovar Typhi, the cause of typhoid fever, has a

genomic element that carries resistance to 5 antimicrobials and could spread horizontally among serotypes; it is

widely detected in birds (Cìzek et al. 2007, Fuentes‐Castillo et al. 2023). In the United States the presence

Salmonella enterica in wild birds was documented: Typhimurium in this study was the dominant serovar and all the

MDR strains were isolated from waterbirds or raptors, with 75% carrying resistance plasmids (Fu et al. 2022). Wild

birds could also carry other zoonotic serovars such as Infantis (Card et al. 2023).

The enteric pathogens E. coli and Salmonella species were also isolated from 22 different wild bird species in 4

provinces of Turkey by Şahan Yapicier et al. (2022): E. coli isolates had the greatest AMR patterns for lincomycin

(100%), penicillin, kanamycin, tetracycline, oxytetracycline, and doxycycline, whereas Salmonella serotypes were

resistant to lincomycin, nalidixic acid, and penicillin (Şahan Yapicier et al. 2022).

Enterococcus bacteria (Enterococcus spp.) are opportunistic pathogens, able to acquire and transfer

antimicrobial‐resistant genes. In Central Italy, Enterococcus strains were isolated from the feces of wild birds of

different species, with 99.02% of them classified as multidrug‐resistant (Cagnoli et al. 2022).

Wild birds have also been identified as a relevant reservoir of Campylobacter bacteria (Campylobacter spp.) pathogens

associated with human diseases (Olvera‐Ramírez et al. 2023). In central Spain, Campylobacter jejuni, Campylobacter coli, and

Campylobacter lari were isolated from cloacal swabs, aseptically collected from 4 families of birds of prey (Accipitridae,

Falconidae, Strigidae, Tytonidae) that had been admitted to a wildlife rescue center, on the day of admission prior to any

treatment or housing in the hospitalization cage. Resistance profiles to nalidixic acid (69.9%), ciprofloxacin (69.9%), and

tetracycline (55.6%), and a low resistance to streptomycin (6.7%) were detected from the isolates.

Moellerella wisconsensis is a potentially zoonotic pathogen that was sporadically isolated from animals and humans.

In Greece, a prevalence of 0.9% was reported in the examined wild birds, showing resistance to third‐generation

cephalosporins, tetracyclines, aminoglycosides, and trimethoprim‐sulfamethoxazole (Thanasakopoulou et al. 2022).

Although Moellerella wisconsensis is a rare clinical isolate, those findings underlined the potential role of wild birds in

both the spread and dissemination of the gene blaCTX‐M‐1, which is one of the main genes encoding ESBL and is

commonly located on bacterial plasmids that can spread easily between and within bacteria (Wibisono et al. 2020).

In Spain, ARGs were detected in fecal samples of 4 waterbird species wintering in southwest Spain. Genes

conferring resistance to the most common classes of antibiotics were detected with higher presence in lesser black‐

backed gulls (Larus fuscus) and white storks (Ciconia ciconia) than in graylag geese (Anser anser) and common cranes

(Grus grus; Jarma et al. 2021).
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Taken together, these results highlight the complex distribution of AMR in natural environments and suggest

that biological and anthropogenic factors play an important role in determining the emergence and persistence of

AMR in wildlife (Johnson and VanderWaal 2020). Both sedentary and migratory wild birds could act as vectors of

AMRB and ARGs, at short or long distances.

ROUTES OF ANTIMICROBIAL RESISTANCE

The whole environment is involved in the persistence and spread of AMR and AMRB are ubiquitous in natural

ecosystems, and it is very difficult to trace the exchanges of AMRB and associated genes between humans, animals,

and the environment, and to identify how resistant genes emerge and spread (Vittecoq et al. 2016, Laborda

et al. 2022). Many ARGs are shared in the wild bird fecal and environmental resistome, with the blaTEM gene as a

molecular marker highlighting the remarkable interconnectivity of ARGs between the microbiomes of wild birds and

their habitats (Luo et al. 2022). The blaTEM gene is most commonly found within the genes encoding ESBL in

community and livestock environments (Abrar et al. 2019, Effendi et al. 2022).

Health care facilities are important contributors to the emergence, evolution, and spread of antibiotic resistance, but

other ecosystems are also involved in such dissemination. Selection for resistance in the environment and human or

animal exposure to resistant bacteria are interlinked events (Murray et al. 2021). More and more studies have shown

that identical or near identical strains, belonging to the same clonal complex, are circulating in wildlife, humans, and

domestic animals (Monecke et al. 2013). This information did not determine how and in which direction the exchanges

occurred. The source of AMRB in wild birds has not been determined yet, but it is likely to be related to direct contact

with infected individuals, their tissues, or their feces, even though ARGs are ancient elements that evolved before the

clinical use of antibiotics (Martinez 2008). Although resistance genes could be found in natural environments regardless

of human impact, their presence has been reported to be higher in birds living in the ponds of a wastewater treatment

facility, so contact with human waste likely influences the acquisition of ARGs by avian wildlife (Marcelino et al. 2019).

The ESBL‐producing E. coli in Swedish wild gulls were similar to human isolates, which was likely a result of anthropic

pollution (Atterby et al. 2017). Once antibiotic resistance is present in the wild, wildlife can contribute to its transmission

across disparate ecosystems (Laborda et al. 2022). There are several wild birds that share their habitat with humans

because of increased food resources and preferred temperatures; for example, storks breed in urban areas and gulls use

ports, coastal towns, beaches with a high human density, urban areas close to cultivated land, and urban and natural

parks (Martín‐Vélez et al. 2021, Xu et al. 2022). Sharing the same space could lead to an increased similarity of bacterial

community composition among individuals. Studies regarding the microbiota communities show that cohabitation

enhances transmission of microorganisms between livestock and wild animals, and the predominant presence of

resistant microorganisms against medically important antibiotics occurs at the wildlife‐livestock interface (Lee et al. 2022;

Figure 1).

Climate change has induced ethological changes or possible alterations in the migration routes of various

species and has modified the distribution of wildlife all around the world, including vectors involved in the dispersal

of infectious diseases. These changes have led to inestimable losses of ecosystems for birds (Ahlstrom et al. 2021,

Agache et al. 2022). Moreover, humans can come into direct contact with wild birds when they trap, hunt, or treat

them as veterinarians and the risk of AMR transmission linked to these practices might be assessed as very strong

(Vittecoq et al. 2016). Despite the significant work wild animals rescue centers do, they may contribute to the entry

of AMR into ecosystems by releasing animals before antibiotics completely eliminate a pathogen and before the

waiting time for administered antibiotics is completed (Baros Jorquera et al. 2021). These waiting times after

antibiotics are administered, well‐established for livestock farming, are insufficiently studied for wild species but

should be a crucial measure before reintroducing animals into their environment (Benavides et al. 2024).

Wild birds could also have direct contacts with livestock undergoing antibiotic treatments. It has been

suggested that vultures and other scavengers feeding on livestock carcasses might ingest active antibiotics that may
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be present in such carcasses (Blanco and Bautista 2020). Indirect contact could also pose a risk of AMR transmission

into the food chain, affecting all the ecosystem (Blanco and Bautista 2020). Wild birds could be a source of

antimicrobial‐resistant microorganism colonization in livestock as well (Cìzek et al. 2007, Navarro‐gonzalez

et al. 2020). Identical pathogen strains of E. coli were shared between free‐ranging cattle and wild geese in

California, USA, suggesting an identical environmental source of contamination and also potential interspecies

transmission (Navarro‐Gonzalez et al. 2020). Furthermore, black‐headed gulls (Larus ridibundus), infected with

resistant strains of Salmonella, represent a risk for contamination of surface waters and livestock feeds and

dissemination of these strains among farm animals and humans (Cìzek et al. 2007).

Soil could be a big hot spot of antimicrobial‐resistant microorganisms and associated genes (Han et al. 2022). It

could get contaminated from feces or urine deposition, manure use, or effluent flows (Singer et al. 2016, Peng

et al. 2017, Han et al. 2022). Agricultural land cover could be an important predictor for the prevalence of any ARGs

and the common practice of spreading animal manure or biosolids on agricultural soils as fertilizer could contribute

to this relationship (Peng et al. 2017). These materials could be reservoirs for residual antibiotic compounds, AMRB,

and ARGs, which might persist in the soil long after application and leach into rivers, lakes, or other aquatic

ecosystems (Singer et al. 2016, Nappier et al. 2020).

Water seemed to be a major transmission media for AMRB (Taylor et al. 2011) that could persist in

this environment, especially with the higher temperatures related to climate change and the presence of

F IGURE 1 Transmission pathways of antimicrobial resistance in the wild bird–livestock–human interface.
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sub‐therapeutic concentrations of antibiotics in aquatic systems increasing AMR (Murray et al. 2021). The exchange

of resistance genes between environmental microorganisms and human pathogens could occur in aquatic systems

where birds stop or feed. In contaminated waters, birds could come into contact with antimicrobial‐resistant

microorganisms and ingest them or simply carry them on their feathers. For example, in Spain a goose population

wintered mainly in the marsh of Doñana National Park, where the edges received discharges from urban

wastewaters and could get contaminated (Paredes et al. 2021). Wastewater treatment plants are places with a large

load of clinically relevant AMRB (Pärnänen et al. 2019) where birds could feed and come in contact with ARGs.

Wastewater from livestock acts as an environmental reservoir and propagation site of ARGs to other clinically

important human pathogens (Tymensen et al. 2018). Whatever the source of the water contamination, it generally

increases when close to human activity areas (Pruden et al. 2012). Even in areas not closely associated with human

activity, antimicrobics and associated resistance genes can be found. Water serves as an important vehicle for

ARMB and free ARGs, traveling to other regions through rivers as reported in Costa Rica where detection of

antibiotics and other drugs were found in rivers (Vargas‐Villalobos et al. 2024). Furthermore, the use of

antimicrobials in aquaculture has an impact on the spread of AMR, but its role is not entirely clarified. Surprisingly,

to complete the cycle, ARGs have been detected in clouds and air at high altitude, confirming that the atmosphere

represents a major route of their long distance spreading, with clouds as a selective environment for the most

efficient stress response phenotypes (Rossi et al. 2023).

The exchange of AMRB among the various environments has been demonstrated using a combination of

phenotypic, genomic, and animal telemetry approaches (Abdullahi et al. 2021). For example, gulls can acquire AMRB

from anthropogenic sources and, later on, allow AMRB intercontinental spread via migratory movements (Ahlstrom

et al. 2021). Moreover, ruddy turnstones (Arenaria interpres) travel between breeding areas in Siberia to non‐

breeding sites in Australia via East Asia as a migratory route, potentially acquiring and spreading several ARGs along

the way (Marcelino et al. 2019).

A WILD BIRD MONITORING APPROACH FOR AMR SURVEILLANCE

To fully understand and mitigate AMR, it is important to consider the role of the natural environment as part of the

One Health perspective that includes wildlife in its modeling (Jessup and Radcliffe 2023). It is essential to increase

the knowledge about the effects of antibiotic and human exposure to wildlife and to the entire environment, and in

particular how much they contribute to the spread of AMR. Overall, despite their importance for pandemic

prevention, wildlife and environment are seldom considered in health security plans; monitoring wildlife health

should be emphasized in the One Health approach to prevent and mitigate known and novel disease risks

(Machalaba et al. 2021). Zoonosis surveillance is an important measure to control possible emerging diseases.

Epidemiological surveillance with a focus on native fauna is a way to identify possible threats to humans and

animals that are concealed in reservoirs or yet unknown (Duarte et al. 2019). The specific determinants and spatial

distribution of resistant bacteria and ARGs in the environment remain incompletely understood. In particular,

information regarding the importance of anthropogenic sources of AMR is lacking (Miller et al. 2020). Important

progress has been made in the understanding of the role played by wild birds in AMR dynamics, but studies

focusing on migratory birds that track hotspots and transmission routes of AMR remain scarce (Laborda et al. 2022,

Martín‐Maldonado et al. 2022). More research into the movements of migratory birds would help to identify

potential sources for the ARGs they harbor and how resistant organisms move and spread. Restricting the use

of antibiotics is not enough to tackle the AMR problem (Organization for Economic Cooperation and

Development 2022); knowing the transmission routes and obtaining more data could make the difference.

Obtaining data by sampling wild birds could seem difficult, as it requires considerable logistical efforts, but this

is not completely true. Bird ringing camps and wild animal rescue centers (only if sampling is carried out at arrival)

are fundamental components of epidemiological surveillance work (Mazzamuto et al. 2022). There are easy,
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economic, atraumatic, and non‐invasive methods for sampling birds without interfering in their welfare, both in

wildlife rescue centers and in bird ringing camps. For field studies, the collection kit is formed by a flat‐bottomed

paper bag, a weigh boat (tray), a vinyl‐coated hardware cloth fencing (grate), a clothespin, and a 10% bleach solution

(to clean the tray and grate). In the paper bag, a sterile tray is placed under a small grate, on which the birds,

captured during the ringing camp, could be placed until they defecate; after the bird is removed from the bag, the

tray is extracted and the fecal sample is moved to a collection tube and frozen or preserved (Knutie and

Gotanda 2018). In wild animal rescue centers, the sampling kit includes a plastic storage box, a plastic tray, a vinyl

coated hardware cloth, and a 10% bleach solution; the feces collection is performed from the tray after placing the

bird in the box and waiting a few minutes for defecation (Borrelli et al. 2020). From a diagnostic‐methodological

perspective, several techniques have been developed to detect AMR in different environments to better

understand the evolution and spread of this public health challenge. Classical cultural microbiology techniques are

not always sufficient to analyze non‐culturable bacterial species that can also carry and transfer AMR genes.

Quantitative polymerase chain reaction (qPCR) and culture followed by sequencing and, overall, whole‐genome

sequencing (WGS) may be effective approaches for characterizing AMR genes harbored by wild birds (Ahlstrom

et al. 2023a). In particular, metagenomics is a good matrix to investigate AMR and detect early global emergence

events (Munch et al. 2022). Functional metagenomics has determined entirely sequence‐novel resistance

determinants, facilitating the characterization of resistomes from various environments. There are several ARGs

that have emerged clinically and circulated globally through the environment and human and animal populations

such as mph(E), msr(E), tet(A), tet(C), tet(W), sul1, and sul2 (Crofts et al. 2017, Munk et al. 2022). In addition, meta‐

transcriptomics have been used to assess the diversity and abundance of ARGs in the microbiome of waterbirds in

Australia and penguins in Antarctica, highlighting unique antibiotic resistance genes with ubiquitous resistance to

tetracyclines and phenicols (Marcelino et al. 2019). We suggest that all these methods should be standardized to

approach the AMR problem with a multidisciplinary perspective including the role of veterinarians, biologists,

conservationists, and ornithologists considering the One Health strategy.

The strong evidence that the health of humans, animals, and ecosystems are interconnected stresses the

importance of finding a solution to AMR with a new holistic approach where conservationist methods meet those of

epidemiological monitoring (Figure 2). Monitoring and evaluation of data are integral components of an iterative,

research‐based approach to bird management and conservation and a new AMR surveillance strategy. Therefore,

researchers and wildlife managers have the common goal of conserving wildlife and the habitats on which they

depend, and can investigate and monitor levels of AMR that significantly affect the world economy and human and

animal health, through collaborations that yield rewards to global health.

Wild birds represent indicators of environmental AMR and are bridge hosts that can potentially facilitate the

persistence of AMR in the habitats they occupy (Ahlstrom et al. 2023a). The microbiomes of wild birds frequently

harbor human bacterial pathogens, including AMRB and even the clones of concern at medical settings (Oteo

et al. 2018, Stępień‐Pyśniak et al. 2019, Dec et al. 2020). Wild birds appear to be useful sentinels for AMR surveillance

both in natural and urban ecosystems because of their adaptive capacity in anthropogenic areas. Transmission routes

are unknown, although direct contact, soil, and water seem to be of major importance in AMR circulation. There is

evidence that migratory birds are potential reservoirs and spreaders of MDR bacteria (Yuan et al. 2016, Giorgio

et al. 2018, Elsohaby et al. 2021, Jarma et al. 2021, Zhang et al. 2021, Card et al. 2023). Wild birds might provide a link

between the 2 reservoirs, humans and livestock, creating a bridge for the transfer of AMR among apparently

disconnected ecosystems, even between different continents (Yuan et al. 2016). They could carry ARGs that are

frequently located in the same plasmids that cause the spread of AMR among human populations and livestock

(Atterby et al. 2017, Tinoco Torres et al. 2020, Zeballos‐Gross et al. 2021, Zhang et al. 2021). In the One Health

perspective, future research should prioritize investigations into the routes and mechanisms of transmission, especially

at wild birds–livestock interfaces (Hassell et al. 2017, Martelli et al. 2023).

The presence of AMR in wildlife is often interpreted as an anthropogenic impact such as inadequate

management of antibiotic residues of human or animal origin (Laborda et al. 2022). But considering the ability of
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birds to move over long distances, a model for monitoring resistant bacteria in wild birds, as reservoirs in the

dispersal of resistant bacteria, could be useful even far from areas of high anthropogenic activity.

Investigation of AMR in the environment and wildlife still receives little attention, and only very recently

understanding the selection and proliferation of environmental AMR became a collective priority among agencies

charged with human, animal, and environmental health. Conversely, surveillance of AMR in humans and domestic

animals in some countries has been ongoing for decades. It is important to increase surveillance of the resistome in

hotspots in which there is high resistance gene evolution and transfer between organisms, including agricultural

settings and wastewater and sewage systems where wild birds get contaminated (Crofts et al. 2017). Surely better

management of anthropogenic wastes and sewage is a key way to avoid the access of wild birds to antimicrobials

and prevent transmission (Martín‐Maldonado et al. 2022).

To get comparable results, surveillance methods should be improved and standardized, such as genomic monitoring

to timely identify antibiotic ARGs and their diffusion in the environment. There are also several new sequence‐

independent methods of resistance determination that should be further explored, such as matrix‐assisted laser

desorption ionization–time of flight mass spectrometry, fluorescence in situ hybridization, and microfluidics‐based

techniques (Boolchandani et al. 2019). These methods could represent the starting points for new public AMRB and

ARG databases that should be routinely updated with data from wildlife and the environment and for implementing

machine learning, as a potential technology for AMR prediction (Tang et al. 2022).

F IGURE 2 Holistic and cross‐disciplinary approach underpinning wild bird monitoring to explore and tackle
antimicrobial resistance (AMR).

WILD BIRDS AND ANTIMICROBIAL RESISTANCE | 9 of 14

 19372817, 2024, 5, D
ow

nloaded from
 https://w

ildlife.onlinelibrary.w
iley.com

/doi/10.1002/jw
m

g.22588 by U
ni Federico Ii D

i N
apoli, W

iley O
nline L

ibrary on [30/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://wildlife.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fjwmg.22588&mode=


To prevent epidemic animal‐borne infectious diseases, we should strengthen the monitoring of pathogens in

wild animals, enhance the detection of emerging infectious diseases, improve the identification of the AMR risks,

survey the vector arthropods, and study the migratory routes of wild birds (Qin et al. 2021). This holistic and

integrated wild bird monitoring solution could be a new approach to epidemiological monitoring of AMR.

There are no nationally agreed or European guidelines for the use of antimicrobials in wildlife with the goal of

limiting the spread of AMR. In many cases, knowledge of the pharmacokinetics of antimicrobials in wildlife species

such as wild birds remains scarce. Several antimicrobials are used off‐label in wildlife, and doses, frequency,

duration, and routes of administration may be based on results from other domestic species. Recommendations for

the correct use of antimicrobics in wildlife should be based on current knowledge and standardized practices are

needed. Nothing in nature is lost and the goal is to reverse the route of AMR to change the fate of our ecosystem

through forward‐looking cooperation between different experts and ever closer synergies between wildlife

managers and researchers.

MANAGEMENT IMPLICATIONS

The adoption of a monitoring system and process for detecting AMR in wildlife can be useful for animal and public

health. We recommend that managers and scientists carefully consider the priority of health monitoring of

migratory and resident wild birds through non‐invasive sampling systems. Health monitoring methods could be

taught in wildlife courses at colleges and universities to future wildlife scientists and managers. We also recommend

that management studies or programs should focus on the broader ecological, social, and economic context of AMR

ecology, wild bird conservation, and One Health. Wildlife health monitoring methods should be quickly evaluated to

identify their relative strengths and weaknesses, including consideration of possible costs.
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