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Software to compute angular and radial Mathieu functions is provided in the case that the parameter q is
a complex variable and the independent variable x is real. After an introduction on the notation and the
definitions of Mathieu functions and their related properties, Fortran 90 subroutines to compute them are
described and validated with some comparisons. A sample application is also provided.
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1. INTRODUCTION

Mathieu functions were introduced by Émile Léonard Mathieu in 1868 to study the
vibration modes of an elliptical membrane [Mathieu 1868]. Since then, many other au-
thors have investigated their properties and the most important results are included
in McLachlan [1964], Meixner and Schäfke [1954], and Staff of the Computation Lab-
oratory [1967]. Mathieu functions are the solutions of Mathieu’s differential equation

d2y
dx2 + (a − 2q cos2 x)y = 0, (1)

which are also called angular Mathieu functions. Replacing x with ix in the previous
equation yields the modified Mathieu differential equation

d2y
dx2 − (a − 2q cosh2 x)y = 0, (2)

whose solutions are called radial Mathieu functions.
Solutions of both differential equations depend upon the parameter q, which could

take complex values.
The computation of Mathieu functions is not a trivial problem and software packages

that compute them when q is real have been developed by, among others, Clemm [1969,
1970], Hodge [1972], Rengarajan and Lewis [1980], Frisch [1972], Baker [1992], Shirts
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[1993a], [1993b], IMSL [1994], Zhang and Jin [1996], Alhargan [2001], Erricolo [2006],
and Wolfram [2003]. When q is complex, Mathematica R© provides solutions, but only
for the angular functions. The novelty of this article is to extend to the case of complex
values of q, the results presented in Erricolo [2006].

2. ANGULAR AND RADIAL OF MATHIEU FUNCTIONS

In the following, we will use the notation of Blanch and Rhodes [1955] (which is also
available in National Bureau of Standards [1951], Staff of the Computation Laboratory
[1967]), and Stratton [1941].

Equation (1) is periodic and in many physical applications only periodic solutions
are of interest. For a given q, there exist two countable sets of values of a for which
Equation (1) admits periodic solutions. These values of a are called characteristic
values, and depending upon the set, the period of the solution is either π or 2π . There
are four kinds of periodic solutions of (1) associated with the characteristic values a:

Se2r(q, x) =
∞∑

k=0

De(2r)
2k cos 2kx (of period π ) (3)

Se2r+1(q, x) =
∞∑

k=0

De(2r+1)
2k+1 cos(2k + 1)x (of period 2π ) (4)

So2r(q, x) =
∞∑

k=1

Do(2r)
2k sin 2kx (of period π ) (5)

So2r+1(q, x) =
∞∑

k=0

Do(2r+1)
2k+1 sin(2k + 1)x (of period 2π ) (6)

The functions Sen(q, ix) and Son(q, ix) clearly satisfy (2) for the same characteristic
values a, but (3)–(6) converge slowly. Therefore the solutions of (2) are written in terms
of rapidly converging series of products of Bessel functions associated with the same
coefficients Dem, Dom of the angular functions. Their expressions are:

Re(1)
2r (q, x) = (−1)r

De(2r)
0

√
π

2

∞∑
k=0

(−1)kDe(2r)
2k Jk(s)Jk(t), (7)

Re(1)
2r+1(q, x) = (−1)r

De(2r+1)
1

√
π

2

∞∑
k=0

(−1)kDe(2r+1)
2k+1 [Jk+1(s)Jk(t) + Jk(s)Jk+1(t)], (8)

Ro(1)
2r (q, x) = (−1)r

Do(2r)
2

√
π

2

∞∑
k=1

(−1)kDo(2r)
2k [Jk+1(s)Jk−1(t) − Jk+1(t)Jk−1(s)], (9)

Ro(1)
2r+1(q, x) = (−1)r

Do(2r+1)
1

√
π

2

∞∑
k=0

(−1)kDo(2r+1)
2k+1 [Jk+1(s)Jk(t) − Jk(s)Jk+1(t)], (10)

where

s = √
qex, t = √

qe−x. (11)

The radial functions of the first kind have parity either even, Re(1)
n , or odd, Ro(1)

n . A
second set of solutions for the modified Mathieu equation is obtained by replacing
the Bessel functions Jm(s) in the previous equations with the Bessel functions Ym(s).
This substitution yields the modified functions of the second kind. In many physical
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applications they are referred to as radial functions of the second kind. They have
parity either even, Re(2)

n , or odd, Ro(2)
n .

Re(2)
2r (q, x) = (−1)r

De(2r)
0

√
π

2

∞∑
k=0

(−1)kDe(2r)
2k Yk(s)Jk(t), (12)

Re(2)
2r+1(q, x) = (−1)r

De(2r+1)
1

√
π

2

∞∑
k=0

(−1)kDe(2r+1)
2k+1 [Yk+1(s)Jk(t) + Yk(s)Jk+1(t)], (13)

Ro(2)
2r (q, x) = (−1)r

Do(2r)
2

√
π

2

∞∑
k=1

(−1)kDo(2r)
2k [Yk+1(s)Jk−1(t) − Yk−1(s)Jk+1(t)], (14)

Ro(2)
2r+1(q, x) = (−1)r

Do(2r+1)
1

√
π

2

∞∑
k=0

(−1)kDo(2r+1)
2k+1 [Yk+1(s)Jk(t) − Yk(s)Jk+1(t)]. (15)

Similar to Hankel functions, one defines modified functions of the third and fourth
kinds. They are also referred to as radial functions and they have even parity

Re(3)
n = Re(1)

n + iRe(2)
n , (16)

Re(4)
n = Re(1)

n − iRe(2)
n , (17)

and odd parity

Ro(3)
n = Ro(1)

n + iRo(2)
n , (18)

Ro(4)
n = Ro(1)

n − iRo(2)
n . (19)

Let ar(q) be the characteristic values associated with even solutions and br(q) those
associated with odd solutions. Notice that r = 0, 1, 2, . . . and r = 0 applies only to ar.
The following four properties hold for complex values of q.

Property 1. When q → 0, ar(q) → r2 and br(q) → r2.
Property 2. a2r(−q) = a2r(q), b2r(−q) = b2r(q), a2r+1(−q) = b2r+1(q).
Property 3. When q is real and not zero, the characteristic values can be ordered as
a0 < b1 < a1 < b2 < · · · < br < ar < · · · , q > 0
a0 < a1 < b1 < b2 < a2 < a3 < b3 < · · · a2r−1 < b2r−1 < b2r < a2r < . . ., q < 0.
Property 4. When q is real, the solutions associated with ar(q) and br(q) have r zeros
in [0, π ).

Properties 1 and 3 establish the ordering principle for the solutions of the Mathieu
equation. Specifically, the order r of a Mathieu function is given by the position r of
the characteristic value ar (or br) in the sequence of characteristic values. Mathieu
functions of different order are associated with different expansion coefficients Der

(Dor), which depend on ar (br), as implied by the definitions (3)–(10), (12)–(19). When
coupled with the continuity of ar(q) and br(q), Properties 1 and 3 are the only criteria
available to order the characteristic values ar(q) and br(q) in the complex plane [Blanch
and Clemm 1969].

It is sufficient to know the solutions of the Mathieu equation when q belongs to the
first quadrant. In fact, all values of q may be reduced to the first quadrant because of
Property 2 and also because if y(z) is a solution associated with a and q, then y∗ is a
solution associated with q∗ and a∗.
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3. NORMALIZATION, PROPERTIES, ORTHOGONALITY, WRONSKIAN

There exist at least three different normalizations for the Mathieu functions. In this
work, we use the normalization of Stratton [1941], and accordingly, the Mathieu angu-
lar functions are normalized so that

Ser(q, 0) = 1,
dSor(q, x)

dx

∣∣∣∣
x=0

= 1. (20)

Therefore the expansion coefficients must satisfy

∞∑
k=0

De(r)
2k+p = 1,

∞∑
k=0

(2k + p)Do(r)
2k+p = 1, (21)

with p = 0, 1 depending on the order r. Mathieu angular functions satisfy the following
orthogonality relations.

∫ 2π

0
Sem(q, x)Sen(q, x)dx =

{
0 m �= n
Ne

m m = n,
(22)

∫ 2π

0
Som(q, x)Son(q, x)dx =

{
0 m �= n
No

m m = n,
(23)

∫ 2π

0
Sem(q1, x)Son(q2, x)dx = 0,∀m, n, q1, q2. (24)

The normalization coefficients appear in the previous relations

Ne
2r = π

[
2
(
De(2r)

0

)2 + (
De(2r)

2

)2 + (
De(2r)

4

)2 + · · ·
]
, (25)

Ne
2r+1 = π

[(
De(2r+1)

1

)2 + (
De(2r+1)

3

)2 + · · ·
]
, (26)

No
2r = π

[(
Do(2r)

2

)2 + (
Do(2r)

4

)2 + · · ·
]
, (27)

No
2r+1 = π

[(
Do(2r+1)

1

)2 + (
Do(2r+1)

3

)2 + · · ·
]
. (28)

3.1. Relations between Solutions for the Parameter q and −q

The following relations hold for the angular functions

Se2r(−q, x) = Se2r(q, π/2 − x)
Se2r(q, π/2)

De(2r)
2k (−q) = (−1)kDe(2r)

2k (q)
Se2r(q, π/2)

, (29)

Se2r+1(−q, x) = So2r+1(q, π/2 − x)
So2r+1(q, π/2)

De(2r+1)
2k+1 (−q) = (−1)kDo(2r+1)

2k+1 (q)
So2r+1(q, π/2)

, (30)

So2r+1(−q, x) = −Se2r+1(q, π/2 − x)
Se′

2r+1(q, π/2)
Do(2r+1)

2k+1 (−q) = (−1)k+1De(2r+1)
2k+1 (q)

Se′
2r+1(q, π/2)

, (31)

So2r(−q, x) = −So2r(q, π/2 − x)
So′

2r(q, π/2)
Do(2r)

2k (−q) = (−1)kDo(2r)
2k (q)

So′
2r(q, π/2)

. (32)
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For the radial functions of even order

Re(1)
2r (−q, x) = Re(1)

2r (q, x + iπ/2), (33)

Re(2)
2r (−q, x) = Re(2)

2r (q, x + iπ/2), (34)

Ro(1)
2r (−q, x) = Ro(1)

2r (q, x + iπ/2), (35)

Ro(2)
2r (−q, x) = Ro(2)

2r (q, x + iπ/2), (36)

and for the radial functions of odd order

Re(1)
2r+1(−q, x) = Ro(1)

2r+1(q, x + iπ/2), (37)

Ro(1)
2r+1(−q, x) = Re(1)

2r+1(q, x + iπ/2), (38)

Re(2)
2r+1(−q, x) = Ro(2)

2r+1(q, x + iπ/2), (39)

Ro(2)
2r+1(−q, x) = Re(2)

2r+1(q, x + iπ/2). (40)

The Mathieu radial functions of argument x + iπ/2 may be expressed in terms of the
modified Bessel functions I and K using the following relations [Abramovitz and Stegun
1970].

Jm(iw) = im Im(w), Ym(iw) = im+1
[

Im(w) + i
2
π

(−1)mKm(w)
]

, (41)

cosh(w + iπ/2) = i sinh(w), sinh(w + iπ/2) = i cosh(w), tanh(w + iπ/2) = coth(w),
(42)

where w is a complex variable with −π < arg w ≤ π/2. In fact, using definition (11),
when x → x + iπ/2, the argument of the Bessel functions become s → is and t → −it,
so that the radial functions of the first kind become

Re(1)
2r (−q, x) = (−1)r

√
π

2
Ie2r(q, x), (43)

Re(1)
2r+1(−q, x) = i(−1)r

√
π

2
Ie2r+1(q, x), (44)

Ro(1)
2r (−q, x) = (−1)r

√
π

2
Io2r(q, x), (45)

Ro(1)
2r+1(−q, x) = i(−1)r

√
π

2
Io2r+1(q, x), (46)

where

Ie2r(q, x) =
∞∑

k=0

(−1)kDe(2r)
2k (q)Ik(s)Ik(t)

/
De(2r)

0 (q), (47)

Ie2r+1(q, x) =
∞∑

k=0

(−1)kDo(2r+1)
2k+1 (q)[Ik+1(s)Ik(t) + Ik+1(t)Ik(s)]

/
Do(2r+1)

1 (q), (48)

Io2r(q, x) =
∞∑

k=1

(−1)kDo(2r)
2k (q)[Ik−1(s)Ik+1(t) − Ik+1(s)Ik−1(t)]

/
Do(2r)

2 (q), (49)

Io2r+1(q, x) =
∞∑

k=0

(−1)kDe(2r+1)
2k+1 (q)[Ik+1(s)Ik(t) − Ik(t)Ik+1(s)]

/
De(2r+1)

1 (q). (50)
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The radial functions of the second kind are complex for real value of x, yielding

Re(2)
2r (−q, x) = (−1)r

[
i
√

π/2Ie2r(q, x) −
√

2
π

Ke2r(q, x)

]
, (51)

Re(2)
2r+1(−q, x) = (−1)r

[
−

√
π/2Ie2r+1(q, x) + i

√
2
π

Ke2r+1(q, x)

]
, (52)

Ro(2)
2r (−q, x) = (−1)r

[
i
√

π/2Io2r(q, x) −
√

2
π

Ko2r(q, x)

]
, (53)

Ro(2)
2r+1(−q, x) = (−1)r

[
−

√
π/2Io2r+1(q, x) + i

√
2
π

Ko2r+1(q, x)

]
, (54)

where

Ke2r(q, x) =
∞∑

k=0

De(2r)
2k (q)Ik(t)Kk(s)

/
De(2r)

0 (q), (55)

Ke2r+1(q, x) =
∞∑

k=0

Do(2r+1)
2k+1 (q)[Ik(t)Kk+1(s) − Ik+1(t)Kk(s)]

/
Do(2r+1)

1 (q), (56)

Ko2r(q, x) =
∞∑

k=0

Do(2r)
2k (q)[Ik−1(t)Kk+1(s) − Ik+1(t)Kk−1(s)]

/
Do(2r)

2 (q), (57)

Ko2r+1(q, x) =
∞∑

k=0

De(2r)
2k+1(q)[Ik+1(t)Kk(s) + Ik(t)Kk+1(s)]

/
De(2r)

1 (q). (58)

4. COMPUTATION OF MATHIEU FUNCTIONS

Mathieu functions are computed according to the following three main steps: (1) com-
putation of the characteristic values; (2) computation of the expansion coefficients Dem
or Dom; and, (3) evaluation of the series expansions (3)–(10), (12)–(19).

4.1. Computation of the Characteristic Values

The Mathieu characteristic values depend on the parameter q, the parity of the Mathieu
function and its order n. One approach to compute them is to solve an eigenvalue
problem that leads to an infinite set of eigenvalues that approximate the characteristic
values ar (br) associated with the parameter q.

When q is real, the characteristic values are real and it is possible to sort them
according to Property 3. This sorting provides the rule to determine the order n of
the Mathieu function. Specifically, the solution of order n is the one generated using
the characteristic value at position n in the sorted sequence. However, when q is not
real, the characteristic values are complex and they cannot be sorted, which prevents a
direct association between a specific characteristic value and its corresponding Mathieu
function.

Fortunately, the continuity of the characteristic values ar(q) and br(q) provides a
method to determine the appropriate characteristic value to generate a requested
Mathieu function of order n, which is explained next.

4.1.1. Tracking algorithm. Assume that q = qreal + iqimag and that the parity and order of
the Mathieu function are given. The following algorithm determines the appropriate
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characteristic value, ar(qtemp) or br(qtemp), when qtemp = qreal, and then tracks the
characteristic value as qtemp is changed until it reaches qtemp = q.

Step 1. Let q0 = qreal, and compute the characteristic values associated with q0. The
characteristic values are the eigenvalues of an infinite matrix whose entries depend
on q, n, and on the parity of the Mathieu function. Since q0 is real, the eigenvalues
of the matrix are real and can be sorted. The infinite matrix is truncated to an order
N > n, which is sufficiently large, (N = 10 + 2n), so that the first n eigenvalues
of the truncated matrix are good approximations of the first n characteristic values.
Each characteristic value a0

r (b0
r ) is associated with the eigenvalue at position r in

the sequence, and the one at the location r = n is selected. This is performed by
initial eigenvalue approximation.

Step 2 Consider an increment �qimag so that �qimag ≤ 0.5, and set p = 0.
Step 3 Let p = p + 1, qp

temp = q0 + ip�qimag. Then use the method described in
Blanch [1966] to refine the characteristic value ap

n (qp
temp), using as initial approximation

ap−1
n (qp−1

temp).
Step 4 If qtempp �= q then go back to Step 3, otherwise the last value found for ap

n (bp
n)

is the characteristic value of order n associated with q.

Steps 3 and 4 are both performed by Mathieu Eigenvalue and Coefficients.
This software could be extended to allow for the simultaneous computation of all

Mathieu functions of order below the maximum order n. This extension requires the
simultaneous computation of all the characteristic values ar(q) or br(q), r = 0, . . . , n,
and could be accomplished with the following variation of the tracking algorithm. At
Step 3, instead of using Blanch’s algorithm, one could replace it with the following.

Step 3. Let p = p + 1, qp
temp = q0 + ip�qimag. Create a new truncated matrix, similar

to Step 1, for the parameter qp
temp and compute its eigenvalues e�, � = 1, . . . , N. Let

d�s be the distance between the eigenvalue e� and the previous characteristic value
approximation ap−1

s (qp−1
temp) or bp−1

s (qp−1
temp). For each s = 1, . . . , n, compute all distances

d�s. The characteristic value ap
s (qp

temp) or bp
s (qp

temp) is the eigenvalue e� for which the
distance d�s is minimal.

4.2. Computation of the Expansion Coefficients

The expansion coefficients Dem (Dom) are computed using four recurrence relations
obtained by substituting the series expansion for the angular functions (3)–(6) into
Mathieu Differential Equation (1).

Blanch [1966] showed that each relation may be written as both a forward or a back-
ward recurrence for any characteristic value ar (br). In particular, she found the prop-
erty that when the value of ar (br) is the characteristic value then both the forward and
the backward recurrence relations produce the same expansion coefficients. This prop-
erty is also used at Steps 3 and 4 of the previous section to refine the value computed
for ar (br), by computing appropriate derivatives of ar (br) and using them in a Newton
scheme to improve the initial value of ar (br). Once the value of ar (br) has been deter-
mined, the expansion coefficients are computed using both the forward and the back-
ward recurrence relations by the subroutine Mathieu Eigenvalue and Coefficients.

In the computation of the expansion coefficients, it is sufficient to consider values
of the parameter q such that real(q) ≥ 0 because of the relations between Mathieu
functions for the parameter q and −q presented in Section 3.1.
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8:8 D. Erricolo and G. Carluccio

Fig. 1. Plot of Sem(q, v) for m = 15 and q = −0.9 + i0.9. Fortran results are indicated with a solid black line,
while power series MATLAB R© results are indicated with a dashed red line. The two curves overlap.

4.3. Evaluation of the Series Expansions

4.3.1. Angular Functions. Mathieu angular functions are computed using the series ex-
pansions (3)–(6) by the function MathieuAngular for real values of the variable x and
complex values of the parameter q. When x takes complex values, the appropriate
function call is MathieuAngular cmplx.

4.3.2. Radial Functions. Mathieu radial functions are computed using the series expan-
sions (7)–(10), (12)–(19) by the function MathieuRadial, which accepts real values of
the variable x and complex values of the parameter q.

Specifically, the function MathieuRadial operates in the following way. When
real(q) ≥ 0, it applies the tracking algorithm, it determines the expansion coefficients,
and computes the appropriate series expansions using the definitions (7)–(10), (12)–
(19). When real(q) ≤ 0, it introduces a temporary variable q1 = −q and performs the
same steps as for the previous case, where q1 replaces q. Then, the radial functions
are obtained by applying the relations given in Section 3.1.

5. VALIDATION

These subroutines have been validated by making comparisons as described in the
following.

—When |q| is sufficiently small, comparisons can be made with the McLaurin expan-
sions of the Mathieu functions described in Larsen et al. [2008].

—By comparison with Mathematica R©.
—Another check is obtained by controlling the Wronskian value.

In the following, u is the argument of the angular Mathieu function and v is
the argument of the radial Mathieu function because of the physical meaning of u
and v, which is related to the transformation from elliptic cylinder to rectangular
Cartesian coordinates given in Equation (62) as part of the sample application given in
Section 6.

5.1. Comparison with Power Series

We compare our results to the values obtained by using the small argument series
expansion approximation [Larsen et al. 2008] of the solutions calculated by a subroutine
programmed in MATLAB R©. Figure 1 shows the results of the comparison in the case of
the even angular Mathieu function Sem(q, v) for m = 15 and q = −0.9 + i0.9. Figure 2
shows the results of the comparison in the case of the odd angular Mathieu function
Som(q, v) for m = 10 and q = −0.9 + i0.9.

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 8, Publication date: September 2013.
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Fig. 2. Plot of Som(q, v) for m = 10 and q = −0.9 + i0.9. Fortran results are indicated with a solid black line,
while power series MATLAB R© results are indicated with a dashed red line. The two curves overlap.

Fig. 3. Plot of Re(1)
m for m = 5 and q = −0.8+ i0.7. Fortran results are indicated with a solid black line, while

power series MATLAB R© results are indicated with a dashed red line. The two curves overlap.

Figure 3 shows the results of the comparison in the case even radial Mathieu func-
tions of the first kind Re(1)

m (q, u) for m = 5 and q = −0.8 + i0.7. Figure 4 shows the
results of the comparison in the case of even radial Mathieu functions of the second
kind, Re(2)

m (q, u) for m = 5 and q = −0.8 + i0.7. Figure 5 shows the results of the com-
parison in the case of odd radial Mathieu functions of the first kind Ro(1)

m (q, u), for m = 3
and q = 0.2025 + i0.5. Figure 6 shows the results of the comparison in the case of even
radial Mathieu functions of the second kind Ro(2)

m (q, u), for m = 3 and q = 0.2025+ i0.5.
Next we show the comparisons with the small argument power series as a function of
q. In Figure7, the angular Mathieu function Sem(q, v) is evaluated for m = 1, v = 1, and
q = qr + iqi, with qi = 0.5, while −0.5 < qr < 0.5. In Figure 8, the even radial Mathieu
function of the first kind Re1

m(q, u) is evaluated for m = 1, u = 1, and q = qr + iqi, with
qi = 0.5, while −0.5 < qr < 0.5. In both cases, there is good agreement between the
Fortran results and the small argument power expansion.
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Fig. 4. Plot of Re(2)
m (q, u) for m = 5 and q = −0.8 + i0.7. Fortran results are indicated with a solid black line,

while power series MATLAB R© results are indicated with a dashed red line. The two curves overlap.

Fig. 5. Plot of Ro(1)
m (q, u) for m = 3 and q = 0.2025 + i0.5. Fortran results are indicated with a solid black

line, while power series MATLAB R© results are indicated with a dashed red line. The two curves overlap.

5.2. Comparison with Mathematica R©

For larger values of |q|, Mathieu angular functions are evaluated using Mathematica R©

and compared to the results obtained by our subroutines. The comparison with
Mathematica R© is limited to the angular Mathieu functions, since there are no
Mathematica R© functions that compute radial Mathieu functions.

Angular Mathieu functions are evaluated in three steps: (1) given a small
parameter q and order n, the Mathieu characteristic values ar and br are
computed using the Mathematica R© functions MathieuCharacteristicA[m,q] and
MathieuCharacteristicB[m,q]; (2) even angular Mathieu functions are computed us-
ing the function MathieuC[ar,q,v] and odd angular Mathieu functions are computed
using MathieuS[br,q,v]; (3) the results are normalized according to Stratton:

Sem(q, v) = cem(q, v)
cem(q, 0)

, Som(q, v) = sem(q, v)
se′

m(q, 0)
, (59)

where se′
m(q, 0) is computed using the function MathieuSPrime[br,q,v] [Erricolo 2003].
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Fig. 6. Plot of Ro(2)
m (q, u) for m = 3 and q = 0.2025 + i0.5. Fortran results are indicated with a solid black

line, while power series MATLAB R© results are indicated with a dashed red line. The two curves overlap.

Fig. 7. Plot of Sem(q, v) for m = 1, v = 1, while the real part of q = qr + iqi is varied with qi = 0.5. Fortran
results are indicated with a solid black line, while power series MATLAB R© results are indicated with a
dashed red line. The two curves overlap.

Fig. 8. Plot of Rem(q, u) for m = 1, u = 1, while the real part of q = qr + iqi is varied with qi = 0.5. Fortran
results are indicated with a solid black line, while power series MATLAB R© results are indicated with a
dashed red line. The two curves overlap.

Even angular functions Sem(q, v) are examined for m = 15, q = 3 + 2 j in Figure 9(a)
and Figure 9(b) by comparing the real and imaginary parts, respectively.

Odd angular functions Som(q, v) are examined for m = 10, q = 4 + 2 j in Figure 10(a)
and Figure 10(b) by comparing the real and imaginary parts, respectively.

It is clear from the plots that the Fortran subroutines are very accurate in calculating
angular functions for small values of the parameter.
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Fig. 9. Comparisons between Fortran subroutines and Mathematica R© in the case of the even angular
function Sem(q, v), when m = 15 and q = 3 + 2i. Fortran results are indicated with a solid black line, while
Mathematica R© results are indicated with a dashed red line. The two curves overlap.

Fig. 10. Comparisons between Fortran subroutines and Mathematica R© in the case of the odd angular
function Som(q, v), when m = 10 and q = 4 + 2 j. Fortran results are indicated with a solid black line, while
Mathematica R© results are indicated with a dashed red line. The two curves overlap.

5.3. Wronskian Check

Another way to check the accuracy of the computation of radial functions is to examine
their Wronskian. This test is based on the Wronskian property

We = Re(1)
m (q, u)Re(2′)

m (q, u) − Re(2)
m (q, u)Re(1′)

m (q, u) = 1 (60)

Wo = Ro(1)
m (q, u)Ro(2′)

m (q, u) − Ro(2)
m (q, u)Ro(1′)

m (q, u) = 1, (61)

where the prime symbol refers to the derivative with respect to argument u. Table I
shows the results of this test when q = −0.9 + j0.9 and u = 2. Table II shows the
results of this test when q = 2.5 + j1.8 and u = 2.

Tables I and II are computed using the version of our subroutines that employs
the IMSL numerical subroutines to evaluate Bessel functions and obtain the initial
characteristic values a0

r (b0
r ). Since IMSL numerical subroutines may not be available

to everyone, the software associated with this article contains other Fortran libraries
to compute the Bessel functions [Amos 1986] and the eigenvalues. We would like to
point out that higher accuracy is achieved when IMSL subroutines are used.
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Table I. Wronskian Test for q = −0.9 + j0.9 and u = 2

n real(We − 1) imag(We) real(Wo − 1) imag(Wo)

0 −0.497676E-07 −0.104774E-07
1 0.582077E-10 0.000000E+00 −0.145519E-10 0.000000E+00
2 −0.203727E-09 0.232831E-09 0.000000E+00 0.000000E+00
3 0.000000E+00 0.000000E+00 −0.291038E-10 0.000000E+00
4 0.756700E-09 −0.631553E-08 0.151049E-07 0.321306E-07
5 0.538421E-09 −0.258660E-08 0.698492E-09 −0.217915E-08
6 −0.625732E-09 0.894943E-09 0.298314E-09 −0.107138E-08
7 −0.483851E-09 0.605269E-09 −0.471118E-09 0.537057E-09
8 0.647105E-09 −0.112777E-09 −0.369027E-09 0.383125E-09
9 0.696215E-09 −0.852083E-10 0.655563E-09 −0.596287E-10

10 −0.106102E-08 −0.669896E-09 0.688974E-09 −0.345644E-10
11 −0.138795E-08 −0.100460E-08 −0.129301E-08 −0.978877E-09
12 0.119574E-08 0.515956E-08 −0.162720E-08 −0.136690E-08
13 0.147028E-08 0.851756E-08 0.125216E-08 0.811601E-08
14 0.224559E-07 −0.356762E-07 0.123325E-08 0.124891E-07
15 0.441156E-07 −0.586881E-07 0.426029E-07 −0.535508E-07
16 −0.530413E-06 0.677142E-07 0.859084E-07 −0.964482E-07
17 −0.919311E-06 0.312372E-06 −0.878474E-06 0.138578E-06
18 0.875018E-05 0.841740E-05 −0.245003E-05 0.366472E-07
19 0.275663E-04 0.256637E-04 0.356364E-04 0.243828E-04
20 −0.324346E-03 −0.298998E-05 0.566832E-04 −0.444547E-04

Table II. Wronskian Test for q = 2.5 + j1.8 and u = 2

n real(We − 1) imag(We) real(Wo − 1) imag(Wo)

0 0.153153E-08 0.375110E-09
1 0.122702E-08 −0.992827E-09 0.483169E-11 0.964064E-10
2 −0.105049E-07 −0.793534E-09 −0.142109E-11 0.583213E-10
3 −0.110762E-07 0.100954E-09 0.852651E-13 0.227374E-12
4 0.833893E-10 −0.295699E-09 −0.238742E-11 −0.454747E-12
5 0.170530E-12 0.248690E-12 0.113687E-12 0.568434E-13
6 −0.476831E-09 −0.367226E-08 0.290066E-08 0.727772E-08
7 −0.598845E-10 −0.171605E-08 0.107889E-09 −0.176777E-08
8 −0.641023E-09 −0.612374E-09 0.253621E-09 −0.876405E-09
9 −0.464766E-09 −0.531671E-09 −0.446349E-09 −0.581082E-09

10 −0.378250E-09 0.373390E-10 −0.281403E-09 −0.498641E-09
11 −0.435564E-09 −0.457980E-10 −0.441648E-09 −0.713598E-10
12 −0.236587E-09 0.336847E-09 −0.453785E-09 −0.181238E-09
13 −0.478929E-09 0.334858E-09 −0.496685E-09 0.315323E-09
14 −0.282224E-10 0.923046E-09 −0.796111E-09 0.188488E-09
15 −0.672772E-09 0.141019E-08 −0.722514E-09 0.138122E-08
16 0.130262E-08 0.345546E-08 −0.202385E-08 0.173100E-08
17 −0.465085E-09 0.750809E-08 −0.679129E-09 0.742430E-08
18 0.160675E-07 0.199750E-07 −0.673906E-08 0.137299E-07
19 0.165958E-07 0.583738E-07 0.157591E-07 0.580741E-07
20 0.226897E-06 0.157335E-06 −0.941438E-08 0.142480E-06
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Fig. 11. Sample problem.

6. SAMPLE APPLICATION

Mathieu functions are frequently applied in problems involving elliptical cylinder
coordinates [Caorsi et al. 1997, 1998, 1999a, 1999b; Erricolo et al. 2005b, 2005a;
Berardi et al. 2004; Erricolo and Uslenghi 2005b, 2004; Erricolo et al. 2006, 2008;
Erricolo and Uslenghi 2005a; Valentino and Erricolo 2006, 2007; Canta and Erricolo
2008; Olshansky and Turkel 2008; Akgol et al. 2011b, 2011a, 2011; Gupta et al.
2008; Baktur et al. 2010; Bakker and Kuhlman 2011; Gil et al. 2011]. As a sample
application of the Mathieu functions, we consider the two-dimensional problem of the
computation of the electromagnetic field distribution inside an infinitely long lossy
elliptic cylinder made of three layers, as shown in Figure 11(a), when the structure
is illuminated by an incident time-harmonic plane wave. The time factor dependence
eiωt is assumed and neglected throughout.

Without any loss of generality, we select a coordinate system where the z axis is the
axis of the cylinder and the x and y axes correspond to the axes of symmetry of the
elliptic cross section. For this geometry, it is possible to express the solution in terms
of series expansions of Mathieu functions. Accordingly, we select an elliptic cylinder
coordinate system [Stratton 1941; Moon and Spencer 1961], (u, v, z) with focal distance
d, having two foci located along the x axis at ±d/2. The elliptic cylinder coordinates
(u, v, z) and the Cartesian coordinates (x, y, z) are related by

x = d
2

cosh ucos v

y = d
2

sinh usin v (62)

z = z

From the previous definition, surfaces having u = constant represent families of confo-
cal elliptic cylinders, while surfaces having v = constant represent families of confocal
hyperbolic cylinders. There are four regions in Figure 11(a): region 1, located inside
the surface u = u1; region 2, limited between the surface u = u2 and the surface u = u1;
region 3, limited between the surface u = u3 and the surface u = u2; and region 0,
which is external to the surface u = u3.

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 8, Publication date: September 2013.



Algorithm 934: Fortran 90 Subroutines to Compute Mathieu Functions for Complex 8:15

The source of the electromagnetic field is a plane wave, whose direction of propagation
lies in the xy plane and makes the angle φ0 with the negative x axis, and polarized
with the electric field along the z direction:

Ei
z = E0eik0(x cos φ0+y sin φ0). (63)

The main steps that lead to the exact electromagnetic solution of this problem are
briefly summarized in the following.

We first express the z component of the electric field in each region as a series
expansion containing Mathieu functions [Stratton 1941; McLachlan 1964]. In doing
so, we assume that each region is filled with a medium that is linear, uniform, and
isotropic. The wavevector in region � is k�. The z components of the electric fields in
regions 1, 2, and 3 are given by Bowman et al. [1987]

E1,z =
+∞∑
m=0

e1,mRe(1)
m (q1, u)Sem(q1, v) +

+∞∑
m=1

f1,mRo(1)
m (q1, u)Som(q1, v), (64)

E2,z =
+∞∑
m=0

[
e2,mRe(1)

m (q2, u)Sem(q2, v) + f2,mRe(2)
m (q2, u)Sem(q2, v)

]

+
+∞∑
m=1

[
g2,mRo(1)

m (q2, u)Som(q2, v) + h2,mRo(2)
m (q2, u)Som(q2, v)

]
, (65)

E3,z =
+∞∑
m=0

[
e3,mRe(1)

m (q3, u)Sem(q3, v) + f3,mRe(2)
m (q3, u)Sem(q3, v)

]

+
+∞∑
m=1

[
g3,mRo(1)

m (q3, u)Som(q3, v) + h3,mRo(2)
m (q3, u)Som(q3, v)

]
, (66)

respectively. In region 0, external to the elliptic cylinder, the electric field is given by the
sum of the incident field Ei

z (63) which can be expanded in terms of Mathieu functions

Ei
z =

√
8π

[+∞∑
m=0

im

Ne
m

Re(1)
m (q0, u)Sem(q0, v)Sem(q0, φ0)

+
+∞∑
m=1

im

No
m

Ro(1)
m (q0, u)Som(q0, v)Som(q0, φ0)

]
, (67)

and the scattered field

E0,z =
+∞∑
m=0

e0,mRe(4)
m (q0, u)Sem(q0, v) +

+∞∑
m=1

f0,mRo(4)
m (q0, u)Som(q0, v), (68)

where radial Mathieu functions of the fourth kind are used to satisfy the Sommerfeld
radiation condition and q� = (k�d)2/16. For a lossy cylinder, its wavenumber k� is
complex, and consequently, q� is also complex. This motivates the use of the special
functions presented in this work to compute the field distributions. The magnetic field
is obtained from the electric field using the relation

H(u, v) = Hu(u, v)û + Hv(u, v)v̂ = i

ωμd
√

cosh u2 cos v2

[
û

∂

∂v
− v̂

∂

∂u

]
Ez(u, v). (69)
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Fig. 12. Magnitudes |Ez| in the four regions of the geometry: comparison between the computation method
presented in Caorsi et al. [1998] and the method presented here.

The expansion coefficients e�,m, f�,m, g�,m, h�,m are obtained by imposing the electromag-
netic boundary conditions on the continuity of the tangential components of the total
electric and magnetic fields across the interfaces between different materials.

This approach is similar to, for example, the one for the multilayer circular cylinder.
However, in this case it is not possible to explicitly write in closed form, the expansion
coefficients of the scattered field in terms of the expansion coefficients of the inci-
dent field because the angular Mathieu functions depend on the material properties
through the parameter q. This does not happen in the circular cylinder case. It is also
worth noting that the orthogonality relations (22)–(23) are not valid across an inter-
face when the material properties change, however they may be used as in, for example
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[Caorsi et al. 1997, 1998, 1999b]. Therefore, the point-matching method, which enforces
the boundary conditions at predetermined points [Balanis 1989], is used in this work.
Let mmax be the maximum order of the expansion coefficients, then Nt = 6mmax + 3 is
the total number of uniformly distributed points where the boundary conditions are
enforced, as shown in Figure 11(b).

The application of the boundary conditions at each point leads to a system of 12mmax+
6 equations, which is solved by a matrix inversion.

Numerical results are shown in Figure 12 for the electric field computed with the
methods presented in Caorsi et al. [1998] and with the method presented in this work.
The geometry is the same in all cases, where the semimajor axes of the three layers
of the elliptic cylinder have length u1 = 0.10λ0, u2 = 0.13λ0, and u3 = 0.16λ0, and
d = 0.16λ0. The complex relative dielectric permittivities εi = ε′

i − iε′′
i of the three

layers are ε′
1 = 1.0, ε′

2 = 4.0, ε′
3 = 2.5, and ε′′

1 = ε′′
2 = ε′′

3 = ε′′. The solution has
been computed for ε′′ = 0 (pure dielectric cylinder), ε′′ = 0.06 (weakly lossy cylinder),
ε′′ = 0.6 (lossy cylinder), and ε′′ = 1.89 (very lossy cylinder).

All results are computed by considering mmax = 9. For all values of ε′′ there is good
agreement between the methods presented in Caorsi et al. [1998] and the method
presented here. The differences between the two results may be attributed to how
the boundary conditions are applied and to the computation of the Mathieu functions.
Specifically, in Caorsi et al. [1998], the boundary conditions are enforced using the
Galerkin method, which is different from the point matching method used in this
article. In addition, in Caorsi et al. [1998], the Mathieu functions for complex values of
the parameter q are computed using a Taylor series expansion.

7. CONCLUSIONS

This article describes the computation of Mathieu functions for complex values of the
parameter q. The associated Fortran 90 software was validate in different ways and a
sample problem that requires the use of such functions was provided.
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