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The Role of Model Weighting Functions in the
Gravity and DC Resistivity Inversion

Ramin Varfinezhad , Maurizio Fedi , and Maurizio Milano

Abstract— This article aims at analyzing the inversion with the
mostly used model weighting functions for both gravity and dc
resistivity data. We show that the model weighting function built
with depth weighting and compacting factor, formerly formulated
for the gravity and magnetics problems, can be useful also for dc
resistivity data. We provide a number of synthetic cases to discuss
the pros and cons of each model-weighting function. For gravity
and dc resistivity data, the comparison was made using the depth
weighting with different exponents, the compactness, and, for the
dc resistivity nonlinear problem, the roughness matrix under the
L1- and L2-norm constrained optimizations. As for the depth
weighting, the value of the β exponent is decisive for the gravity
problem, ranging from very low values for interfaces to 1 for
compact sources. The dc resistivity data inversion is less sensitive
to β, but the above-indicated choice leads to faster convergence.
Similarly, the role of compactness is decisive for reconstructing
a compact source from gravity, while, for dc resistivity, it is
especially useful to warrant an even faster convergence. Using
the roughness matrix tends instead to provide a decrease in
resolution at depth. We obtained interesting results for different
types of dc resistivity arrays: the weighting function built with
depth-weighting and compactness yields a more coherent source
reconstruction than that using the roughness matrix. We also
analyze two different real dc resistivity cases, which confirms,
again, the usefulness of the depth weighting and compactness to
model the deep resistive sources.

Index Terms— Compactness, dc resistivity, depth weighting,
gravity, inversion, model weighting.

I. INTRODUCTION

GRAVITY and magnetic forward problems are linear
problems versus density and susceptibility, respectively,

and have the form of the Fredholm integral equation of the first
kind. The dc resistivity problem is nonlinear versus resistivity,
but it may be linearized under the Born approximation [1],
so assuming again the form of a Fredholm integral equation
of the first kind.

For these problems, the ambiguity of the related model
can only be overcome by providing prior information
on the source model. This is usually done by bounding the
source-property values or using local constraints from external
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information (well logs, rock samples, and other geophysics
models). However, the fundamental nonuniqueness of the
inverse problems may also be reduced by supplying a priori
information through a model-weighting function, whose role
is the object of this article.

To solve a linear problem d = Am, where d and m are the
data and model vectors and A is the kernel matrix, the typical
approach is considering the problem as mixed-determined and
searching for a solution that minimizes some combination of
the data prediction error dTd and the solution length, mTm.
This last choice means that we are searching for the smallest
(or simplest) solution. However, either dTd or mTm are not
very good measures of the prediction error and the solution’s
simplicity. The prediction error is so modified in dTWd d,
where the matrix Wd defines the relative contribution of each
individual error to the total prediction error. Regarding the
solution length, it is well known to potential fields practitioners
that the smallest solution requirement, a minimum of �mTm�2,
leads to the shallowest possible solution, which is often a not
sound solution, from the geophysical point of view. Thus,
a model weighting matrix Wm is introduced so that the
solution simplicity, generalized as mTWmm, could allow the
source models to meet different requirements. For instance,
we may request the source to be relatively flat or smooth by
using the flatness or roughness matrix D, or we may require
the source to be compact. Furthermore, we may desire that the
source could be approximately at some depth (see [2] and [3]).

During the last decades, many algorithms have been intro-
duced for dc resistivity (e.g., [1] and [4]–[14]) and gravity data
inversions (e.g., [2], [3], and [16]–[21]).

In this article, we will analyze the different responses given
by dc resistivity and gravity data under various choices for the
weighting matrix Wm . To this end, we will use the weighted
damped least-squares algorithm [22] with the linearized inte-
gral form of the dc resistivity problem (see [6] and [23]) and
the gravity integral equation. For the dc resistivity problem,
we will also use the L2- and L1-norm constrained optimization
methods [24].

II. METHODOLOGY

A. DC Resistivity and Gravity Forward Problems
Considering a half-space υ with conductivity σ(r), the

potential ϕ(robs) at the surface due to a point source of
intensity I can be expressed as (e.g., [25])

ϕ(robs)= I

2π |rS −robs|σs
+ 1

2π

∫
ν

∇σ(r)
σ (r)

.
∇ϕ(r)

|r − robs|dυ (1)
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Fig. 1. Discretization of the source volume into a set of prisms with constant resistivity and density. A dipole–dipole array is considered for dc resistivity.

where rS and robs are the source and the observation position
vectors, respectively.

Equation (1) indicates that the potential forward problem
relative to the dc resistivity method is nonlinear. However,
Perez-Flores et al. [1], assuming dc resistivity measurements
with four electrode arrays, used the Born approximation to
write apparent resistivity (logρa) as a linear function of the
true resistivity log ρ

logρa(rA, rB , rM , rN )

= [h]−1

π

∫
v �

K (rA, rB , rM , rN , r�)logρ(r�)d3r � (2)

where

K
(
rA, rB , rM , rN , r�)
= N

(
rA, rM , r�) − N

(
rB , rM , r�)

− N
(
rA, rN , r�) + N

(
rB , rN , r�) (3)

with

N
(
ri , r j , r�) =

(
r� − ri

) · (r j − r�)
|r� − ri |3

∣∣r j − r�∣∣3 (4)

and h is the geometrical factor, which is related to the array
type.

In the 2-D case, we assume that the resistivity does not
change along the y-direction, and the array is along the x-axis,
with coordinates x A, xB , xM , and xN of electrodes A, B, M , and
N , respectively. Putting y = 0 and z = 0 (i.e., flat topography),
the integral equation simplifies to:

logρa(x A, xB, xM , xN ) = [h]−1

π

×
∫

�x

∫
�z

K
(
x A, xB, xM , xN , x �, z�)

× log ρ(x �, z�)dx �dz� (5)

where the vertical section is sized �x × �z and

K
(
x A, xB, xM , xN , x �, z�)
= N

(
x A, xM , x �,z�)

− N
(
xB , xM , x �, z�) − N

(
x A, xN , x �, z�)

+ N
(
xB , xN , x �, z�) (6)

with [26]

N
(

xi , x j , x �, z�)

=
∫ ∞

−∞

(
x � − xi

)(
x j − x �) − y �2−z�2√(

(x � − xi)
2+y �2+z�2)3

((
x j − x �)2+y �2+z�2

)3
dy �

⎧⎪⎨
⎪⎩

i = A, B

j = M, N.

(7)

If we have P measured data and discretize the source
volume of vertical section �x × �z into Q prismatic cells of
infinite length in the y-direction and constant resistivity (see
Fig. 1), we form the system

d = Am (8)

where d is the data vector, containing the log(ρa) data, m is
the model vector, containing the log(ρ) unknowns, and A is
a P × Q matrix, whose elements are given by

A pq =
∫

�xq

∫
�zq

K p
(
x �, z�)dx �dz� (9)

with p = 1, . . . , P and q = 1, . . . , Q. Each cell is sized
�xq × �zq .

Perez-Flores et al. [1] computed A by analytically solv-
ing (6). However, we prefer here to compute it numerically
because it allows an easier extension to the 2.5-D case. Com-
paring the response of the linear integral equation with that
derived from standard software (Res2dmod [27]), we found
differences of less than 5% in the logarithm of resistivities,
even considering rather rough meshes for the subsurface.
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We considered three numerical techniques to solve the linear
integral equation: 1) midpoint rule; 2) trapezoidal rule; and
3) Gauss quadrature technique. By the first one, the integral
value is approximated in each interval by a formula based
on its midpoint, while the last two methods use formulas
based on two points. Therefore, the midpoint rule leads to
the fastest estimation of the integral, while trapezoidal and
Gauss quadrature rules are, in general, more precise. However,
it should be mentioned that the three algorithms produce
similar results when we have a high number of discretization
points.

The gravity forward problem is given by the integral
equation [3]

f (r) = γ

∫
V

z − z0

|r − r0|3 η(r0)dr3
0 (10)

where γ is the gravitational constant and η(r0) is the density
distribution in the source volume V .

If we have P measured data and discretize the source
volume into Q prismatic cells of constant density, we form
the system d = Am, where d is the gravity data vector and
m is the density model vector. A is the P × Q matrix kernel,
whose elements A pq expresses the gravity effect at the pth
measurement point due to the qth prismatic block

A pq = γ

∫
Vq

z p − zq

|rp − rq |3 dV (11)

with p = 1, . . . , P and q = 1, . . . ., Q. In the 2-D case,
we will assume that the blocks have an infinite length along
the y-direction.

B. Gravity and DC Resistivity Inverse Problems

Since both the problems are under the form of a Fredholm
integral equation of the first kind, we solve both the inverse
problems by minimizing the objective function

�Wd(Am − d)�2
2 + μ�Wm(m − m0)�2

2 (12)

where m0 is the starting model, μ is the regularizing factor,
and Wd and Wm are the data and model weighting functions,
respectively. In all cases, m0 is zero for gravity, while it is a
homogenous model for dc resistivity, with the resistivity equal
to the mean of the apparent resistivities. For simplicity, we will
here assume independent measurements with unit variance so
that Wd = I. As for the appropriate choice of μ, we used
the generalized cross-validation (GCV) technique (e.g. [28]).
For the dc resistivity problem, we will use the approximate
integral linear equation of the true nonlinear problem [from
now on, LE; see (8)] or an optimization method solving the
nonlinear dc resistivity problem, based on (1) (from now on,
NLE). To this end, we will use the “weighted damped least-
squares” algorithm [22] for solving the LE problem. At each
kth step, we may write

mk = mk−1 +
(

W−1
m A

T
)(

AW−1
m A

T + μWd

)−1

× (d − Amk−1). (13)

For the NLE resistivity problem, Loke et al. [24] described
a versatile algorithm, which is implemented in the widespread

RES2DINV1 software. It refers to two optimization iterative
approaches, which may be alternatively selected. The first
is the L2-norm smoothness-constrained optimization method,
which produces a model with a smooth variation of resistivity.
By this algorithm we minimize, at each kth iteration, the
objective function is

�(mk) = gT
k gk + μkmT

k Wmmk . (14)

At the kth iteration, μk is the regularization parameter, mk is
the model vector, and gk = d− F(mk) is the data-misfit vector
between the logarithm of the apparent resistivity obtained from
measurements and that calculated from the model mk . Based
on the gradient of the objective function, the Gauss–Newton
method of least squares is used to solve the following system
of equations (e.g., [7]):(

JT
k Jk + μkWm

)
�mk = JT

k gk − μkWmmk−1 (15)

where Jk is the Jacobian matrix. Once the model variation
�mk is estimated, the model is updated as mk=mk−1+�mk .

The second method is an L1-norm-based optimization
method based on the iteratively reweighted least-squares
algorithm [29](

JT
k Jk + μkWm

)
�mk = JT

k Rd gk − μkWmmk−1 (16)

where Rd is a reweighting matrix.
For the gravity problem, data are linearly related to density

[see (10)], and we will use the weighted damped least-squares
algorithm [see (13)].

C. Model Weighting Function

Based on the above equations, we will consider in this
article four types of Wm .

1) Depth Weighting: Wm = (1/zβ)I [relative to the integral
equation in (12)], where 0 < β < 1 and z refers to the
depths to the center of the blocks: [z1, . . . , zq, . . . , zQ].
For more details on the depth weighting, see [3]
and [17].

2) Depth Weighting and Compactness [Relative to the
Integral Equation in (12)]: In this case, the weight-
ing function Wm is updated at each iteration k as
Wmk = (1/(mk−1 +ε)2)(1/zβ)I, making the relationship
between model and data in (13) nonlinear. The compact-
ness constraint, (mk−1 + ε)−2, introduced by Last and
Kubic [16], minimizes at each kth iteration the area of
the anomalous body in the 2-D section; ε is a very small
quantity.

3) Roughness Matrix [in (15)] for the L2-Norm Nonlinear
Optimization Method: Wm = αx CT

x Cx +αzCT
z Cz , where

Cx and Cz are the roughness matrices (such as the
first-order difference matrix) in the x- and z-directions,
respectively, and αx and αz are the relative coefficients.

4) Roughness Matrix [in (16)] for the L1-Norm Nonlinear
Optimization Method: Wm = αx CT

x RmCx +αzCT
z RmCz ,

where Cx and Cz are the roughness matrices (such as the
first-order difference matrix) in the x- and z-directions,

1Registered trademark.
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Fig. 2. Flowchart of the LE inversion algorithm for model weighting functions of types A and B.

respectively; αx and αz are the relative coefficients, and
Rd and Rm are reweighting matrices.

Fig. 2 shows the flowchart of the LE inversion algorithm
[see (13)], for the model weighting functions in 1) and 2).

For cases 3) and 4), we will use the nonlinear optimization
algorithm implemented in the Res2Dinv software [24].

III. SYNTHETIC MODELING

We here consider different synthetic models. The first of
them is a dense/resistive block within a less dense/conductive
homogenous background. The second case is an interface
model, while the third case regards a small conductive body
and a faulted resistive block; finally, we consider also a
group of conductive bodies of different shapes and depths in
a homogeneous half-space. Res2Dmod software is used for
calculating the resistivity model forward responses.

The rms error percentage is computed for each obtained
solution according to

rms = �d − dcal�2√
N

100 (17)

where N is the number of data, d is the measured data, and
dcal is the calculated data from the current estimated model
mk. A unit-standard deviation is inherently assumed.

Regarding the inversion of the gravity data, the role of depth
weighting and compactness is relatively well known in the rel-
ative literature (see [1], [2], [16], and [30]). However, we here
introduce the appropriate depth weighting exponent for an
interface-like source, which, to the best of our knowledge,
has not been discussed in the current literature. In any case,
our main interest in this article is comparing the effect of the
model weighting function for sources of similar shape in the
inversion of both gravity and resistivity data.

A. Resistive/Dense Block Model

The first synthetic case is a dense block model having
a 2000-kg/m3 density contrast [see Fig. 3(a)]. The same
body has 100-�m resistivity in a homogenous background
with a resistivity of 10 �m [see Fig. 3(b)]. In both cases,
we have 100 data and 500 unknowns. Gaussian random noise
of 5% of the data magnitude was added to the data. For the
apparent resistivities, the dipole separation (a) is 20, and n
is from 1 to 5. The reconstructed models are displayed in
Figs. 4 (gravity) and 5 (resistivity), respectively, with weight-
ing functions of types A and B. For each case, the iterative
process is stopped automatically when the maximum of mk is
almost equal to a reference value of ρ (or η) that is assumed a
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Fig. 3. (a) Gravity anomaly profile and (b) apparent resistivity of a dense/resistive prismatic source.

Fig. 4. Density model using the weighting function of type A: (a) with β = 0 and (b) with β = 1. The density model using the weighting function of type
B: (c) with β = 0 and (d) β = 1.

priori (mref in Fig. 2), or when the rms value does not change
significantly.

Our results show that the following holds.
1) For the weighting function of type A and β = 0,

the inversion of the gravity data yields a very shallow
density distribution with a low-density contrast [see
Fig. 4(a)]; using β = 1, the source is found to be deeper,
well centered to the source depth, but too smooth and
with again a low-density contrast [see Fig. 4(b)]. On the
other hand, by implementing also compactness besides
depth weighting (weighting function of type B), the
results are largely improved for both β = 0 or β =
1 [see Fig. 4(c) and (d)]. β = 1, however, provides the

best result in terms of depth to the source and density
contrast. We also note that the number of iterations
required to reasonably fit the data is much smaller for
β = 1 (see Table I). Thus, compactness is particularly
useful to largely reduce the computational cost.

2) As for the resistivity data inversion, the use of weighting
functions of types A and B gives similar results for β =
0 and β = 1 [see Fig. 5(a) and (d)]. However, the number
of iterations required to infer the right depth to the
source and an acceptable resistivity value is dramatically
high if we use the wrong beta exponent (β = 0)
compared to using β = 1 (see Table I). As for the
gravity case, the use of compactness (weighting function
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TABLE I

NUMBER OF ITERATIONS AND rms ERROR FOR GRAVITY AND RESISTIVITY DATA INVERSION OF A BLOCK-MODEL
USING MODEL WEIGHTING FUNCTION OF TYPES A–C

Fig. 5. Resistivity model for the prismatic block using different weighting functions. (a) LE with weighting function of type A and β = 0. (b) LE with
weighting function of type A and β = 1. (c) LE with weighting function of type B and β = 0. (d) LE with weighting function of type B and β = 1. (e) NLE
resistivity model using the L1-norm. (f) NLE resistivity model using the L2-norm.

of type B) reduces consistently the iterative process to
more than half of the iterations (see Table I).

3) In Fig. 5(e) and (f), we show the results relative to
weighting functions of types C and D. The robust
(L1-norm) model (weighting function of type D) is more
well-centered than the least-square (L2-norm) model
(weighting function of type C). However, in both cases,
we see that the modeled source is rather deeply and
laterally extended with low values of resistivity.

Therefore, the obtained models show that both methods are
sensitive to the exponent β of depth weighting; however, grav-
ity inversion has a greater dependence than the dc resistivity
inversion since the source position is strongly affected by β.
Finally, compactness is significant to reduce the number of
iterations and infer the right value of density and resistivity
(see Table I).

Consider now a single block close to the surface with a 10-m
depth to the top (see Fig. 6). The number of data and dipole
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Fig. 6. Resistivity model for (a) shallow block and (b) resistivity pseudosection. Resistivity model obtained using the weighting functions of (c) type B and
(d) type C. The source model is much more consistent than that in the case of the deep block (see Fig. 5).

Fig. 7. (a) Interface model consisting of two different units (UNIT A: 50 �m–0 kg/m3; UNIT B: 400 �m–300 kg/m3). (b) Gravity anomaly of the interface
model with 5% Gaussian random noise. (c) Apparent resistivity of the interface model with 5% noise.

separation is the same as in the previous case. Resistivity
models reconstructed by weighting functions of types B and
C demonstrate again their good performance. By comparing
this case with that of the deep block, we can clearly notice
the important role of depth weighting and compactness in dc
resistivity inversion.

We may conclude that the weighting function of type B
(depth weighting and compactness) leads to the best result for
both gravity and dc resistivity cases, in particular, when the
dense/resistive source is not too shallow.

B. Interface Model
We here consider a further synthetic case for dc resistivity

and gravity methods, consisting of an interface source model
that simulates a real case in the Neapolitan region (Italy).

Specifically, the gravity and dc resistivity datasets were gen-
erated by modeling the morphology of the interface between
the compact Yellow Tuff unit and the overlying loose alluvial
materials [31]. The geological interpretations suggested a
subsurface geometry consisting of a faulted tuff unit forming
two main graben structures [31, Fig. 9].

Our synthetic model is shown in Fig. 7(a) and consists
of two homogeneous media with resistivity 50 (Unit A) and
400 �m (Unit B). The density contrast between the two
homogenous layers is 300 kg/m3. Dipole separation (a) is
40 m, and n ranges from 1 to 10 for dc resistivity data.
A Gaussian random noise of 5% of the data magnitude was
added to the data.

We display the gravity anomaly profile and the pseudosec-
tion of true resistivity data in Fig. 7(b) and (c), respectively.
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Fig. 8. Interface density model from inversion of gravity data with weighting functions of types A and B. (a) LE with weighting function of type A and
β =0. (b) LE with weighting function of type B and β =0. (c) LE with weighting function of type A and β =0.1. (d) LE with weighting function of type
B and β =0.1. (e) LE with weighting function of type A and β =1. (f) LE with weighting function of type B and β =1.

Gravity inversion is performed using the weighting functions
of type A and type B for three different values of the depth
weighting exponent: 0, 0.1, and 1 (see Fig. 8). After the
previous case of a homogeneous block, we should expect
that the gravity method would be much more sensitive to the
depth weighting exponent and compactness than dc resistivity
inversion. We see indeed that, even though the data are always
well fitted, the resulting models completely differ from each
other by setting β = 0, 0.1, and 1 and, in addition, by making
use of compactness.

In fact, it is clear that, with β = 0 without compactness
[see Fig. 8(a)], the inferred model consists of two very
shallow sources with low-density values. This is similar to the
analogous result for the block source and with the expected
result occurring without depth weighting. In fact, β = 0
means that the weighting function is not active so that a
very shallow result is expected by minimizing the objective
function. We obtain slightly deeper solutions using β = 0.1
[see Fig. 8(c)], which are, however, still too shallow with
respect to the true source depth. Fig. 8(e), instead, shows
that using β = 1 without compactness the obtained model
is, as expected, considerably too deep. On the other hand,
compactness with β = 0 provides a better density estimation,

but the sources are too shallow [see Fig. 8(b)]. For β = 1,
the density model is too deep [see Fig. 8(f)]. Finally, with
β = 0.1, we obtain a reconstruction of the interface that
is truly consistent with respect to the real model geometry
and yields a reasonable density contrast [see Fig. 8(d)]. Note
that the optimal choice of the depth weighting exponent for
an interface has not yet been discussed in the literature: our
result shows that an interface-like source can be modeled from
inversion of gravity data, provided that a low value of the
depth-weighting exponent is used.

As for the resistivity data, we used weighting functions
of types A–D. As for the block model, we may see from
Fig. 9 that the depth weighting exponent is not decisive so
that the resulting models are equally well reproducing the
true source geometry, no matter the choice of β. However,
also, in this case, the right choice of β and the compactness
are extremely important to reduce considerably the number
of iterations required to infer the appropriate values of resis-
tivity. Table II, in fact, shows that, by using β = 0 without
compactness [see Fig. 9(a)], we need up to 1000 iterations to
achieve a good interface model. β = 1 and compactness [see
Fig. 9(f)], instead, allow modeling the interface source within
just two iterations. As regards the model weighting function of
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Fig. 9. Resistivity interface models for different types of weighting matrices. (a) and (b) LE for β = 0 with model weighting functions of types A and B,
respectively. (c) and (d) LE for β = 0.1 with model weighting functions of types A and B, respectively. (e) and (f) LE for β = 1 with model weighting
functions of types A and B, respectively. (g) NLE with a model weighting function of type C. (h) NLE with a model weighting function of type D.

Types C and D (the roughness matrix), the interface is modeled
at a quite reasonable depth [see Fig. 9(g)], and few iterations
are needed, but the models resemble two distinct bodies rather
than an interface.

C. Faulted Block (Contact) and Prismatic Source
As a further synthetic test, we used the default Res2dinv

model case of a resistive faulted block and small conductive
rectangular prism [32, Fig. 4.5]. Resistivities of the faulted
block, background, and small prism are 40, 10, and 1 �m,
respectively.

We considered two cases for this synthetic case: 1) a faulted
block with a shallow compact body and 2) a faulted block
with a deep rectangular compact body [see Fig. 10(a) and (b)].
We considered a Wenner–Schlumberger array with 1-m dipole

separation. For both cases, we consider n from 1 to 10.
We show the inversion results relative to a weighting function
of type B and β = 1 in Fig. 10(e) and (f), while the models
obtained by using weighting functions of types C and D are
represented in Fig. 10(g)–(j). When the small prismatic body
is shallow, we can reproduce both the sources fairly well,
no matter the choice of the weighting function.

However, the weighting functions of types B and C [see
Fig. 10(e)–(g)] allow a good definition of the faulted block,
while we may observe a decreased resolution at depth for the
small body. The weighting function of type D provides the
best representation of both sources.

On the other hand, when the small block lies at a greater
depth [see Fig. 10(b)], we observe significant differences,
depending on the choice of the type of weighing function.
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TABLE II

NUMBER OF ITERATIONS AND rms ERROR FOR GRAVITY AND RESISTIVITY DATA INVERSION OF THE INTERFACE MODEL
USING MODEL WEIGHTING FUNCTIONS OF TYPES A–C

Fig. 10. Resistivity models of a faulted block (contact) with (a) shallow prismatic body and (b) deep prismatic body. (c) and (d) Resistivity pseudosections.
(e) and (f) Resistivity models using a weighting function of type B with β = 1. (g) and (h) Resistivity models using the weighting function of type C. (i) and
(j) Resistivity models using a weighting function of type D.

The weighting function of type B, in fact, allows retrieving
with enough precision the location and resistivity value of the
small prismatic body. Model weighting functions of types C
and D, instead, lead to a well-pronounced faulted block,
while the small prismatic body is hidden, and it is only
weakly recognizable in the model obtained with the weighting
function D.

D. Conductive Sources With Different Arrays
As a last synthetic test, we want to investigate whether

different array types could affect the inversion of resistivity
data. To this end, we considered four conductive bodies of
20 �m within a homogenous resistive background of 100 �m
(see Fig. 11). The pseudosections of three geoelectric configu-
rations are represented in Fig. 11: 1) a dipole–dipole array with
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Fig. 11. (a) Resistivity model of four bodies (20 �m) in a homogeneous half-space (100 �m). (b) Apparent resistivity pseudosection for a dipole–dipole
array. (c) Apparent resistivity pseudosection for a pole–dipole array. (d) Apparent resistivity pseudosection for and pole–pole arrays.

Fig. 12. Resistivity models from inversion of the data in Fig. 8 and for different arrays. (a) and (b) Using weighting functions of types B and C for a
dipole–dipole array. (c) and (d) Weighting functions of types B and C for a pole–dipole array. (e) and (f) Weighting functions of types B and C for a pole–pole
array. Solid boxes indicate the source outlines.

10-m dipole separation and n from 1 to 9; 2) a pole–dipole
array with 5- (n from 1 to 8) and 10-m (n from 1 to 10) dipole
separations; and 3) a pole–pole array with nine separations
between current and potential electrodes from 5 to 45 m.
For the sake of clarity, we used only model weighting of
type B. Besides this, due to the results obtained in the previous

sections, our choice for the exponent of the depth weighting
was β = 1.

Resistivity models using weighting-model functions of types
B and C are displayed in Fig. 12. In general, we find that
both weighting functions yield good results for the shallowest
sources, while the deepest source is not well reproduced
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Fig. 13. (a) Criterion model of the landfill, as found from default models of RES2DMOD software (Büro für Geophysik Lorenz Company). (b) Resistivity
data pseudosection. (c) Resistivity model using the weighting function of type B with β = 1. (d) Resistivity model using the weighting function of type C.
(e) Pseudosection of computed data using the inverted model in (c). (f) Pseudosection of computed data using the inverted model in (d).

with the weighting function of type C. An interesting and
quite unexpected result also occurs: the weighting function
of type B gives consistent results no matter the array, while,
with the weighting function of type C, the deep source is
reconstructed better with the dipole–dipole array and poorly
with the other arrays, yielding also too low values of resistivity.
In conclusion, the weighting function of type B leads to better
and more consistent results for all the considered arrays.

IV. REAL DATA

A. Landfill (Wenner Alpha Array)

Fig. 13(a) shows the criterion model of a waste deposit
landfill in Berlin (Germany) and the relative pseudosec-
tion provided by the Büro für Geophysik Lorenz Company
(http://www.geophysik-lorenz.de/pro.html). Data refer to the
Wenner alpha array with electrode separations of 3 and 6 m
[see Fig. 13(b)]. The subsurface is discretized into 49 and
25 cells in the x- and z-directions, all sized 3 × 1 m2.
Iterative inversion started with an initial homogeneous model
of 50-�m resistivity. We show the models retrieved using
weighting functions of type B with β = 1 and type C [see
Fig. 13(c) and (d)]. We may observe that the model resistivities
obtained using the weighting function of type B are closer to
the resistivities of the criterion model shown in Fig. 13(a).
At shallow depths, say from 0 to 10 m, the inferred models
are similar, showing low resistivity values from 0 to 80 m

along the x-axis and a very shallow resistive layer from
x = 80 m to x = 120 m. We can instead observe substantial
differences at greater depths, especially at the left corner,
where the results obtained using the weighting function B
are generally more similar to the original model. On the
contrary, the resistivity model with the weighting function of
type C has a lower resolution at depth and shows mostly low
resistivity values. The regularization parameter and the number
of iterations using the weighting function of type B are 0. 5 and
10, respectively. Fig. 13(e) and (f) shows the pseudosections
computed from the models inverted with weighting functions
of types C and B, respectively. The rms errors of data misfit
for weighting function of types C and B models are 1.29%
and 3.19%, respectively.

B. Mining (Dipole–Dipole Array)

Finally, we analyze the inversion of dc resistivity data
in a mining district (Iran). This dataset was collected using
a dipole–dipole array on Robat Sang mine, near Mashhad,
Iran (see Fig. 14).

Segregation of the Afghan block from the bedrock through-
out the time of the Cenomanian has brought about the dis-
placement of the oceanic mantle and oceanic crust-associated
ophiolitic bedrock in the area; this Ophiolite rock segment is
situated at the basis of chromite and copper mineralization
potential in the region [33]. The collision of the Arabian
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Fig. 14. (Left) Geographic map of Iran, the interested area is marked with a black rectangle. (Right) Geological map of the Robat Sang mine area, near
Mashhad (courtesy of the Geological Survey of Iran).

Fig. 15. Inversion of dc resistivity data in a mining district (Robat Sang, Iran). (a) Pseudosection of measured data along with the profile [green line in
Fig. 14 (right)]. (b) LE resistivity model using the weighting function of type B with β = 1. (c) NLE resistivity model using a weighting function of type C.

Plateau on the Central Iranian Block gave rise to orogenic
activities from north–northwest to south–southwest of most of
Iran [33]. This structural pattern shows a very complicated

structure and is denoting an intercontinental orogeny in these
regions because of the right-handed rotations of the Lut and
Hilmand Blocks [33]. This rotation is the principal reason for
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the severe tectonics and the existence of disparate alteration
zones in the area. Since this region includes active tectonics,
the faults act as channels and engender the mineralization of
copper carbonates (malachite) [34].

Dipole separation and the number of data were 15 m (with
n from 1 to 10) and 128, respectively. The pseudosection
of the measured data is represented in Fig. 15(a), and the
reconstructed models derived from weighting functions of
types B and C are displayed in Fig. 15(b) and (c), respectively.
Both the inverted models show three resistive anomalies with
a general agreement; however, we note some differences.

1) The two models of the shallowest source, close to the
surface, are not coincident, and the NLE solution with the
model weighting function of type C is noisier than the solution
with the model weighting function of type B.

2) The deepest source for the model weighting function of
type C has a lower resolution and tends to extend at depth,
similar to the previous synthetic cases.

Finally, the sources with the weighting function of type B
appear to be more resolved and have a higher resistivity
contrast, which is in agreement with the expected resistiv-
ity of Malachite in alteration zones, ranging from 300 to
600 �m [35]. The rms errors of data misfit for weighting
function of types C and B are 10.2% and 4.06%, respectively.

V. CONCLUSION

There are many inversion algorithms for the dc resistivity
problem, either linear or nonlinear. However, the effects of the
model weighting function on the source reconstruction have
not been well discussed in the literature. For the gravity prob-
lem, such a kind of discussion is relatively more developed,
especially related to the dependence on the weighting function
of the average depth to the source (e.g., [3]).

As a matter of fact, the model weighting function inserts a
priori information in the inverse problem, which is important
for interpreting both gravity and dc resistivity data, and can
be even more relevant for joint or cooperative inversion.

Thus, our intent was to compare the different behavior of
gravity and resistivity inversions based on different types of
model weighting: 1) depth weighting; 2) depth weighting and
compactness; 3) roughness matrix for the L2-norm nonlinear
optimization method; and 4) roughness matrix for the L1-norm
nonlinear optimization method.

From the results obtained by synthetic and real data inver-
sion, we may argue that both gravity and resistivity inversions
are sensitive to the exponent β of depth weighting but in
a different way. We, indeed, found that, for gravity, β = 1
works well for compact sources, while a much lower value,
say β = 0.1, works for an interface model. To the best of our
knowledge, this last result is important since it has not been
discussed previously in the literature. In any case, compactness
helps define with a high resolution both compact and interface
source distributions so that a weighting function of type B is
the most suitable choice.

Instead, for resistivity data inversion, we found an optimal
value β = 1, working well for both compact and interface
models, as well as more complex source distributions. In gen-
eral, we reached good solutions also with other values of the

depth weighting exponent, but, with values other than β = 1,
the number of iterations increases dramatically.

For the resistivity data inversion, we also found that the
roughness matrix (weighting function of types C and D) tends
to yield a poorer resolution at large depth, despite using the
L1- or L2-norms.

Finally, we found that the response from different arrays is
appreciably coherent with the weighting function based on the
depth weighting/compactness (weighting functions of types A
and B), while the roughness matrix (weighting functions of
types C and D) seems less able to reproduce consistent source
models.
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