Theme Article: Digitalization of Smart Ecosystems

Smart Ecosystems and Digital Twins: an

architectural perspective and a FIWARE-based

solution

Franca Rocco di Torrepadula, Alessandra Somma, Alessandra De Benedictis, Nicola Mazzocca,
Department of Electrical Engineering and Information Technology, University of Naples Federico Il, Naples, 80125, IT

Abstract—Smart ecosystems today span several sectors, including smart manufac-
turing, energy management, smart cities, smart healthcare, precision farming, and
others. Digital Twins (DTs) are emerging as a powerful technology that can act as the
digital backbone of a smart ecosystem, providing the data, insights, and control capa-
bilities needed for real-time optimization and collaboration among involved entities. In
this paper, we focus on the architectural integration of DTs within smart ecosystems,
addressing interoperability challenges and aligning with identified DT requirements.
We introduce DT-enabled Ecosystem (DTE) architecture structured in: i) Logical View,
outlining key DTE entities and relations; ii) Technological View, mapping entities and
requirements onto FIWARE components; iii) Development View, providing low-level
description in a smart mobility case study. This multi-view approach facilitates

the deployment and scalability of DTs in diverse smart ecosystem scenarios.

mart ecosystems connect physical devices

and digital tools to improve processes across

various sectors (e.g., smart cities) [1]. Their
evolutionary dynamics and reliance on heterogeneous
data sources challenge their technical sustainability,
i.e., their ability to maintain the quality of service over
a prolonged time.

In recent years, the Digital Twin (DT) paradigm
has become a cornerstone of innovation, gaining
traction in a wide range of contexts, including smart
ecosystems. Digital Twins act as virtual replicas of phys-
ical assets, continuously updated with real-time data
and augmented with advanced control and predictive
functionalities [2], [3]. Consequently, DTs serve as a
valuable source of data for smart ecosystems while
actively contributing to their operation. They enable real-
time information exchange with other physical systems
and various DTs—both those representing different
aspects of the same physical system and DTs from
different subsystems [1].

F. Rocco di Torrepadula and A. Somma equally contributed
to the methodology, research, writing and illustration. A. De
Benedictis contributed to the methodology and writing. N.
Mazzocca supervised the research.

XXXX-XXX © 2024 |IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

Publication Name

Published by the IEEE Computer Society

Notwithstanding the growing interest in DTs recently
shown by academia and industry, their engineering
remains an intricate endeavor. This complexity arises
from the absence of a standardized definition and
a unified, domain-independent architecture. Despite
the numerous proposals for DT architectures (e.g.,
[4], [5]), these are still often presented in a one-
dimensional manner, leading to predominantly domain-
specific solutions [6]. Moreover, the interdependence
between software components and heterogeneous
devices introduces issues related to data sharing and
interoperability, not addressed by current solutions.
These challenges impede the application of DTs to
smart ecosystems and even raise questions about the
necessity of doing so.

At current state, there are a few popular platforms
for the implementation of smart ecosystems and DTs,
including Microsoft Azure', Amazon Web Service (AWS)
Twin Maker?, Eclipse Ditto® and FIWARE*. Although
Azure and AWS offer comprehensive suites of services
for building and deploying applications and benefit from

Thttps://azure.microsoft.com/
2https://aws.amazon.com/it/iot-twinmaker/
Shttps://eclipse.dev/ditto/
“https://www.fiware.org/

Month

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://azure.microsoft.com/
https://aws.amazon.com/it/iot-twinmaker/
https://eclipse.dev/ditto/
https://www.fiware.org/

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3518752

strong communities and support, they are subject to
vendor lock-in and may be very expensive for large de-
ployments. If a lightweight and easy-to-use platform for
smaller-scale implementations is needed, Eclipse Ditto
may be a good option [7]. For large-scale deployments,
FIWARE stands out as a formidable open-source tool to
cope with data management, interoperability, and scal-
ability, thanks to the numerous software components
offered to help collect, process, and visualize data,
and their adherence to open standards that ensures
seamless integration among different systems and
devices.

In light of the above considerations, this paper aims
to facilitate the integration of DT technology within
smart ecosystems by defining the architecture of a
DT-enabled Ecosystem (DTE). The proposed DTE
architecture is structured across three Architectural
Views, inspired by Krutchen’s View Model [8]: the
Logical View, the Development View, and an additional
Technological View that bridges high-level concepts
with low-level architectural details. More specifically,
this work:

e Analyzes existing DT and DTE literature to derive
a comprehensive set of DT requirements.

e Introduces the DTE Logical View outlining the
main entities involved and their interrelationships,
ensuring alignment with the identified DT require-
ments.

e Presents the DTE Technological View, mapping
DT requirements and DTE entities’ responsi-
bilities to appropriate FIWARE components to
facilitate practical implementation.

e Defines the DTE Development View providing a
detailed low-level architectural description applied
to a real-world urban mobility case study.

DT architectures have advanced in recent years, with
studies exploring design approaches [6]. Early research,
such as [9], focused on defining design patterns for DT-
based systems. Building on this, [10] proposed reusable
patterns for creating adaptive, autonomous DTs based
on microservices, while [2] outlined a roadmap for
developing autonomous DTs in digital factories. A
complete snapshot of DT architectures highlighted the
prevalent use of layered and service-oriented patterns
[6].

Agent-based approaches to DT design have also
been explored. For example, [4] presented a multi-
agent DT system framework, while [1] discussed a one-
dimensional architectural view for collaborative ecosys-
tems. In application-specific research, [3] proposed

Month 2024

a DT architecture for healthcare, while [11] adopted
FIWARE technology to develop a platform-dependent
DT architecture for urban environments. Efforts toward
DT standardization are noteworthy: i) [12] examined the
alignment of manufacturing DT architectures with ISO
23247 standard®, stressing the need for standardized
reference architectures. [5] proposed a domain-driven
design of DT architectures. Interested readers can find
a list of additional recommended papers in our GitHub
repository ©.

Based on our DT and DTE literature analysis (e.g.,
[1], [2], [7], [9], [10]), we identified a set of DT require-
ments describing what a DT must do to achieve its
functionalities. Table 1 includes an ID, name, and brief
description of each requirement. It also outlines how
each requirement maps to the Logical View’s entities
and to FIWARE components, further discussed in the
following two sections.

A DT must accurately represent its PT (R1). This
requires (i) bidirectional data exchange to establish the
closed-loop communication between the PT and the DT
(R4), and (ii) bidirectional mirroring to ensure that the
states of the PT and DT remain continuously aligned
(rR2).

The DT must store the states and event history
(R5) in a context-aware manner (R3), retaining only
information relevant to DT operational context. Multiple
DTs can be grouped into a composite entity (R6) to
form the Digital Twin Aggregate, useful for complex
real-world systems (e.g., entire cities) that cannot be
modeled as monolithic DTs.

DTs should be capable of predicting future behav-
iors of the PT, which aids in proactive planning and issue
anticipation (R7), and adapting to issues affecting both
the PT and the DT (R8). Interoperability must be ad-
dressed on three levels: i) system interoperability (R9),
to enable communication, within the same DT, among
different physical systems via suitable interfaces; ii) data
interoperability (R10), to facilitate data exchange across
various systems and formats; iii) platform interoperability
(R11), to allow the extension of DTs with value-added
services provided by or built in collaboration with third-
party entities.

Shttps://www.iso.org/standard/75066.html
Bhitps://github.com/alessandrasomma28/
UrbanMobilityDigital Twin/tree/main/FurtherReadings

Publication Title

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.iso.org/standard/75066.html
https://github.com/alessandrasomma28/UrbanMobilityDigitalTwin/tree/main/FurtherReadings
https://github.com/alessandrasomma28/UrbanMobilityDigitalTwin/tree/main/FurtherReadings

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3518752

TABLE 1. Mapping of DT Requirements to Logical View entities and FIWARE GEs.

ID Name Description Responsible Entity FIWARE support | FIWARE GE Component
R1 Representativeness DT must mimic the status and features | DTModel, X X
of the PT. DTModelManager
R2 Bidirectional Mirroring Every status change or event in the PT | DTModelManager, P Context Broker, loT Agent
is reflected in the DT, and modifications | Monitoring,
in the DT are mirrored in the PT. Control,
DTFeedback, Broker
DigitalAdaptor,
PhysicalAdaptor
R3 Contextualization DT must manage the PT state and event | DTModelManager, P Context Broker, Smart Data
history considering only PT information | Broker, DataModel Models
relevant to the current context.
R4 | Bidirectional Communi- | DT gets data from the PT, and the PT | Broker, v Context Broker, loT Agent,
cation receives DT information after processing. | PhysicalAdaptor, Kurento RT
DigitalAdaptor
R5 Memorization DT must store all PT relevant data with | DTDataStorage, P Context Broker, Cygnus,
context and maintain the PT current | DataStorage, Draco, STH Comet,
state. Broker QuantumLeap
R6 Composability DT must support grouping multiple DTs | DTModelManger, P Context Broker, Kong
into a composed entity, providing views | DTService, Broker
on both the aggregated and individual
DTs.
R7 | Predictability DT must simulate PT behavior and inter- | DTService, P Perseo, Wirecloud
action to determine the outcomes in a | Prediction
likely future.
R8 | Adaptability DT must provide facilities to address | DTService, P loT Agent
and manage damages or issues affecting | Prediction,
both the PT and itself. Optimization,
Control,
DTFeedback
DigitalAdaptor
R9 System Interoperability DT system must enable communica- | Broker P Context Broker
tion and interaction among different PTs
within the same DT.
R10 | Data Interoperability DT must ensure data exchange across | Broker, DataModel v Context Broker, Smart Data
various systems and data formats. Models
R11 | Platform Interoperability | DT system must support the integration | Broker v Context Broker
of third-party value-added services.

The DTE Logical View provides a structural perspective
of the DT-enabled Ecosystem. This View models DTE
entities and their relations in the UML class diagram
shown in Figure 1.

In the Logical View, DTE is divided into three
subsystems: i) the Physical Twin Subsystem (PTS),
encompassing the real-world physical assets, ii) the
Digital Twin Subsystem (DTS), forming the digital
core of the DTE; iii) the Connector Subsystem (CTS),
facilitating data exchange between the DT and its PT,
and among multiple DTs.

The PTS includes the actual Physical System
and one or more DataProvider and DataReceiver.
The DTS includes the DT ecosystem key entities to
satisfy DT requirements listed in Table 1:

1)

DTModel is the virtual representation of the
physical system, modeled according to the Com-
posite pattern [13] as it may be built as a com-
position of multiple models. A Model can be
a StructuralModel (e.g., geometrical repre-
sentation) or a BehavioralModel, describing
PT dynamic aspects. The explicit multiplicities
highlight that at least one behavioral model is

Publication Title

mandatory in a DT, enabling the simulation exe-
cution to mimic PT states (R1).

DTService represents the services offered by
the DTE, leveraging and combining the outcomes
of the DTModel. As regards the Operation
entity, being a smart system, the DT can per-
form four basic operations, namely Monitoring
and Control (needed for requirement R2), and
Optimization and Prediction (for R7 and
R8).

DTModelManager handles the available DT mod-
els, managing their creation and exposing their
methods to one or more services, according to
the Fagade pattern [13] (requirement R1, R2 and
R6).

DTIDataStorage is the repository for preserving
(R5) DT-related data, e.g., historical data, domain-
expert knowledge, outcomes from services or
models execution, etc. Further details about the
repository are tied to the kind of data to store,
and hence to the investigated domain.
DTFeedback, provides targeted feedback to the
physical system’s DataReceiver, either as exe-
cutable actions or alerts to be further handled by

Month 2024

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3518752

StructuralModel BehavioralModel

%

Monitoring Control Optimization Prediction
Model CompositeModel
[| I |
1.* v
‘ Operation CompositeOperation
«Composite» 1 |
1.* DTModel v ’1
1 I
Available models «Composite»
! «Repository» - - DTService
<<access>> DTDataStorage aceess>>
I
«Fagade» e - o _____ DTFeedback
DTModelManager ! |
<<use>>
| <<u§e>>
! |
DataModel : | - <<access> > «Repository»
[|
: - DataStorage Legend
v Digital Twin
Broker \:’ Subsystem
e [T TSuser oo ! Connector
1 Y Subsystem
«Adaptor» «Adaptor» Physical Twin
PhysicalAdaptor DigitalAdaptor Subsystem
1. 1> _ _ _, Feedback
‘ ‘ Loop path

DataProvider

T

1.%

<

PhysicalSystem

FIGURE 1. UML Class Diagram of DTE Logical View.

human operators [9] (needed for R2, and R8).

To realize the seamless bidirectional communica-
tion characterizing a proper DT, crucial for R2 and
R4, the Connector Subsystem has been included.
Here, according to the Adapter pattern [13], the
PhysicalAdaptor acts as a wrapper meant to stan-
dardize different, and even unforeseen, data sources
into the common interface required by the Broker.
Similarly, the DigitalAdaptor homogenizes the in-
terfaces of different data receivers.

The Broker entity has been devised to cope with
data interoperability (R10) and data sharing issues
typical of a DTE [14], offering a standardized inter-
face and associated information/DataModel (entity,
attribute, metadata) for data sharing. Entities’ data
and metadata are stored in another repository in-
cluded in the connector itself, namely bataStorage.
As DTDataStorage, also DataStorage contributes
to requirement R5, but it is meant to store the
data exchanged through the Broker. Therefore,
it aligns with the specific DataModel used. Con-
versely, DTDataStorage stores all data generated by
DTModels, not necessarily conform to the DataModel.
Let us note that the Connector Subsystem enables both

Month 2024

DataReceiver

T

1.

o

the cooperation and interaction among different models
and services, in the case of multiple virtual replicas
of the same physical system, and the communication
among DTs of different systems (requirements R9 and
R11).

The red loop in Fig. 1 highlights the bidirec-
tional communication enabled by the Connector
Subsystem. Particularly, data collected and homog-
enized by the PhysicalAdaptor can be accessed
through the Broker by the DTModelManager. The
results of the models are exploited to realize different
services and feedback, which are provided by the
DTFeedback to the DigitalAdaptor, again through
the Broker. This enables DataReceivers to trigger
novel actions on the physical entities.

The alignment between DTE entities and the FIWARE
GEs plays an important role in translating the Logical
into the Development View. Table 1 illustrates the extent
to which FIWARE components assist in implementing
DTE entities fulfilling DT requirements. The symbols X,
P, viindicate whether FIWARE provides no, partial, or

Publication Title

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3518752

complete technological support, respectively.

As shown in Table 1, FIWARE GEs do not fully
meet the Representativeness (R1). This requirement
demands modeling and simulation tools to execute
domain-specific behavioral models, which go beyond
FIWARE’s capabilities. Partial support arises when
FIWARE components cover only some functionalities
required for specific DTE entities. For instance, the
Bidirectional Reflection (R2) necessitates a continu-
ous data flow between Digital and Physical Twins
that can be facilitated by FIWARE Context Broker
(CB), implementing the Broker class, and the loT
Agents (loTA), realizing the DigitalAdaptor and
PhysicalAdaptor functionalities.

The FIWARE CB, a mandatory element in any “Pow-
ered by FIWARE” ecosystem, is a publish-subscribe
broker managing context information through the Next
Generation Service Interfaces (NGSI) protocol. The
four different types of brokers (Orion’, Orion-LD8,
Scorpio® and Stellio'®) vary on the NGSI version they
implement. loT Agents enable devices to communicate
with the CB using their native protocols (e.g., HTTP
or MQTT) and receive information from the broker.
This bidirectional data exchange fully supports the
Bidirectional Synchronization (R4).

Memorization (R5) and Contextualization (R3) in-
volve storing state and event data relevant to the
current context. Although the FIWARE CB handles
only the current state, historical data can be stored
using FIWARE GEs such as QuantumlLeap'', Cygnus,
and others that interface with time-series databases. To
ensure data interoperability (R10), the FIWARE CB and
Smart Data Models (SDMs) standardize how data are
structured in various contexts, facilitating compatibility
and data sharing across systems.

For Predictability (R7) and Adaptability (r8), Fl-
WARE offers partial support. lIoT Agents aid in the
implementation of adaptors, while components such as
Perseo'? and WireCloud'® enable event processing and
visualization. Regarding Composability (rR6), FIWARE
facilitates the grouping of multiple DTs through its
Context Broker and Kong'* offering extended API
management capabilities and achieving interoperability
at system (R9) and platform (R11) levels.

"https://fiware-orion.readthedocs.io/
8https://github.com/FIWARE/context.Orion-LD
9https://scorpio.readthedocs.io/en/latest/
10https://stellio.readthedocs.io/en/latest/
https:/quantumleap.readthedocs.io/
2https://fiware-perseo-fe.readthedocs.io/
13https://wirecloud.readthedocs.io/
14https://github.com/FIWARE/kong-plugins-fiware

Publication Title

The proposed DTE logical architecture has been in-
stantiated in a small-scale urban mobility case study,
considering the Intelligent Transportation System (ITS)
of a major ltalian city [15]. Implementation details can
be found in our GitHub repository'®. The ITS includes
buses equipped with Automatic Passenger Counting
(APC) systems and GPS devices to collect data on
passenger flow and location. These data are processed
and integrated into the DT behavioral model, which is
executed in the Simulator of Urban MObility'® (SUMO)
to monitor the physical system. FIWARE GEs handle
data to ensure interoperability. Additionally, data are
utilized by Machine Learning (ML) models to forecast
future behaviors. These insights are then applied to DT
models to simulate alternative scenarios and optimize
the real-world bus network, enhancing service quality
and efficiency through a continuous feedback loop. As
the data and infrastructure belong to a private company,
we will limit the discussion to general information
relevant to our narrative without delving into specifics.

Figure 2 depicts the UML Component&Connector
diagram of the Development View, outlining DTE
components, responsible for implementing entities of
the Logical View. The Physical Twin Subsystem is
represented by the bus vehicles equipped with APC
and GPS devices. Since we do not have access
to the actual running infrastructure, to simulate the
real-time data collection from the PT, we realized a
Python script (indicated as simulated physical
devices component in the diagram) that mimics data
transmission and reception, starting from a real dataset
collected on the field.

The Connector Subsystem is mainly made of Fl-
WARE tools and is structured as follows:

e FIWARE Orion-LD is the Context Broker expos-
ing Context Op. APl accessed by DataModel
Generator and FIWARE Mintaka.

e DataModel Generator is responsible for con-
text modeling leveraging on Smart Cities
SDMs, using the Python library named ngsild-
client'”. More in detail, our scenario consists
of {bus, bustrip, busroute, busstop, APC, GPS}
entities modeled by inheriting and extending
SDMs, e.g., “UrbanMobility”.

Shitps://github.com/alessandrasomma28/
UrbanMobilityDigital Twin

8https://eclipse.dev/sumo/

7 https://ngsildclient.readthedocs.io/

Month 2024

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://fiware-orion.readthedocs.io/
https://github.com/FIWARE/context.Orion-LD
https://scorpio.readthedocs.io/en/latest/
https://stellio.readthedocs.io/en/latest/
https://quantumleap.readthedocs.io/
https://fiware-perseo-fe.readthedocs.io/
https://wirecloud.readthedocs.io/
https://github.com/FIWARE/kong-plugins-fiware
https://github.com/alessandrasomma28/UrbanMobilityDigitalTwin
https://github.com/alessandrasomma28/UrbanMobilityDigitalTwin
https://eclipse.dev/sumo/
https://ngsildclient.readthedocs.io/

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3518752

Visualization Monitoring Simulation Prediction
Service Service Service Service
«component» E
DT Service
«componerts 2] 2]

DT Visualization and Monitoring

«component»

<components &]| TCRUD Op. <component> 2 | Bus Passenger Demand
TimescaleDB) Grafana rediction Service DIGITAL TWIN
SUBSYSTEM
Temporal Op. |
Scenario (L /J\ Prediction
8027 i i Q Q i
«component» E «component» E £
DataModel Generator FIWARE Mintaka «component»)
DTModel Manager
providing portr [receiving port
Context Op. el
1026 real AL _simulation
«component» E CONNECTOR Prediction da;‘a | results results Simulation
FIWARE Orion-LD SUBSYSTEM : o)
i receiving DOV(I!| - -
N = i
southbound traffic " «componenty | 2]
4041 27017 DTModel
1 H H r
«component» E «component» {l = «component» ?;' «component»
FIWARE loT Agent MongoDB Bus F Simulator of Urb:
7896 Demand Al Model MObility
SRS T
northbound traffic \
“data flow-,
B R Er R ET R ERTPEE R RERRT R feedback- -« - -« - x=raxaranncanag
[jproviding port ﬁ receiving port

«component»
Simulated Physical Devices

FIGURE 2. UML Component&Connector of DTE Development View.

e MongoDB is used by the CB to store context data
and by the loT Agent to hold device information
(e.g., device authentication keys).

e FIWARE Mintaka exposes the Temporal Op
interface and is responsible for persisting historic
context in TimescaleDB through T-CRUD Op
API.

e FIWARE IoT Agent JSON is the NGSI - Linked
Data (LD) adapter receiving and adapting both
data flow from the physical devices (north-
bound traffic) and commands coming from the
CB (southbound traffic). Hence, in our case
study, it realizes both PhysicalAdaptor and
DigitalAdaptor.

The core of the architecture is the Digital Twin
Subsystem, where the DTModel is composed of two
behavioral models. On one hand, the open source
microscopic and multi-modal traffic Simulator of
Urban MObility simulates different urban scenarios
considering both private and public traffic. Starting from
origin-destination matrices, public transit scheduling
data (in the GTFS format) and OpenStreetMap net-
works, we simulate weekday and weekend scenarios,
allowing the evaluation of novel policies for traffic and/or
public transport management. Moreover, we simulate
anomaly situations such as events, disruptions, or
strikes, to understand the impact of such situations

Month 2024

on traffic and passenger flow, and the effectiveness of
different policies.

On the other hand, Bus Passenger Demand AI
Model is a three-layer Long Short Term Memory
(LSTM) network realized with Tensorflow. It enables the
prediction of passenger demand for future timestamps,
based on historical or simulated data. Both DT models
receive the PT northbound traffic by the providing port
of DTModel Manager and send their outcomes on its
receiving port. Additionally, they can retrieve or provide
data directly by invoking Mintaka API.

The DTModel Manager Scenario
Simulation and
functionalities to the DT Service, for triggering
the respective components. This chain enables the
Simulation Service and bus passenger demand
Prediction Service. The advantage of DT is that
predictions can be further used to simulate alternative
scenarios and make decisions, e.g., bus rerouting.
Please note that, in our case study, the DTFeedback is
included in DT Service and is the bus re-scheduling
suggestion to human operators, sent on PT receiving
port, via the ToT Agent. The other two DT services
are the visualization of PT and DT data and
the Monitoring of PT states through its virtual

exposes
Prediction Generation

Publication Title

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3518752

replica. They are implemented through Grafana'®,
open source analytics and interactive visualization
multi-platform. DT Service outcomes can be directly
stored in TimescaleDB or accessed through Mintaka.

We demonstrated how the DTE Development View for
a small urban mobility scenario effectively implements
the DTE entities from the Logical View. Despite the
simplicity of our case study, the DT requirements are
met through the integration of the SUMO simulator
for behavioral modeling and FIWARE GEs for data
management.

The multi-view architecture’s strength lies in its
flexibility and domain-agnostic design. With its modular
structure, the DTE can efficiently be extended to inte-
grate other aspects of urban scenarios, e.g., Weather
DTs, Building DTs. Moreover, the Logical View can
be applied in various domains with minimal changes.
For instance, transitioning from urban mobility to other
sectors would require only minor adjustments, such
as adapting the DT model, and choosing a suitable
simulator and FIWARE Smart Data Models.

FIWARE GEs ensure robust data and system
interoperability, with APIs for seamless interaction
between Context Broker and other services, such as
Apache'®. Moreover, the FIWARE Orion-LD Broker
supports scaling with growing data volumes, while the
loT Agent facilitates adaptation to new data sources
without custom adaptors.

Though theoretically capable of integrating diverse
devices and data sources, our case study involves
a limited number of entities. As the system scales,
challenges in communication, storage, or process-
ing may arise, particularly with increased demands
on behavioral models. Additionally, heavy reliance
on FIWARE introduces a dependency where future
updates could impact performance and stability. To
mitigate this, we use a modular approach to FIWARE
components, allowing easier updates and reducing the
risk of obsolescence.

In this paper, we addressed the problem of what a DT-
enabled ecosystem is and how it can be implemented,
by focusing on the different Architectural Views and by
providing a technological mapping with FIWARE.

18https://grafana.com/
Shttps://fiware-cosmos.readthedocs.io

Publication Title

Future work will focus on refining the general
proposal by improving the multi-view architecture and
validating its versatility across various domains. We
plan to apply the DTE Logical View to other sectors
(e.g., environmental monitoring) to showcase its domain-
agnostic nature. For the urban mobility case study, we
will perform large-scale scalability tests, optimize data
transmission and storage, and explore distributed or
cloud-based solutions. Finally, we will address security
and privacy concerns using FIWARE tools like Key-
rock?® in both the Logical and Development Views.

This work has been partially supported by the Hitachi
Rail company, which provided us valuable domain
expertise, and by the Spoke 9 Digital Society & Smart
Cities of ICSC - Centro Nazionale di Ricerca in High-
Performance-Computing, Big Data and Quantum Com-
puting, funded by European Union - NextGenerationEU
(PNRR-HPC, CUP: E63C22000980007).

—_

. P. Kuruppuarachchi, S. Rea, and A. McGibney, “An
architecture for composite digital twin enabling col-
laborative digital ecosystems,” in 2022 IEEE 25th
International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pp. 980-985,

2022.
2. K. Hribernik, G. Cabri, F. Mandreoli, and G. Mentzas,
“Autonomous, context-aware, adaptive digital

twins—state of the art and roadmap,” Computers in
Industry, vol. 133, p. 103508, 2021.

3. A. De Benedictis, N. Mazzocca, A. Somma, and
C. Strigaro, “Digital twins in healthcare: An architec-
tural proposal and its application in a social distancing
case study,” IEEE Journal of Biomedical and Health
Informatics, vol. 27, no. 10, pp. 5143-5154, 2023.

4. H. Marah and M. Challenger, An Architecture for
Intelligent Agent-Based Digital Twin for Cyber-Physical
Systems, pp. 65—99. Singapore: Springer Nature
Singapore, 2023.

5. A. Macias, E. Navarro, C. E. Cuesta, and U. Zdun, “Ar-
chitecting digital twins using a domain-driven design-
based approach*,” in 2023 IEEE 20th International
Conference on Software Architecture (ICSA), pp. 153—
163, 2023.

2Ohttps://fiware-idm.readthedocs.io

Month 2024

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://grafana.com/
https://fiware-cosmos.readthedocs.io
https://fiware-idm.readthedocs.io

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3518752

6. E. Ferko, A. Bucaioni, and M. Behnam, “Architecting
digital twins,” IEEE Access, vol. 10, pp. 50335-50350,
2022.

7. D. Lehner, J. Pfeiffer, E.-F. Tinsel, M. M. Strljic, S. Sint,
M. Vierhauser, A. Wortmann, and M. Wimmer, “Digital
twin platforms: Requirements, capabilities, and future
prospects,” IEEE Software, vol. 39, no. 2, pp. 53-61,
2022.

8. P. Kruchten, “The 4+1 view model of architecture,’
IEEE Software, vol. 12, pp. 45-50, 11 1995.

9. B. Tekinerdogan and C. Verdouw, “Systems archi-
tecture design pattern catalog for developing digital
twins,” Sensors, vol. 20, no. 18, 2020.

10. P. Bellavista, N. Bicocchi, M. Fogli, C. Giannelli,
M. Mamei, and M. Picone, “Requirements and design
patterns for adaptive, autonomous, and context-aware
digital twins in industry 4.0 digital factories,” Comput-
ers in Industry, vol. 149, p. 103918, 2023.

11. J. Conde, J. Muiioz, A. Alonso, S. Lopez-Pernas,
and J. Salvachua, “Modeling digital twin data and
architecture: A building guide with fiware as enabling
technology,” IEEE Internet Computing, vol. PP, pp. 1—-
1, 02 2021.

12. E. Ferko, A. Bucaioni, P. Pelliccione, and M. Behnam,
“Standardisation in digital twin architectures in manu-
facturing,” in 2023 IEEE 20th International Conference
on Software Architecture (ICSA), pp. 70-81, 2023.

13. E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides,
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

14. A. Alonso, A. Pozo, J. M. Cantera, F. De la Vega,
and J. J. Hierro, “Industrial data space architecture
implementation using fiware,” Sensors, vol. 18, no. 7,
2018.

15. F. Rocco di Torrepadula, S. Di Martino, N. Mazzocca,
and P. Sannino, “A reference architecture for data-
driven intelligent public transportation systems,” IEEE
Open Journal of Intelligent Transportation Systems,
2024.

Franca Rocco di Torrepadula is a PhD student in
Information Technology and Electrical Engineering at the
Department of Electrical Engineering and Information
Technologies of the University of Naples Federico I,
80125 Naples, ltaly. Her research activities include
the definition and application of deep learning based
approach for intelligent transportation systems, with
the aim of enhancing public transports, focusing also
on privacy and energy aspects. Rocco di Torrepadula
received her Masters’ Degree in Computer Engineering
in 2021 from the University of Naples Federico Il.
Contact her at franca.roccoditorrepadula@unina.it

Month 2024

Alessandra Somma is a PhD student in Informa-
tion Technology and Electrical Engineering at the De-
partment of Electrical Engineering and Information
Technologies of the University of Naples Federico I,
80125 Naples, Italy. Her research activities include
Digital Twins, their architectural and security issues,
their application in loT/lloT, healthcare and railway
contexts and their usage for the enhancement of Cyber-
Physical Systems resilience. Somma received her Mas-
ters’ Degree in Computer Engineering in 2021 from
the University of Naples Federico Il. Contact her at
alessandra.somma@unina.it

Alessandra De Benedictis is an Assistant Profes-
sor at the Department of Electrical Engineering and
Information Technology of the University of Naples
Federico Il, 80125 Naples, ltaly. Her research interests
include secure development methodologies, security
assessment, and Digital Twins architectures, applica-
tions and services. De Benedictis received her PhD in
Computer and Automation Engineering in 2013 from
the University of Naples Federico Il. Contact her at
alessandra.debenedictis@unina.it.

Nicola Mazzocca is a Full Professor of Computer
Systems at the Department of Electrical Engineering
and Information Technologies of the University of Naples
Federico 1l, 80125 Naples, ltaly. His research inter-
ests include distributed systems architectures, high-
performance computing, and safety-critical applications.
Mazzocca received his PhD in Electronic and Computer
Engineering in 1991 from the University of Naples
Federico Il. Contact him at nicola.mazzocca@unina.it.

Publication Title

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	DT Architectures
	DT Requirements
	DTE Architecture: Logical View
	DTE Architecture: Technological View powered by FIWARE
	DTE Architecture: Development View of an Urban Mobility DT
	Discussion
	Conclusion and Future Work
	Acknowledgments
	References
	References
	Biographies
	Franca Rocco di Torrepadula
	Alessandra Somma
	Alessandra De Benedictis
	Nicola Mazzocca

