
Testing Robot Challenge: A Serious Game for Testing Learning

Anna Rita Fasolino
University of Naples Federico II

Naples, Italy
fasolino@unina.it

Caterina Maria Accetto
University of Naples Federico II

Naples, Italy
c.accetto@studenti.unina.it

Por�rio Tramontana
University of Naples Federico II

Naples, Italy
ptramont@unina.it

Abstract

Software testing education is becoming increasingly important both

in academia and industry. Despite e�orts to improve teaching ap-

proaches at the university level, many challenges persist for better

preparing students for their future careers. In this position paper

we present the Testing Robot Challenge tool implementing a seri-

ous game designed for motivating the students to practice testing

and learn how to write e�ective unit tests in coverage testing. The

game exploits themechanism of the challenge that students can play

against state-of-the-art tools for automated test case generation.

It is con�gurable by teachers, in order to tune the complexity and

type of challenges to the speci�c needs of the students and to the

objectives of the course taught. To validate the tool, we performed

a preliminary experiment involving 15 students of a Software Engi-

neering course who provided generally positive feedback about it

and useful comments for its future improvement.

CCS Concepts

• Applied computing→ Interactive learning environments.

Keywords

Software Testing Education, Automated Testing, Gami�cation of

Learning Activities, Serious Games

ACM Reference Format:

Anna Rita Fasolino, Caterina Maria Accetto, and Por�rio Tramontana.

2024. Testing Robot Challenge: A Serious Game for Testing Learning. In

Proceedings of the 3rd ACM International Workshop on Gami�cation in

Software Development, Veri�cation, and Validation (Gamify ’24), Septem-

ber 17, 2024, Vienna, Austria. ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3678869.3685686

1 Introduction

Software testing education is indispensable in software develop-

ment, yet often overlooked, contributing to a shortage of exper-

tise in the software industry. Becoming an experienced software

tester requires both understanding many strategies for writing

high-quality test cases and a signi�cant amount of practice [14].

Despite the well-known importance of software testing and the

recommendation to integrate software testing into Computer Sci-

ence and Software Engineering curricula as part of the educational

experience [10], doing practice of software testing and test case

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Gamify ’24, September 17, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1113-8/24/09
https://doi.org/10.1145/3678869.3685686

design is not so frequent in software testing courses. In a recent aca-

demic course mapping study involving 22 software testing courses

and 97 courses also including testing topics from 4 European coun-

tries, the authors found that structure-based testing is taught in

all the analysed software testing courses (100%) but the laboratory

activities devoted to the practice of software testing are very lim-

ited, usually due to scarce resources of time that are available to the

teachers. [15]. Even when the academic degrees devote more time

resources to software testing, there is the problem of addressing

the students’ low motivation to do testing practice [6]. Students

generally do not derive a great deal of satisfaction from exposing

�aws in their own programs, they perceive testing as not important,

boring and repetitive, and do not acquire the practice and expe-

rience that software testing deserves. In addition, the traditional

"passive learning" pedagogical approaches used to teach testing are

not adequate to make students more motivated to write unit tests

as they code.

To increase the motivation of students in doing practice of test

case design, several strategies and approaches have been described

[8]. One of the proposed solutions consists of using a tool during

the testing learning experience, including tools providing a learn-

ing environment that guides students through a learning path [3]

and interactively [13], tools aiming to support students in prac-

ticing testing in laboratory settings [16] , and tools that exploit a

gami�cation approach to better motivate students [9], [5], [12].

Gami�cation is widely recognized as “the use of game design

elements in non-game contexts” [2]. Gami�cation uses the phi-

losophy, elements, and mechanics of game design in non-game

environments to induce certain behavior in people, as well as to

improve their motivation and engagement in a particular task [7].

Although several games are available to support testing education

[17], many of them present the issue of not being easily integrable

by teachers in the courses they teach. They may not perfectly �t the

speci�c learning goals of the courses and the learning needs of the

students [11]. Hence there is the need for more tools con�gurable

by the teachers, in order to provide an attractive and accessible

game experience to the students, irrespective of their testing skills

and learning needs.

In this position paper we present the Testing Robot Challenge,

a tool that we designed to �ll in this gap. The tool implements a

serious game for motivating the students to learn how to write

e�ective JUnit test cases in coverage testing. The game exploits

the mechanism of the challenge that students can play against an

automated test generator. The tool is con�gurable by teachers, in

order to tune the complexity and type of challenges to the speci�c

needs of the students and the objectives of the course taught. A

�rst prototype implementation of the tool has been developed in

the context of the ENACTEST research project1. A case study has

1https://enactest-project.eu/

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

26

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7116-019X
https://orcid.org/0009-0007-3749-295X
https://orcid.org/0000-0003-3264-185X
https://doi.org/10.1145/3678869.3685686
https://doi.org/10.1145/3678869.3685686
https://doi.org/10.1145/3678869.3685686
https://enactest-project.eu/


Gamify ’24, September 17, 2024, Vienna, Austria Anna Rita Fasolino, Caterina Maria Acce�o, Porfirio Tramontana

been carried out to explore and preliminary validate the learning

approach supported by the tool. The study has been performed in

the context of a Software Engineering course o�ered in a Bache-

lor Degree in Computer Engineering at the University of Naples

Federico II. Its results were encouraging and showed us several

directions for future improvements. The remainder of the paper

is organized as follows. Section 2 presents the tool features and

Section 3 illustrates how we implemented it. Section 4 describes the

case study we executed, while Section 5 reports �nal conclusions

and future works.

2 The Testing Robot Challenge Tool

The Testing Robot Challenge tool has the aim to convoy several

software testing topics (e.g., coverage testing, unit testing, JUnit

framework, automated test generators, ..) by a serious game where

the learners can experiment the listed topics in practice, by a game-

ful engaging experience. The serious game has been de�ned accord-

ing to the framework proposed in [7] and presents goals, mechanics

(the basic actions and control mechanisms that are necessary to

gamify the interaction of practitioners with tools), evaluable actions

(an action or condition related to players which can be evaluated

in the game to assess if an achievement can be obtained as a result

of it), a Rule Engine (to evaluate the actions), etc.

The tool has been designed as a Web application that provides

the students the possibility to play challenges (a kind of missions)

regarding the test case development activity using the JUnit frame-

work. The challenge is played against an automated generator of

test cases, named Robot. The aim of the game is to overcome the

Robot in terms of the code coverage reached by the developed test

cases. When the player wins the challenge, he/she is assigned a

score. The game maintains a leaderboard of players showing how

many challenges they won and the score they earned. The best

performing players will be assigned rewards.

There are several types of challenge that can be chosen by the

player once he has registered in the app. In the �rst type of chal-

lenge, named Robot Fight, the player can �ght against a single Robot.

To run this challenge the tool presents a code editing environment

where the player can write JUnit test methods trying to cover as

much as possible the code of a Java class under test. Once the stu-

dent is con�dent with the adequacy of the written tests, he can

challenge the Robot to propose its test cases and compare their

respective coverage levels. The tool automatically evaluates the

code coverage of both the student’s and the Robot test cases, and

decrees the winner of the game. When the player beats the Robot,

he earns a score that will be used to build a leaderboard of di�erent

players. Figure 1 shows the UML activity diagram representing

the game mechanics of the Robot Fight challenge. Figure 2 instead

shows the page of the game o�ered to the players during the chal-

lenge execution. The upper left frame shows the editor for writing

test cases and a toolbar to input commands, including the Com-

pile/Run/Play commands. The upper right frame shows the code of

the class under test that will be highlighted in red/green color after

the test run, depending on the achieved code coverage. The lower

left frame presents the test compilation results, while the lower

right ones will show the results of the game and the winner of the

challenge, reporting the di�erent levels of code coverage achieved

by the player and the Robot. In the current implementation of the

tool it is possible for a player to choose both the Class and the

Robot to challenge. The app o�ers several Robots having di�erent

test case generation capabilities. The Robots are based either on

the Randoop2 or Evosuite3 test case generators, which are run for

time slots of di�erent lengths in order to generate test suites with

di�erent coverage levels. In this way we are able to simulate more

Robots with di�erent levels of "power". For having the Robot test

cases immediately available and reducing the waiting time, the Ro-

bot test cases are not generated during the game, but are produced

beforehand and stored in a repository. A second type of challenge

o�ered by the tool is called Boss-Rush and allows a player to �ght

more than one Robot at each game attempt. The dynamic of the

game is the same as the former type, even if the challenge has a

greater complexity. The tool also o�ers the Training challenge that

allows the player to play as much rounds as he wants against the

same Robot, with the aim of exploring how to write better test

cases, having the possibility to compare the test case coverage at

each round. Another type of challenge named Climbing presents

multiple levels to appeal the players with di�erent skill levels. At

each level the player has to test a di�erent class. Each time the

Robot is defeated, the player earns a score and reaches the succes-

sive level of the game. The scores are assigned based on the code

coverage that was reached and the number of attempts that were

necessary to beat the Robot, according to similar metric approaches

used in the literature [1]. Di�erent players can choose to run the

same Climbing, so that the game builds a Climbing leaderboard and

assigns a Reward to the player with the highest score.

The tool has been designed to be easily con�gurable by software

testing teachers who want to tune the challenges o�ered by the ap-

plication with the characteristics and learning goals of the courses

they teach. To this aim, classes having di�erent complexities can

be uploaded and assigned to the Climbing challenges. The tool

also o�ers the teacher a dashboard where he can monitor the stu-

dents who actually registered to the tool, the number of challenges

they played and won, and the time they spent for the challenge

executions.

3 Tool Implementation

The Testing Robot Challenge tool has been developed as a Web

application usable from a Web browser, to be accessible by teachers

and students from di�erent sites. The tool architecture is modular,

based on the micro-service style, designed to be easily evolved and

deployed. An architecture overview is shown in Figure 3 which

illustrates the composing microservices (from T1 to T9) exposed

by REST APIs and deployed in the back-end of the application.

Three of these services implement a data persistence, such as the

T1 (o�ering the administrator front-end for logging and con�guring

the challenges o�ered by the tool), the T23 service (responsible for

Players’ registration, authentication, and access to the game), and

T4, which is the Game Repository that o�ers theAPIs for storing and

retrieving all the data related to the played challenges. The T5 and

T6 components implement the Game Front-End and Game Engine,

respectively, using the Java Spring MVC framework and the open

2Randoop, https://randoop.github.io/randoop/
3EvoSuite, https://www.evosuite.org/

27

https://randoop.github.io/randoop/
https://www.evosuite.org/


Testing Robot Challenge: A Serious Game for Testing Learning Gamify ’24, September 17, 2024, Vienna, Austria

Figure 1: The Game Mechanics of the Testing Robot challenge

Figure 2: End of the Game

source Code Mirror component4, usable for implementing code

editing features in a Web browser. T7 o�ers the Build&Run services

that are responsible for building and running the tests written by the

player, and evaluating the achieved code coverage by the JaCoCo

library. T8 and T9 provide the APIs for automatically generating

the test cases for a given input class using Evosuite and Randoop,

respectively. T8 also o�ers a dedicated API for evaluating additional

coverage metrics and the mutation score achieved by test cases,

using the Evosuite coverage evaluation and mutant generation

features. The architecture integrates an API Gateway component.

Figure 3: Architecture of the Web App

4 Validation

The goal of the proposed Testing Robot Challenge tool is tomotivate

the students to do more practice of unit testing by means of the

4Code Mirror,https://codemirror.net/

gameful experience of the testing challenges. To validate our tool,

we decided to carry out a case study with students of a Software

Engineering course o�ered by a Bachelor Degree in Computer

Engineering, that aimed to answer the following research questions:

RQ1 What is the students’ perception about the usability of the

tool in the learning experience of coverage testing?

RQ2 What is the students’ perception about the usefulness of the

tool to learn how to develop e�ective unit test cases?

RQ3 What is the student perceived satisfaction in using the tool?

The subjects involved in the study were 15 students of a Software

Engineering course o�ered in a Bachelor Degree in Computer Engi-

neering at the University of Naples, Federico II. During the course

the students had the opportunity to learn basics of white-box and

black-box test case design techniques and how to implement test

cases with JUnit. The students involved in the study were recruited

voluntarily and did not receive any reward for their participation

in the study. As to the classes involved in the challenges, we chose

Java classes belonging to the SF110 repository originally proposed

in [4]. The test classes have a size between 345 and 750 LOCs, with

an average of 520 LOCs. The experimental procedure included the

following steps:

• the students were presented the Game and its features in a

practical 2-hours lecture, where they learned how to play

the challenges against the Robots;

• each student was assigned a homework consisting in playing

a Robot Fight, a Boss-Rush, and a Climbing challenge. There

was no speci�c time constraint except that the homework

had to be completed in two weeks;

• after completing the assignment, the students answered an

anonymous Post- questionnaire designed to collect their

opinions about the unit testing learning experience they

made with the support of the tool.

4.1 Results

To answer our research questions, we analysed the answers to the

questionnaire. It was composed of 29 questions, structured in three

sections, each one addressing a di�erent attribute among usability,

usefulness, and user satisfaction. For each question, the students

had to provide a level of agreement according to a �ve-value Lik-

ert scale (Strongly agree = 5. Agree =4, Neutral =3, Disagree=2,

Strongly Disagree = 1). In a conclusive section of the questionnaire

the students could also provide comments, suggestions or issues

28

https://codemirror.net/


Gamify ’24, September 17, 2024, Vienna, Austria Anna Rita Fasolino, Caterina Maria Acce�o, Porfirio Tramontana

encountered with the tool. The questionnaire and the frequency of

the student answers are available online5.

As to RQ1, the answers to the �rst part of the questionnaire

showed that generally the students were neutral about the usability

of the tool. In particular, on the basis of the latter 5 question an-

swers, we deduced that some aspects of the tool might be improved,

such as the messages it provides to correct errors or to recover

from errors made. We further investigated with the students these

answers, and understood that the denounced problems regarded

the lack of support to solve compilation errors, since the Web app

at the moment does not o�er debugging features. We may address

this limitation in the future evolution of the tool. As to RQ2, the

results of the second section showed that most of students agreed

about the usefulness of the tool for the learning experience, they

were con�dent and comfortable while learning with the tool, the

tool motivated them to learn and met their learning requirements.

As regards the User Satisfaction investigated in RQ3, most of the

students found the learning experience challenging and stimulating,

they were able to achieve the stated goals, remained focused on the

tasks, and were satis�ed with the feedback provided by the tool.

Finally, some of the student comments regarded speci�c implemen-

tation aspects of the tool that will have to be improved in future

work: they complained about the small size of the frame o�ered

for test case editing, about the low support o�ered by the editor to

solve compilation errors, and di�culties found to write e�ective

test cases in some challenges. We will address the former two issues

in future implementations of the tool. As to the latter comment,

since the experimented di�culties could be related to the previous

background owned by the students, it con�rmed the necessity of

accurately tuning the challenges, according to the learning needs

of the students. In the future, we intend to carry out further studies

involving students having di�erent testing skills and classes hav-

ing di�erent complexity, in order to evaluate the usefulness of the

con�gurability features of the tool.

5 Conclusions and Future Works

In this paper we presented a tool providing a serious game that

aims to motivate the students to do more practice of unit testing by

means of the gameful experience of the testing challenges against a

Robot. The tool was validated by a preliminary case study involving

15 students of a Software Engineering course o�ered by a Bache-

lor Degree in Computer Engineering. The obtained results about

usability, usefulness, and perceived satisfaction from the students’

point of view are encouraging and suggest possible directions about

how to improve the tool in the future. These include enriching the

game with new mechanics and components to support the existing

challenges, such as the introduction of a hint/feedback system, a

reward system for completing speci�c missions and the possibility

of unlocking extra content. In future work, we also intend to design

and carry out further experiments involving more students from

di�erent courses, to evaluate the bene�ts of using the tool in dif-

ferent learning contexts. We intend to make available our tool and

the supporting teaching materials to foster its adoption by teachers

in other Software Testing courses and to evaluate the tool features

from the teachers’ point of view.

5https://zenodo.org/records/13134335

Acknowledgments

This work has been partially funded by ENACTEST (European inno-

vation alliance for testing education), ERASMUS+ Project number

101055874, 2022-2025. The �rst author thanks the Master students

of the "Software Architecture Design" course at the University

of Naples Federico II who contributed to the development of the

Testing Robot Challenge Web application.

References
[1] Filippo Cacciotto, Tommaso Fulcini, Riccardo Coppola, and Luca Ardito. 2021.

A Metric Framework for the Gami�cation of Web and Mobile GUI Testing. In
2021 IEEE International Conference on Software Testing, Veri�cation and Validation
Workshops (ICSTW). 126–129. https://doi.org/10.1109/ICSTW52544.2021.00032

[2] Sebastian Deterding, Miguel Sicart, Lennart Nacke, Kenton O’Hara, and Dan
Dixon. 2011. Gami�cation. using game-design elements in non-gaming contexts.
In CHI ’11. ACM, 2425–2428. https://doi.org/10.1145/1979742.1979575

[3] Sebastian Elbaum, Suzette Person, Jon Dokulil, and Matt Jorde. 2007. Bug Hunt:
Making Early Software Testing Lessons Engaging and A�ordable. In Proceedings
of the 29th International Conference on Software Engineering (ICSE ’07). IEEE CS,
688–697. https://doi.org/10.1109/ICSE.2007.23

[4] Gordon Fraser and Andrea Arcuri. 2014. A Large-Scale Evaluation of Automated
Unit Test Generation Using EvoSuite. ACM Trans. Softw. Eng. Methodol. 24, 2,
Article 8 (dec 2014), 42 pages. https://doi.org/10.1145/2685612

[5] Gordon Fraser, Alessio Gambi, Marvin Kreis, and José Miguel Rojas. 2019. Gami-
fying a Software Testing Course with Code Defenders. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education (SIGCSE ’19). ACM,
571–577. https://doi.org/10.1145/3287324.3287471

[6] Gordon Fraser, Alessio Gambi, and José Miguel Rojas. 2020. Teaching Software
Testing with the Code Defenders Testing Game: Experiences and Improvements.
In IEEE International Conference on Software Testing, Veri�cation and Validation
Workshops (ICSTW). 461–464. https://doi.org/10.1109/ICSTW50294.2020.00082

[7] Félix García, Oscar Pedreira, Mario Piattini, Ana Cerdeira-Pena, and Miguel
Penabad. 2017. A framework for gami�cation in software engineering. Journal of
Systems and Software 132 (2017), 21–40. https://doi.org/10.1016/j.jss.2017.06.021

[8] Vahid Garousi, Austen Rainer, Per Lauvås, and Andrea Arcuri. 2020. Software-
testing education: A systematic literature mapping. Journal of Systems and
Software 165 (2020), 110570. https://doi.org/10.1016/j.jss.2020.110570

[9] Pedro Henrique Dias Valle, Armando Maciel Toda, Ellen Francine Barbosa, and
José Carlos Maldonado. 2017. Educational games: A contribution to software
testing education. In 2017 IEEE Frontiers in Education Conference (FIE). 1–8. https:
//doi.org/10.1109/FIE.2017.8190470

[10] E.L. Jones. 2001. An experiential approach to incorporating software testing into
the computer science curriculum. In 31st Annual Frontiers in Education Conference,
Vol. 2. F3D–7. https://doi.org/10.1109/FIE.2001.963741

[11] Beatriz Marín, Tanja E. J. Vos, Monique Snoeck, Ana C. R. Paiva, and Anna Rita
Fasolino. 2023. ENACTEST project - European Innovation Alliance for Testing
Education. In Proceedings of CAiSE 2023, Vol. 3413. CEUR-WS.org, 91–96. https:
//ceur-ws.org/Vol-3413/paper13.pdf

[12] Antonio Materazzo, Tommaso Fulcini, Riccardo Coppola, and Marco Torchiano.
2023. Survival of the Tested: Gami�ed Unit Testing Inspired by Battle Royale. In
2023 IEEE/ACM 7th International Workshop on Games and Software Engineering
(GAS). 1–7. https://doi.org/10.1109/GAS59301.2023.00008

[13] Rebecca Smith, Terry Tang, Joe Warren, and Scott Rixner. 2017. An Automated
System for Interactively Learning Software Testing. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’17). ACM, 98–103. https://doi.org/10.1145/3059009.3059022

[14] Philipp Straubinger andGordon Fraser. 2023. A Survey onWhat Developers Think
About Testing. In 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE). 80–90. https://doi.org/10.1109/ISSRE59848.2023.00075

[15] Por�rio Tramontana, BeatrizMarín, Ana C. R. Paiva, AlexandraMendes, Tanja E. J.
Vos, Domenico Amal�tano, Felix Cammaerts, Monique Snoeck, and Anna Rita Fa-
solino. 2024. State of the Practice in Software Testing Teaching in Four European
Countries. In 17th IEEE International Conference on Software Testing, Veri�cation
and Validation (ICST) 2024. https://doi.org/10.1109/ICST60714.2024.00015

[16] Wu Wen, Jiahui Sun, Ya Li, Peng Gu, and Jianfeng Xu. 2019. Design and Im-
plementation of Software Test Laboratory Based on Cloud Platform. In 2019
IEEE 19th International Conference on Software Quality, Reliability and Security
Companion (QRS-C). 138–144. https://doi.org/10.1109/QRS-C.2019.00039

[17] Tamara Zivkovic and Miodrag Zivkovic. 2021. Survey of Learning Environments
for Software Testing Education. In 7th Conference on the Engineering of Computer
Based Systems (Novi Sad, Serbia) (ECBS 2021). ACM, Article 7, 9 pages. https:
//doi.org/10.1145/3459960.3459971

Received 2024-07-03; accepted 2024-07-24

29

https://zenodo.org/records/13134335
https://doi.org/10.1109/ICSTW52544.2021.00032
https://doi.org/10.1145/1979742.1979575
https://doi.org/10.1109/ICSE.2007.23
https://doi.org/10.1145/2685612
https://doi.org/10.1145/3287324.3287471
https://doi.org/10.1109/ICSTW50294.2020.00082
https://doi.org/10.1016/j.jss.2017.06.021
https://doi.org/10.1016/j.jss.2020.110570
https://doi.org/10.1109/FIE.2017.8190470
https://doi.org/10.1109/FIE.2017.8190470
https://doi.org/10.1109/FIE.2001.963741
https://ceur-ws.org/Vol-3413/paper13.pdf
https://ceur-ws.org/Vol-3413/paper13.pdf
https://doi.org/10.1109/GAS59301.2023.00008
https://doi.org/10.1145/3059009.3059022
https://doi.org/10.1109/ISSRE59848.2023.00075
https://doi.org/10.1109/ICST60714.2024.00015
https://doi.org/10.1109/QRS-C.2019.00039
https://doi.org/10.1145/3459960.3459971
https://doi.org/10.1145/3459960.3459971

	Abstract
	1 Introduction
	2 The Testing Robot Challenge Tool
	3 Tool Implementation
	4 Validation
	4.1 Results

	5 Conclusions and Future Works
	Acknowledgments
	References

