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Abstract. Braid groups are an important and flexible tool used in several areas of science,
such as Knot Theory (Alexander’s theorem), Mathematical Physics (Yang-Baxter’s equation)
and Algebraic Geometry (monodromy invariants). In this note we will focus on their algebraic-
geometric aspects, explaining how the representation theory of higher genus braid groups can
be used to produce interesting examples of projective surfaces defined over the field of complex
numbers.

1. Introduction
The classification of compact, complex surfaces S of general type with χ(OS) = 1, i.e.
pg(S) = q(S), is currently an active area of research. For all these surfaces we have pg ≤ 4,
and the cases pg = q = 4 and pg = q = 3 are nowadays completely described. Regarding the
case pg = q = 2, a complete classification has been recently obtained when K2

S = 4: in fact,
these are surfaces on the Severi line K2

S = 4χ(OS). By contrast, the classification in the case
pg = q = 2, K2

S ≥ 5 is still missing, albeit some interesting examples were recently discovered.
We refer the reader to the paper [1] and the references contained therein for a historical account
on the subject and more details.

The purpose of this note is to show how monodromy representations of braid groups can be
concretely applied to the fine classification of surfaces with pg = q = 2 and maximal Albanese
dimension, allowing one to rediscover old examples and to find new ones.

The idea is to consider degree n, generic covers of Sym2(C2), the symmetric square of a
smooth curve of genus 2, simply branched over the diagonal δ. In fact, if such a cover exists,
then it is a smooth surface S with

χ(OS) = 1, K2
S = 10− n.

On the other hand, by the Grauert-Remmert extension theorem and the GAGA principle,
isomorphism classes of degree n, connected covers

f : S −→ Sym2(C2),

branched at most over δ, correspond to group homomorphisms

ϕ : π1(Sym2(C2)− δ) −→ Sn
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with transitive image, up to conjugacy in Sn. The group π1(Sym2(C2) − δ) is isomorphic to
B2(C2), the braid group on two strings on C2; furthermore, our condition that the branching is
simple can be translated by requiring that ϕ(σ) is a transposition, where σ denotes the homotopy
class in Sym2(C2)− δ of a topological loop in Sym2(C2) that “winds once around δ”.

A group homomorphism B2(C2) −→ Sn satisfying the requirements above will be called a
generic monodromy representation of B2(C2). By using the Computer Algebra System GAP4 we
computed the number of generic monodromy representations for 2 ≤ n ≤ 9. In particular, such
a number is zero for n ∈ {5, 7, 9}, so there exist no generic covers in these cases.

As an application of the general theory, we end the paper with a detailed discussion of the
cases n = 2 and n = 3.

2. Braid groups on closed surfaces
In this section we collect some preliminary results on surface braid groups that are needed in
the sequel of the work.

Definition (Configuration spaces). Let X be a topological space. The kth ordered
configuration space of X is defined as

Confk(X) := {(x1, . . . , xk) ∈ Xk | xi 6= xj for all i 6= j},

namely Confk(X) = Xk −∆, where ∆ is the big diagonal.
The quotient of Confk(X) by the natural free action of the symmetric group Sk is called the

kth unordered configuration space of X, and it is denoted by UConfk(X).
Then UConfk(X) = Symk(X)−δ, where δ denotes the image of ∆ in the symmetric product.

Remark. If X is a smooth, compact, n-dimensional manifold, then both the configuration
spaces Confk(X) and UConfk(X) are smooth, open, kn-dimensional manifolds.

Definition (Surface braid groups). Let Σg be a closed topological surface of genus g, and
let P = {p1, . . . , pk} ⊂ Σg be a set of k distinct points. A geometric braid on Σg based at P
(also called a braid on k strings) is a k-ple (α1, . . . , αk) of paths αi : [0, 1] −→ Σg such that

• αi(0) = pi, i = 1, . . . , k;

• αi(1) ∈P, i = 1, . . . , k;

• the points α1(t), . . . , αk(t) ∈ Σg are pairwise distinct for all t ∈ [0, 1].

A geometric braid such that αi(0) = αi(1) for all i ∈ {1, . . . , k} is called a pure geometric braid.

Figure 1: A non-pure braid on 3 strings

The braid group on k strings on Σg is the group Bk(Σg) whose elements are the braids based
at P and whose operation is the usual product of paths, up to homotopies among braids. The
pure braid group is the subgroup Pk(Σg) of Bk(Σg) given by the homotopy classes of pure braids.
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It can be shown that Bk(Σg) and Pk(Σg) do not depend on the choice of the set P, and that
there is a short exact sequence of groups

1 −→ Pk(Σg) −→ Bk(Σg) −→ Sk −→ 1. (1)

Moreover, there are isomorphisms

Pk(Σg) ' π1(Confk(Σg)), Bk(Σg) ' π1(UConfk(Σg)),

so that we can interpret (1) as the short exact sequence of fundamental groups induced by the
Sk-covering

Confk(Σg) −→ UConfk(Σg).

Braid groups are an important and flexible tool used in several areas of science, such as

- Knot Theory (Alexander’s theorem)

- Mathematical Physics (Yang-Baxter’s equation)

- Mechanical Engineering (robot motion planning)

- Algebraic Geometry (monodromy invariants).

We will focus on the last topic, explaining how the representation monodromy of surface braid
groups onto the symmetric group can be used to produce interesting examples of projective
surfaces defined over the field of complex numbers.

We are primarily interested in the case g = k = 2. In that case, a simple presentation for the
braid group is provided by the following result.

Proposition ([2, Theorem 1.2]). The braid group B2(Σ2) can be generated by five elements
a1, a2, b1, b2, σ, subject to the eleven relations below:

(R2) σ−1a1σ
−1a1 = a1σ

−1a1σ
−1

σ−1a2σ
−1a2 = a2σ

−1a2σ
−1

σ−1b1σ
−1b1 = b1σ

−1b1σ
−1

σ−1b2σ
−1b2 = b2σ

−1b2σ
−1

(R3) σ−1a1σa2 = a2σ
−1a1σ

σ−1b1σb2 = b2σ
−1b1σ

σ−1a1σb2 = b2σ
−1a1σ

σ−1b1σa2 = a2σ
−1b1σ

(R4) σ−1a1σ
−1b1 = b1σ

−1a1σ

σ−1a2σ
−1b2 = b2σ

−1a2σ

(TR) [a1, b
−1
1 ][a2, b

−1
2 ] = σ2.

Here the ai and the bi are pure braids coming from the representation of the topological
surface Σ2 as a polygon of 8 sides with the standard identification of the edges, whereas σ is a
non-pure braid exchanging the two points p1, p2 ∈ Σ2. These braids are depicted in Figure 2;
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note that, both in the cases of ai and bj , the only non-trivial string is the first one, which goes
through the wall αi, respectively the wall βj .

ai bj σ

p1 p2 p1 p2

p1 p2βi

αi αi

βi

αj

βj

αj

βj

Figure 2: Generators of B2(Σ2)

Regarding the generator σ, in terms of the isomorphism

B2(Σ2) ' π1(UConf2(Σ2)) = π1(Sym2(Σ2)− δ),

it corresponds to the homotopy class in UConf2(Σ2) of a topological loop in Sym2(Σ2) that
“winds once around the diagonal δ”.

3. Finite coverings and monodromy representations
Let us recall now the classification of branched coverings f : X −→ Y of complex, projective
varieties via the classification of monodromy representations of the fundamental group π1(Y −B),
where B ⊂ Y is the branch locus of f . The main technical tools needed are the Grauert-Remmert
extension theorem and the GAGA principle, that we recall below.

Grauert-Remmert extension theorem [3, XII.5.4]. Let Y be a normal analytic space over
C and Z ⊂ Y a closed analytic subspace such that U = Y − Z is dense in Y . Then any finite,
analytic, unramified covering f◦ : V −→ U can be extended to a normal, analytic, finite covering
f : X −→ Y , branched at most over Z. Furthermore, such an extension is unique up to analytic
isomorphisms.

GAGA principle [4]. Let X, Y be projective varieties over C, and Xan, Y an the underlying
complex analytic spaces. Then

(i) every analytic map Xan −→ Y an is algebraic;

(ii) every coherent analytic sheaf on Xan is algebraic, and its algebraic cohomology coincides
with its analytic one.

From this, we deduce the following important consequences.

Corollary (Analytic to algebraic extension of coverings). Let Y be a smooth, projective
variety over C and Z ⊂ Y be a smooth, irreducible divisor. Set U = Y − Z. Then any finite,
unramified analytic covering f◦ : V −→ U can be extended in a unique way to a finite covering
f : X −→ Y, branched at most over Z.
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Moreover, there exists on X a unique structure of smooth projective variety that makes f an
algebraic finite covering.

Corollary (Branched coverings via monodromy). Let Y be a smooth projective variety
over C and Z ⊂ Y be a smooth, irreducible divisor. Then isomorphism classes of connected
coverings of degree n

f : X −→ Y,

branched at most over Z, are in bijection to group homomorphisms with transitive image

ϕ : π1(Y − Z) −→ Sn,

up to conjugacy in Sn. Furthermore, f is a Galois covering if and only if the subgroup imϕ of
Sn has order n, and in this case imϕ is isomorphic to the Galois group of f .

The group homomorphism
ϕ : π1(Y − Z) −→ Sn,

is called the monodromy representation of the covering f : X −→ Y , and its image imϕ ⊆ Sn

is called the monodromy group of f . The last corollary implies that, if f is a Galois covering,
then the monodromy group of f is isomorphic to its Galois group (coinciding with the group
D(X/Y ) of deck transformations of the covering).

4. Generic coverings of UConf2(Σ2)
We now apply the previous theory in the special case

Y = UConf(Σ2) = Sym2(Σ2)− δ, Z = δ.

We consider Σ2 as a compact Riemann surface, namely we fix a complex structure on it. Then
the Abel-Jacobi map

π : Sym2(Σ2) −→ J(Σ2)

is a birational morphism onto the the Abelian surface J(Σ2), more precisely it is the blow-down
of the unique rational curve E ⊂ Sym2(Σ2), namely the (−1)-curve given by the graph of the
hyperelliptic involution on Σ2.

We have δE = 6, because the curve E intersects the diagonal δ transversally at the six points
corresponding to the six Weierstrass points of Σ2. Writing Θ for the numerical class of a Theta
divisor in J(Σ2), it follows that the image D := π∗δ ⊂ J(Σ2) is an irreducible curve with an
ordinary sextuple point and no other singularities, whose numerical class is 4Θ.

Definition (Generic covering). Let f : S −→ Sym2(Σ2) be a connected covering of degree n
branched over the diagonal δ, with ramification divisor R ⊂ S. Then f is called generic if

f∗δ = 2R+R0,

where the restriction f |R : R −→ δ is an isomorphism and R0 is an effective divisor over which
f is not ramified.

Generic coverings are never Galois, unless n = 2, in which case R0 is empty and f∗δ = 2R.
Since δ is smooth, the genericity condition in the previous definition is equivalent to requiring
that the fibre of f over every point of δ has cardinality n− 1.

Setting α := π ◦ f , the case where the curve Z = f∗(E) is irreducible is illustrated in Figure
3.
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R

Z

δ

E

D

S Sym2(Σ2)

J(Σ2)

f

π
α

Figure 3: A generic covering of Sym2(Σ2) branched over δ

From now on, by surface we mean a smooth, complex, projective variety S with dimC(S) = 2.
For such a surface

• KS = ∧2Ω1
S denotes the canonical line bundle

• pg(S) = h0(S, KS) is the geometric genus

• q(S) = h1(S, KS) is the irregularity

• χ(OS) = 1− q(S) + pg(S) is the holomorphic Euler-Poincaré characteristic.

The zero locus of a meromorphic section of KS defines a class in H2(S, Z), whose Poincaré dual
[KS ] ∈ H2(S, Z) is called the canonical class of S. Its self-intersection is the integer number
defined by the cup product

K2
S = [KS ] ∪ [KS ] ∈ H4(S, Z) ' Z.

Given a surface S, we can define some important meromorphic maps on it: the pluricanonical
maps and the Albanese map.

Definition (Pluricanonical maps). Set N(r) := dimH0(S, K⊗r
S )− 1 and let {σ0, . . . , σN(r)}

be a basis for H0(S, K⊗r
S ). Then the r-th pluricanonical map of S is the rational map

ψr : S −→ PN(r)(C), x 7→ [σ0(x) : . . . : σN(r)(x)].

We say that S is of general type if the image of ψr is a surface for r large enough (i.e., if ψr is
generically finite onto its image for r large enough).

Definition (Albanese map). The Albanese map of S is the rational morphism

aS : S −→ Alb(S) := H0(S, Ω1
S)∗/H1(S, Z),

defined by the integration of global, holomorphic 1-forms on S (this is a generalization of the
Abel-Jacobi map C −→ J(C), sending a smooth complex curve into its Jacobian). Note that
Alb(S) is a complex torus (actually, an Abelian variety) of dimension q(S).

We say that S is of maximal Albanese dimension if the image of its Albanese map is a surface
(i.e., if aS is generically finite onto its image); note that this condition implies q(S) ≥ 2.

Surfaces of general type satisfy χ(OS) ≥ 1, and those with χ(OS) = 1 are usually difficult to
construct. This explains the relevance of the following result.
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Theorem [1, Theorem 1]. Let f : S −→ Sym2(Σ2) be a generic covering of degree n and
whose branch locus is the diagonal δ. Then S is a surface of maximal Albanese dimension with

χ(OS) = 1, K2
S = 10− n.

Moreover, if 2 ≤ n ≤ 9 then S is of general type.

Our aim is now to use the theory developed before in order to construct generic coverings
f : S −→ Sym2(Σ2).

Definition (Generic monodromy representation). A generic monodromy representation
of the braid group B2(Σ2) is a group homomorphism

ϕ : B(Σ2) −→ Sn

with transitive image and such that ϕ(σ) is a transposition.

By the previous discussion, since B2(Σ2) ' π1(Sym2(Σ2)− δ), generic coverings and generic
monodromy representations are related by the following

Theorem [1, Theorem 2]. Isomorphism classes of generic coverings of degree n

f : S −→ Sym2(Σ2),

with branched locus δ, are in bijective correspondence to generic monodromy representations

ϕ : B2(Σ2) −→ Sn,

up to conjugacy in Sn. For 2 ≤ n ≤ 9, the number of such representations is given in the table
below:

n 2 3 4 5 6 7 8 9
Number of ϕ 16 3 · 80 6 · 480 0 15 · 2880 0 28 · 172800 0

In particular, for n ∈ {5, 7, 9} there exist no generic coverings.

As an application of the general theory, let us finish this note by discussing in detail the cases
n = 2 and n = 3.

The case n = 2. In this case we are looking for generic monodromy representations

ϕ : B2(Σ2) −→ S2 = {(1), (1 2)}.

Since B2(Σ2) is generated by five elements a1, a2, b1, b2, σ, and necessarily ϕ(σ) = (1 2), we see
that there are 24 = 16 possibilities for ϕ.

The group S2 is abelian, so there is no conjugacy relation to consider and we get sixteen
isomorphism classes of double coverings f : S −→ Sym2(Σ2), branched over δ and with

χ(OS) = 1, K2
S = 8.

These coverings correspond to the sixteen square roots of δ in the Picard group of Sym2(Σ2).
One covering coincides with the natural projection f : C2 × C2 −→ Sym2(Σ2), in fact

pg(C2 × C2) = q(C2 × C2) = 4, KC2×C2 = 8.

The remaining fifteen coverings are surfaces of general type with

pg(S) = q(S) = 2, K2
S = 8.
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The case n = 3. In this case we are looking for generic monodromy representations

ϕ : B2(Σ2) −→ S3,

up to conjugacy in S3. By hands, or by using a Computer Algebra software like GAP4 (see
[5]), we find that the total number of monodromy representations is 240. For every such a
representation we have imϕ = S3. Moreover, each orbit for the conjugacy action of S3 on the
set of monodromy representations consists of six elements, and consequently the orbit set has
cardinality 240/6 = 40. By our last theorem, this implies that there are 40 isomorphism classes
of generic coverings f : S −→ Sym2(Σ2) of degree 3 and branched over δ. For all of them, S is
a surface of general type with

pg(S) = q(S) = 2, K2
S = 7

and its Albanese map α : S −→ J(Σ2) is a generically finite covering of degree 3.
These surfaces were previously studied by R. Pignatelli and the Author in [6], by using

completely different methods. In fact, they showed that they all lie in the same deformation
class, and that their moduli space is a connected, quasi-finite cover of degree 40 of M2, the
coarse moduli space of curves of genus 2.
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