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Abstract
Purpose  Cardiac amyloidosis (CA) is a highly underdiagnosed disease characterized by the accumulation of misfolded 
amyloid protein fragments in the heart, resulting in reduced heart functionality and myocardial stiffness. Artificial intelli-
gence (AI) has garnered considerable interest as a potential tool for diagnosing cardiovascular diseases, including CA. This 
systematic review concentrates on the application of AI in the diagnosis of CA.
Methods  A comprehensive systematic search was performed on the databases of PubMed, Embase, and Medline, to identify 
relevant studies. The screening process was conducted in two stages, using predetermined inclusion and exclusion criteria, 
and was carried out in a blinded manner. In cases where discrepancies arose, the reviewers discussed and resolved the issue 
through consensus.
Results  Following the screening process, a total of 10 studies were deemed eligible for inclusion in this review. These 
investigations evaluated the potential utility of AI models that analyzed routine laboratory data, medical records, ECG, 
transthoracic echocardiography, CMR, and WBS in the diagnosis of CA.
Conclusion  AI models have demonstrated utility as a diagnostic tool for CA, with comparable or in one case superior efficacy 
to that of expert cardiologists.
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Abbreviations
AI	� Artificial intelligence
AL	� Light chain amyloidosis
ATTR​	� Transthyretin amyloidosis
CA	� Cardiac amyloidosis
CINE	� Cardiac imaging with non-contrast 

enhancement
CMR	� Cardiac magnetic resonance
CNN	� Convolutional neural networks
CTS	� Carpal tunnel syndrome
DL	� Deep learning
DT	� Decision tree
EF	� Ejection fraction
GLS	� Global longitudinal strain
HCM	� Hypertrophic cardio myopathy
HF	� Heart failure
LGE	� Late gadolinium enhancement

LVEF	� Left ventricular ejection fraction
LVH	� Left ventricular hypertrophy
ML	� Machine learning
PPV	� Positive predictive value
RBF	� Radial basis function
ROC AUC​	� Receiver operating characteristic area under 

the curve
SVM	� Supervised machine learning
TTE	� Transthoracic echocardiography
WBS	� Whole-body scintigraphy

1  Introduction

Amyloidosis is a multisystemic pathological condition, 
in which incorrectly folded protein fragments accumulate 
in the extracellular compartment of various tissues [1–3]. 
Cardiac amyloidosis (CA) is linked to notable morbidity 
and mortality. The heightened utilization of cardiac mag-
netic resonance imaging (CMR) in the field of cardiol-
ogy has uncovered an earlier unacknowledged prevalence 
of CA. Consequently, CA has transitioned from being a 
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“rare” ailment that was frequently diagnosed after death, 
to a condition of great clinical importance that every car-
diologist must contend with [3, 4].

The misfolding of over 30 proteins can result in the 
development of amyloidosis [5]. Two types are particularly 
associated with the heart: the light chain-associated amy-
loid (AL) and transthyretin amyloid (ATTR). AL amyloi-
dosis is associated with a disorder of clonal plasma cells 
of the bone marrow, while ATTR amyloidosis is caused 
by transthyretin misfolding [6, 7]. Transthyretin is a 
hepatically synthesized tetrameric protein that serves as 
a physiologic carrier for thyroxine and retinol [8]. ATTR 
could occur owing to deposition of wild-type transthyretin 
(ATTRwt), which is genetically normal, or it can be due 
to a mutant gene coding for transthyretin (ATTRv) [7, 9].

The therapeutical regimen for individuals recently 
diagnosed with AL amyloidosis involves a combination 
of dexamethasone, bortezomib, cyclophosphamide, and 
the monoclonal antibody daratumumab hyaluronidase 
(Dara-CyBorD). Furthermore, plasma cell (PC)-targeted 
treatments are frequently employed in clinical practice off-
label [10]. In contrast, for ATTR, therapeutic approaches 
include the utilization of an RNA interference (RNAi) 
agent known as Patisiran, transthyretin tetramer stabiliz-
ers, such as tafamidis, and in instances of hereditary cases, 
liver transplantation are considered [11–13].

Without therapy, cardiac AL amyloidosis progresses 
rapidly and could be fatal [7, 14]. Conversely, the advance-
ment of ATTR is more gradual. ATTRwt is associated with 
almost 3.5 years of survival, while the median survival is 
slightly less in ATTRv [7, 9, 15, 16].

Many possible applications for the use of AI in medi-
cine are being explored. There are two main categories 
of AI. The first type is machine learning (ML), which 
is based on feature analysis, and the latter type is deep 
learning (DL), which can analyze imaging data, without 
the necessity of manual numerical data insertion [17, 18]. 
Machine learning, a scientific discipline integrating sta-
tistics and computational algorithms, consists of super-
vised and unsupervised learning. In medicine, supervised 
learning automates tasks like EKG interpretation, while 
unsupervised learning discovers intricate data patterns, 
especially in precision medicine for complex diseases [19]. 
Deep learning employs multi-layered neural networks to 
extract intricate patterns from data, achieving high accu-
racy in tasks like image recognition. It starts by identifying 
edges in various orientations and positions, progressively 
recognizing complex objects. This enables deep learn-
ing models to analyze images by discerning their distinct 
features and patterns [20]. Convolutional neural networks 
(CNNs) represent a class of sophisticated DL algorithms 
renowned for their exceptional proficiency in image anal-
ysis. These networks employ localized connections and 

parameter sharing, enabling the efficient extraction of dis-
tinctive features from images [20].

In this review, we will shed light on the use of ML, DL, 
and CNN in diagnosis of CA via different methods including 
ECG, MRI, TTE, and Bone Scintigraphy. In addition, we 
will compare the sensitivity and specificity of AI systems’ 
diagnosis to expert physicians.

2 � Materials and Methods

The protocol of this systematic review is registered in 
PROSPERO on 26/03/2023 with ID: CRD4202340847. This 
systematic review is accompanied by a PRISMA declaration 
(Fig. 1). The primary measure of interest in our investigation 
is the AI score, which reflects the level of diagnostic preci-
sion achieved by the AI system.

2.1 � Search Strategy

Following an advanced search of Pubmed, Embase, and 
MEDLINE (OVID), databases on the 13 March 2023, we 
procured a sum of 47 papers, which were subsequently 
reduced to 23 after duplicate removal. Furthermore, two 
pertinent recent investigations have been incorporated into 
the publications yielded from the systematic search. The 
search was unconstrained by language or publication year. 
The supplementary material lists the search terms used in 
this study (Supplementary Appendix 1).

Two main reviewers (Armia Ahmadi-Hadad and Egle De 
Rosa) screened the papers in a blinded manner. In the first 
round, the titles and abstracts were subjected to screening, 
while in the second round, the full texts underwent scru-
tiny. Conflicting decisions were resolved by discussion. 
Ultimately, a pool of 10 papers was included in the meta-
analysis (Fig. 1).

2.2 � Inclusion and Exclusion Criteria

Studies investigating the use of AI in diagnosis of the CA 
were included. Our study criteria mandated the inclusion 
of studies written exclusively in English. This systematic 
review was not limited by any classification of amyloido-
sis subtype, as we incorporated relevant literature on ATTR 
and light chain amyloidosis without any exclusions. Publi-
cations were excluded if: (1) they did not mention AI; (2) 
CA was not the objective of the study; (3) the full text was 
not available.

2.3 � Data Extraction and Synthesis

Text, tables, figures and supplementary materials were 
summarized in an Excel spreadsheet. Study design, type of 
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control groups, number of patients involved in experimental 
and control groups, mean age of the patients, amyloidosis 
subtype, and type of the AI in use were extracted. Addition-
ally, title, journal name, leading author, and publication year 
were collected.

2.4 � Evaluation Metrics

Sensitivity, specificity, positive predictive value (PPV), ROC 
AUC, and F1-score were utilized in this systematic review. 
The receiver operating characteristic area under the curve 
(ROC AUC) score is a performance metric for binary clas-
sification models. It quantifies the ability of a model to dis-
tinguish between positive and negative cases by measuring 
the area under the ROC curve, where a higher AUC score 
indicates better discrimination. An AUC score of 1 signifies 
a perfect classifier, while 0.5 suggests random classification. 

The F1-score strikes a balance between precision, defined 
as the ratio of true positives to the sum of true positives 
and false positives, and recall, defined as the ratio of true 
positives to the sum of true positives and false negatives, by 
computing their harmonic mean. It was employed to evaluate 
the model’s capability to minimize both false positives and 
false negatives, demonstrating its relevance to the research 
conducted in this paper.

3 � Results

A systematic search of the PubMed, Embase and MED-
LINE databases was conducted, yielding a total of 24 papers 
after duplicate removal. Out of the 24 abstracts screened, 
3 abstracts were found to be ineligible. Subsequently, 21 

Fig. 1   PRISMA flow diagram. Preferred Reporting Items for System-
atic Reviews and Meta-Analysis (PRISMA) flow diagram describing 
exclusions and inclusions. The preliminary search yielded a total of 
47 results, following which duplicate outcomes were removed, and 

inclusion and exclusion criteria were applied in two rounds of screen-
ing. Ultimately, 10 studies were chosen to be included in the system-
atic review
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full-text articles were evaluated for eligibility, with a total 
of 10 articles included in the systematic review (Fig. 1, 
Table 1).

The studies included in this review revealed that AI in dif-
ferent forms such as ML, DL, and CNN could be applied in 
different diagnostic tests, such as laboratory parameters [21], 
ECG [7, 22], CMR [3, 23, 24], TTE [22, 25, 26], Bone Scin-
tigraphy [27], medical and nursing records [28] (Table 1).

The laboratory parameters model developed by Agibe-
tov et al. achieved sensitivity, and specificity of 89.2% and 
78.2% respectively with ROC AUC equal to 0.86 [21]. The 
medical and nursing records ML demonstrated sensitiv-
ity and specificity of 56% and 96% respectively with ROC 
AUC equal to 0.88 [28]. Among the TTE models, The ML 
introduced by Cotella et al. for identifying abnormal LVEF 
showed sensitivity and specificity of 83%, and 86% during 
the pre-CA TTE, and 70% and 79% at the time of CA diag-
nosis, respectively [25]. An TTE-based DL model developed 
by Duffy et al. demonstrated ROC AUC equal to 0.79 [26]. 
Moreover, an integrated ECG-TTE ML developed by Goto 
et al. showcased a 74–77% PPV [22]. Concerning the ECG 
models, the model developed by Grogan et al. demonstrated 
ROC AUC, and PPV equal to 0.91 and 0.86 respectively 
[7]. However, unlike the integrated ECG-TTE model of 
Goto et al. their sole-ECG model resulted in 3–4% PPV at 
52–71% recall [22]. With regards to the CMR, the CNN 
model developed by Agibetov et al. exhibited a 0.96 ROC 
AUC [3]. However, the ML used by Eckstein et al. showed 
a ROC AUC equal to 0.962 and 0.996 for models using 10 
and 41 variables respectively. The F1-score was reported 
97% for the 41-variable group [23]. Martini et al. developed 
a DL and an ML model for CMR. The DL model showed an 
ROC AUC of 0.982 with sensitivity of 95% and a F1-score 
of 89%. The ML model showed comparable results to the 
DL (p = 0.39) with AUC equal to 0.952 [24].

Moreover, a WBS-based CNN model developed by Del-
barre et al. demonstrated a sensitivity and specificity of 
98.9% (± 1.0), and 99.5% (± 0.4) respectively and a ROC 
AUC of 0.999 for the fivefold cross validation group. For 
their external validation group sensitivity and specificity 
were 96.1% and 99.5% respectively with a corresponding 
ROC AUC of 0.999 [27].

4 � Discussion

CA is a rare condition that is often underdiagnosed because 
its symptoms can resemble those of other cardiac patholo-
gies [2, 29]. Moreover, CA frequently manifests in an insidi-
ous manner, rendering early-stage diagnosis challenging 
[30]. AI has the potential to be used as a screening tool to 
address this issue [28]. In this systematic review, we dis-
cuss various ML and DL tools that can analyse laboratory 

parameters, TTE, ECG, CMR, Bone Scintigraphy to take a 
significant step towards the development of a reliable and 
accurate automated diagnostic tool for CA.

4.1 � Laboratory Parameters and Hospitalization 
Records

Agibetov et al. investigated the utilization of an expert-
independent machine learning (ML) in differential diagnosis 
between patients with HF with or without AL/ATTR CA 
association through routine laboratory parameters. Hence, 
the prospect of discernible patterns in standard laboratory 
evaluations between CA-related HF as opposed to CA-
unrelated HF was examined. Extensive knowledge regard-
ing the types of HF that occur frequently is evident in the 
medical community. In contrast, uncommon HF subtypes 
such as those witnessed in CA are prone to eluding diagno-
sis or experiencing protracted delays during the diagnostic 
process. Rare diseases are frequently diagnosed in special-
ized medical centers, often at the conclusion of a protracted 
patient diagnostic process. In this study, 62 routine labora-
tory parameters, comprising clinical chemistry parameters, 
blood cell count, and coagulation parameters, were procured 
for algorithm development. Even though particular param-
eters, such as liver and kidney function parameters, were 
regularly established in every patient, others indicated a high 
degree of unavailability. In this investigation, an ML algo-
rithm was adopted to enhance the accuracy of the baseline 
linear prediction model and to enable non-linear prediction, 
thereby improving the overall predictive performance. The 
model of logistic regression demonstrated a statistically sig-
nificant correlation between lower risk factors of cardiovas-
cular diseases, namely glucose (p = 0.008) and triglyceride 
(p = 0.008) levels in the bloodstream, and the presence of 
CA. The present finding implies that patients who develop 
HF due to CA may exhibit the condition in the absence of 
traditional cardiovascular risk factors, which are convention-
ally associated with ischemic heart disease and HFpEF [21].

Reduced concentrations of serum albumin and cholinest-
erase have been identified as potential indicators of compro-
mised hepatic synthetic activity in patients with HF, particu-
larly in cases of more advanced HF at the time of diagnosis 
in comparison to other HF subtypes. This observation may 
be attributed to delayed detection of CA in comparison to 
other HF subtypes [8]. The predictive models utilized by 
Agibetov et al. were all formulated using a training cohort of 
patients with CA (n = 121) and patients with HF but without 
CA (n = 415), as the foundation for their construction. A 
distinct prognostic validation cohort comprising 37 CA-pos-
itive and 124 CA-negative patients was employed to evalu-
ate the performance of all prediction models. The optimal 
model, constructed by means of gradient-boosted ensembles 
of decision trees, outperforms the best linear model. Given 
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the specificity of both models, it is advisable to utilize these 
automated prediction methods primarily as a screening tool 
for identifying potential CA patients. Subsequently, supple-
mentary confirmatory tests should be conducted to ensure 
accurate diagnoses. Moreover, given the rarity of CA as a 
form of HF, the aforementioned prediction models should 
not be used for general populations with a low disease preva-
lence (< 1%). Agibetov et al. implemented the algorithm on 
groups that displayed symptoms of HF, with a relatively high 
prevalence of amyloidosis at 23%, which is considered nota-
ble, considering that CA is a rare disease with a prevalence 
of 1 in 10,000 [21].

Similarly, an additional study conducted by García-
García et al. has delved into the same technique of CA 
detection, further highlighting the abiding relevance of ML 
in the arena of CA diagnosis. In this investigation, informa-
tion gathered from open-text medical and nursing records, 
acquired throughout hospitalization events served as the 
foundation for constructing an ML algorithm designed to 
diagnose cases of CA [28]. Given the chronic nature of the 
disease and the substantial number of elderly patients, effec-
tive healthcare cost management necessitates the exploration 
of efficient diagnostic methods. While structured clinical 
data informs, it incompletely elucidates disease progress. 
Conversely, unstructured information written by medical 
professionals may hold the key to understanding disease 
progression [28, 31]. This investigation involved the inclu-
sion of both structured and unstructured records pertaining 
exclusively to subjects aged 65 years or above, as symptoms 
of ATTR typically manifest in this age group. To ensure a 
comprehensive analysis of potential patients, not restricted 
to those receiving cardiology or internal medicine care, 
the entire cohort of patients admitted to the hospital was 
considered for inclusion [28]. This approach could identify 
undiagnosed cases that might have been missed. The algo-
rithmic prediction demonstrated superior outcomes when 
applied to the cohort of individuals afflicted with HF and 
CA disease. This method demonstrates a sensitivity of 0.56 
and a high specificity of 0.96, ensuring minimal false posi-
tives [21, 28, 31]. However, its sensitivity of 0.56 indicates 
that it may not be suitable for a screening method, where 
high sensitivity is crucial for early detection. The dimin-
ished precision and modest F1 score can be rationalized by 
the low frequency of the ailment under investigation [32]. 
The detection of warning signals and significant terms dis-
cerned through algorithmic analysis has the potential to be 
employed in intelligent support systems embedded within 
electronic medical records. These systems can provide sug-
gestions to clinicians when composing clinical evaluations 
by utilizing the identified keywords in the text. This applica-
tion of technology can aid in decision-making and directly 
affect clinical care. Algorithms are incapable of establishing 
a cause-and-effect correlation and, as such, cannot replace 

the role of physicians in clinical practice. However, ML 
algorithms can recognize numerical patterns derived from 
vast amounts of healthcare data, which may not be readily 
apparent to humans [28]. The utilization of health care epi-
sodes for data treatment represents an innovative approach 
that enhances the identification of infrequent medical condi-
tions. In this approach, the patient autonomously generates 
information that possesses adequate variability to be deemed 
distinct during the training of an ML algorithm. Enhancing 
the collection and interpretation of these multidimensional 
vectors can result in the revelation of novel trends that aug-
ment patient well-being or the effectiveness of the healthcare 
system [33].

4.2 � Transthoracic Echography

A study conducted by Cotella et al. sought to evaluate the 
comparability between fully automated AI calculation of 
LVEF and global longitudinal strain (GLS) measurements 
with those obtained by conventional manual methods. The 
study was designed to evaluate the diagnostic efficacy of 
automated AI algorithms in detecting anomalies in indi-
viduals diagnosed with pre-clinical and clinical CA via 
TTE. The LVEF and GLS were measured from the apical 
2- and 4-chamber views via both manual and automated 
approaches. Specifically, the EchoGo Core 2.0 software, 
developed by Ultromics, was employed in the automated 
measurements. The measurements of LVEF and GLS were 
subjected to dichotomization employing specific cutoff 
points. EF values below 50% and GLS values exceeding 
− 15.1% were utilized as the respective thresholds. The 
statistical analysis revealed that there were no statistically 
significant variations in the LVEF and GLS measurements 
obtained through manual and automated methods. This 
was observed both pre-clinical CA (p = 0.791 for LVEF 
and p = 0.105 for GLS, respectively) and at the time of 
diagnosis (p = 0.463 for LVEF and p = 0.722 for GLS, 
correspondingly). According to the results of the study, 
the sensitivity and specificity of AI-derived indices for 
detecting abnormal LVEF were found to be 83% and 86%, 
respectively, during the pre-CA TTE. However, these val-
ues decreased to 70% and 79%, respectively, at the time 
of CA diagnosis. Moreover, regarding the identification 
of abnormal GLS, in the pre-CA TTE, the AI-generated 
indices exhibited a sensitivity and specificity of 82% and 
86%, respectively. Upon the diagnosis of CA, the sen-
sitivity and specificity of the same indices were 100% 
and 67%, correspondingly. The etiology of the increased 
specificity observed in pre-CA compared to CA remains 
unclear; however, this discrepancy might result from 
image quality variations in the studies, limited sample 
size, unavailability of optimal apical-3-chamber (A3C) 
views for inclusion in left ventricular GLS analysis, and 
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the retrospective design of the study. However, consider-
ing the achieved successful results, extensive application 
of LVEF and GLS analysis via AI tools could potentially 
result in a more prompt evaluation of various disease states 
with accuracy and reproducibility that are comparable to 
manual methods [25]. Previous literature has reported that 
conventional echocardiographic parameters exhibit low 
diagnostic accuracy for CA, predominantly due to inad-
equate sensitivity [34]. However, patterns of myocardial 
deformation and global longitudinal strain have shown 
superior levels of sensitivity and specificity in diagno-
sis of CA [25]. Pagourelias et al. have demonstrated that 
the LVEF/GLS ratio is the optimal discriminating factor 
for CA, even in confronting challenging subsets within 
the patients [34]. Nonetheless, findings of Cotella et al. 
indicate that their LVEF/GLS ratio has poor sensitivity 
(25%) but good specificity (90%), which suggests that it 
could be potentially used as a rule-in diagnostic tool for 
CA. Moreover, by examining two distinct temporal points, 
it was demonstrated that utilization of the AI algorithms 
in these patients would enable the identification of CA 
aberrations even prior to the diagnosis, as stipulated by 
extant recommendations [25]. Furthermore, the utiliza-
tion of AI in the calculation of GLS could present poten-
tial advantages in the follow up of CA patients. Cohen 
et al. [35] highlighted the critical role of GLS in evaluat-
ing CA. The authors reported that baseline GLS was an 
independent predictor of survival, surpassing conventional 
biomarkers. Moreover, a decrease in GLS by 2.0% at 12 
and 24 month follow-up after clinical intervention cor-
related with improved long-term survival. These findings 
have significant clinical implications, particularly in the 
context of serial echocardiographic evaluations, which are 
typically performed on CA patients. Thus, the precise and 
reliable measurement of GLS is of paramount importance 
in the management of CA [25, 35].

In a multi-center investigation conducted by Goto et al. 
it was demonstrated that the echocardiographic model for 
the diagnosis of CA exhibits superior performance com-
pared to the interpretation by expert cardiologists [22]. 
Novel TTE features have been identified, necessitating the 
acquisition of specialized software packages by healthcare 
providers. These packages are often time-consuming to 
operate and are consequently primarily utilized in clinical 
practice once a disease is suspected [22, 36]. However, an 
all-encompassing detection strategy, possessing genuine 
generalizability, ought not to necessitate any specialized 
acquisition or processing techniques, and it should exclu-
sively rely on input data that is widely accessible to ensure 
its ubiquitous applicability. A video-based echocardiogra-
phy model could serve as a potential solution to address 
this issue. In the model developed by Goto et al. a singular, 
widely-acquired view, known as the apical 4-chamber view 

(A4C), was employed, which can be obtained utilizing 
low-cost handheld ultrasound devices.

The detection of CA on TTE poses a significant chal-
lenge for human readers due to two primary issues. Firstly, 
there is a lack of adequately specific features within the 
echo videos. Secondly, there exists a requirement for spe-
cialized cardiologists to ensure the inclusion of a thorough 
examination of relevant features in every diagnostic study. 
However, integrating this task into existing clinical work-
flows can pose a challenge. The latter issue can be effectively 
resolved through the utilization of an AI system. Goto et al. 
aimed to assess the former issue through the execution of a 
direct comparison between two proficient human readers and 
an AI system regarding the diagnostic performance for CA 
using the test sets obtained from three distinct institutions. 
The findings of the study demonstrate that the automated 
system’s AUC exhibited higher performance compared to 
that of human readers, across all cases examined, although 
in one case the outcome of the data analysis fell within the 
95% confidence interval for one of the readers on one of the 
institute’s data. (Predictive accuracy scores are illustrated 
in Table 1). Moreover, it is imperative to underscore the 
fact that the aforementioned model exhibited a discernibly 
superior performance in relation to ATTR amyloidosis as 
opposed to AL [22].

Duffy et al. used DL for measuring left ventricular wall 
thickness in order to detect possible cardiac hypertrophy, or 
cardiac amyloidosis. This endeavor holds significance owing 
to the inherent challenge in distinguishing etiological fac-
tors contributing to augmented ventricular wall thickness, 
encompassing hypertrophy, cardiomyopathy, and CA. This 
study encompassed a total of 23,745 patient records obtained 
from Stanford Health Care and Cedars-Sinai Medical Center. 
Echography video recordings from apical 4-chamber and 
parasternal long-axis views were employed for the study. 
Ultimately the external validation conducted within a 
domestic setting yielded an AUC equal to 0.79 and 0.89 
respectively for the CA and hypertrophic cardiomyopathy 
[26].

4.3 � ECG

AI models that employ ECG have the potential to func-
tion as a valuable tool for the timely diagnosis of CA due 
to their capacity to analyze multiple features in the ECG 
simultaneously. These features have been found to be 
linked with the early physiological alterations that occur 
during the disease. Furthermore, ECG alterations in con-
ditions such as ischemia or left ventricular dysfunction 
may function as a premature indicator prior to the identi-
fication of structural changes through TTE, as well as pre-
ceding the onset of symptoms [8]. Electrocardiography of 
AL CA could be characterized by pseudoinfarct patterns 
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and low-voltage, which are present in 45% of cases. How-
ever, normal voltage does not exclude the diagnosis [37]. 
Moreover, in patients with ATTRwt, low voltage sign on 
ECG is present only in 25% of cases [9], moreover hyper-
trophy could be present in CA patients with ATTRwt [38], 
and ECG signs of LVH was observed in 20% of this type 
of patients. Abnormalities in ST-segment, T-wave, and 
conduction system are commonly present in both types 
of CA; however, they are not CA specific [7]. A research 
investigation carried out by Grogan et al. [7] examined 
the utility of a deep neural network, trained on ECG data 
as a diagnostic tool to detect CA at the Mayo Clinic. The 
study comprised a sample size of 4995 patients, including 
both cases and controls. The experimental evaluations 
were conducted utilizing the 6-lead and single-lead ECG 
modalities. The AUC exhibited a value of 0.91, alongside 
a PPV of 0.86 for the purpose of diagnosing either type of 
CA. Additionally, the AI algorithm was able to accurately 
predict the presence of CA in 59% of cases included in the 
pre-diagnostic electrocardiogram study, at least 6 months 
prior to the clinical diagnosis. The top performing single-
lead algorithm was V5, which was associated with AUC 
and precision of 0.86 and 0.78 respectively. Other single 
lead algorithms demonstrated approximately the same 
performance. However, the 6-lead model proved to be 
more effective with AUC and precision of 0.90 and 0.85 
correspondingly. By enabling adaptation for both single-
lead and 6-lead ECG measurements, screening for CA 
would become possible using smartphone-enabled elec-
trodes. Grogan et al. suggest that the deep neural network 
developed can detect physiologic ECG changes, which are 
specific to CA and are not recognized by conventional 
ECG analysis. Conferring additional advantages in the 
context of CA, the AI-ECG model may hold the poten-
tial to propose the diagnosis of ATTRwt amyloidosis in 
females. Despite the commonly reported male preponder-
ance of over 90% in most studies to date, female patients 
are susceptible to the development of ATTRwt amy-
loidosis and may be subject to underdiagnosis. In such 
cases where classic echocardiographic characteristics are 
absent, the AI-ECG model may have the potential to pro-
pose the diagnosis of ATTRwt amyloidosis in females [7].

Similarly, Goto et al. utilized an ECG based ML algo-
rithm. Additionally, they developed an integrated ECG-
TTE model to enhance the diagnostic performance. The 
PPV of the ECG-based AI model was found to be in the 
range of 3–4% at a recall of 52–71%. The results indicate 
that pre-screening with ECG significantly enhanced the 
TTE model’s performance at a recall of 67%, resulting in 
an improved PPV of 74–77% compared to a PPV of 33% 
without pre-screening [22].

4.4 � CMR

CMR is also recognized as a diagnostic tool for detecting 
and characterizing CA. However, in specific scenarios, CMR 
imaging may not be sufficient to establish a dependable diag-
nosis of CA. Currently, the most informative diagnostic 
assessment for TTR CA is represented by DPD bone scin-
tigraphy. Conversely, DPD bone scintigraphy may frequently 
yield normal results and lack reliability in detecting AL CA. 
Furthermore, despite the potential lack of specificity in the 
manifestations of AL CA on CMR scans, and the occasional 
occurrence of a normal CMR in the presence of AL CA, 
CMR remains a valuable diagnostic modality for AL CA, as 
underlying pathological status, such as plasma cell dyscra-
sia, can be detected with the aid of CMR imaging [3, 39, 40].

In MRI centers with low referral volumes, there exists a 
risk of neglecting the detection of CA during the interpreta-
tion process [3]. Agibetov et al. [3] employed a DL model 
(specifically CNN) to devise a completely automated algo-
rithm for the diagnosis of CA via CMR. Different protocols 
were used for developing the AI model including late gado-
linium enhancement (LGE), Modified look-locker inversion 
recovery (MOLLI), and Cardiac Imaging with non-contrast 
enhancement (CINE). Specifically, the algorithms trained 
using LGE, outperformed the other models in the study [3]. 
LGE enables the identification of distinctive patterns, such 
as the expedited elimination of gadolinium from the myo-
cardium and blood pool, in comparison to nonamyloid con-
trol individuals [41]. The CNN model, which exhibited the 
highest level of performance in this study, attained an aver-
age ROC AUC score of 0.96, thereby yielding a diagnostic 
accuracy of 90% specificity and 94% sensitivity. By com-
paring the performance of AI models across various data 
modalities, it has been observed that the models that are 
capable of processing CMR images demonstrate the high-
est level of diagnostic accuracy in general. Agibetov et al. 
demonstrated that AI prediction models may not necessitate 
any advanced understanding of CA and could be independ-
ent of a particular imaging protocol [3]. Agibetov et al. were 
unable to utilize AI to differentiate between AL and ATTR 
amyloidosis due to the scarcity of CA and consequently, the 
limited number of available samples [3]. However, transmu-
ral and subendocardial LGE patterns exhibit distinguishing 
features that could differentiate AL from ATTR [40]. These 
findings imply a promising prospect for the application of 
AI in differentiating between these two subtypes. Another 
study carried out by Eckstein et al. [23] used a SVM algo-
rithm based on cardiac function (EF in specific) and multi-
chamber strain including strain measurements of the left and 
right atria and right ventricle for diagnosis of CA. Various 
types of AI algorithms were employed in this study, includ-
ing K-Nearest Neighbor (KNN), Supervised machine learn-
ing (SVM) linear, SVM radial basis function (RBF) kernel, 
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and decision tree (DT). The application of SVM algorithms 
has demonstrated high accuracy in distinguishing CA from 
a cohort of HCM patients and control subjects. The afore-
mentioned study presents novel insights into the use of 
non-contrast CMR imaging for diagnostic purposes, with 
the potential to aid clinical decision-making. Results indi-
cate that a SVM RBF kernel outperforms other algorithms, 
achieving high diagnostic accuracy under supervision. SVM 
RBF kernel demonstrated a diagnostic accuracy of 90.9%, 
AUC of 0.996, Sensitivity of 100%, Precision of 94%, and 
F1-Score of 97% in the 41-feature matrix employed in this 
study.

Martini et al. [24] conducted a comparative analysis of 
DL and ML algorithms considering all features collected 
through manual methods (left ventricular volume, distribu-
tion of LGE, early darkening of the blood-pool, function, 
mass, pleural and pericardial effusion, etc.), to compare the 
accuracy of the DL model to an ML human reading stimu-
lation model. In this study the assessment of LGE CMR 
obtained from the short axis, as well as 2 and 4-chamber 
views was performed by three DL networks. The results of 
the comparison between the ML and DL models indicated 
that the DL approach showed a comparable diagnostic per-
formance to the ML-based approach for the detection of CA 
(Table 1).

4.5 � Bone Scintigraphy

Delbarre et al. designed a convolutional neural network 
model aiming at automatic identification of significant car-
diac uptake on technetium-99 m, defined as Perugini grade 
equal to or greater than 2, on whole-body scintigraphy 
(WBS) images sourced from extensive hospital databases. 
This model extremely facilitates the identification of patients 
at risk of CA. This study used two validation methods. 

Fivefold cross-validation involves dividing a dataset into 
five equal subsets. Subsequently, the model is trained on 
four of these subsets while the fifth is used for testing. Exter-
nal validation, on the other hand, refers to testing a model 
on a separate dataset (in this case an independent hospital) 
that was not used during the model’s training or validation 
process. The fivefold cross-validation yielded 98.9% (± 1.0) 
sensitivity, 99.5% (± 0.4) specificity, and a ROC AUC equal 
to 0.999 (SD = 0.000), while external validation yielded 
96.1% sensitivity, 99.5% specificity, and a ROC AUC equal 
to 0.999. In light of these favorable outcomes and the sub-
stantial frequency at which WBS is performed worldwide, 
this approach possesses the capacity to function as a screen-
ing modality for TTR-CA [27].

5 � Risk of Bias Assessment

Risk of bias was evaluated by the Quality Assessment of 
Diagnostic Accuracy Studies (QUADAS-2) [42]. Table 2 
summarizes the risk of bias assessment outcomes.

6 � Conclusions

The implementation of AI algorithms in both forms of ML 
and DL provides an efficient method for analyzing multi-
ple diagnostic modalities, including laboratory parameters, 
hospitalization records, TTE, ECG, and Bone Scintigra-
phy. ML models based on routine laboratory parameters 
and open-text medical and nursing records have demon-
strated utility in the detection of CA. Similarly, an ML 
model using LVEF and GLS measurements obtained from 
TTE has demonstrated high efficacy in the identification 
of both pre-clinical and clinical CA. The TTE model was 

Table 2   Risk of bias assessment 
with QUADAS

– low risk, — high risk, ? unclear risk

Study Risk of bias Applicability concerns

Patient 
selection

Index test Reference 
standard

Flow and 
timing

Patient 
selection

Index test Refer-
ence 
standard

Agibetov et al. [21] — ? – ? – – –
Agibetov et al. [3] – ? – — – – –
García-García et al. [28] ? ? ? ? – – ?
Duffy et al. [26] – – – ? – – –
Jan Eckstein et al. [23] – – – ? – – –
Cotella et al. [25] ? – – — – – –
Delbarre et al. [27] – – – – – – –
Grogan et al. [7] — — ? — – – –
Martini et al. [24] – ? – ? – – –
Goto et al. [22] — – – — – – –
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reported in one instance to have better diagnostic perfor-
mance compared with expert cardiologists. ECG-based 
models were able to identify pre-clinical CA through rec-
ognition of physiological ECG patterns. In addition, AI 
models using LGE sequences have showed high effective-
ness in the diagnosis of CA. Overall, the integration of 
AI tools presents a promising avenue for advancing the 
diagnosis of CA even further.

Finally, we might suggest a three-step approach for CA 
diagnosis using AI tools:

1.	 Asymptomatic individuals could be screened for CA 
using ECG AI models.

2.	 Patients with suspected CA could be screened further 
using AI-models including ECG and TTE data.

3.	 Symptomatic patients may benefit from AI models 
including routine laboratory data, MRI, and Bone Scin-
tigraphy.

Supplementary Appendix 1

PubMed:
("AI"[tw] OR "Artificial intelligence"[tw]) AND ("car-

diac amyloidosis"[tw]) NOT ("Apolipoprotein*"[tw] OR 
"APO*"[tw])

Embase:
('AI':ti OR 'Artificial intelligence':ti) AND ('cardiac 

amyloidosis':ti) NOT ('Apolipoprotein*':ti,ab,kw,de OR 
'APO*':ti,ab,kw,de)

Medline:
("AI".tw. OR "Artificial intelligence".tw.) AND ("car-

diac amyloidosis".tw.) NOT ("Apolipoprotein*".tw. OR 
"APO*".tw.)
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