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Abstract

The rank ordered distribution of the codon usage frequencies for 109 eubacteria and 14 archaea is best fitted by a three-

parameter function which is the sum of a constant, an exponential and a linear term in the rank n. The parameters depend

(two parabolically) from the total GC content. The rank ordered distribution of the amino acids is fitted by a straight line.

The Shannon entropy computed over all the codons is well fitted by a parabola in the GC content, while the partial

entropies computed over subsets of the codons show peculiar different behavior. Moreover, the sum of the codon usage

frequencies over particular sets, e.g. with C and A (respectively G and U) as ith nucleotide, show a clear linear dependence

from the GC content, exhibiting a conspiracy effect.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The genetic code is degenerate, referring to the fact that almost all the amino acids are encoded by
‘synonymous’ codons, and this degeneracy is primarily found in the third position of the codon. Some codons
are used much more frequently than others to encode a particular amino acid, the pattern of codon usage
varying between species. In the last few years, the number of available data for coding sequences has
considerably increased [1], allowing for analysis to look for regularities, correlations and general features over
the whole exonic region. Recently, from an analysis of the rank distribution for codons, in RNA coding
sequences1 performed in many genes for several biological species, the existence of a universal, i.e. biological
species independent, distribution law for codons for the eukaryotic code has been remarked [2]. Indeed, it was
pointed out that the rank of codon usage probabilities follows a universal law, the frequency function of the
rank ordered codons being very nicely fitted by a sum of an exponential, a linear part and a constant. Such a
e front matter r 2006 Elsevier B.V. All rights reserved.
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s constituted by four bases, the adenine (A), the cytosine (C), the guanine (G) and the thymine (T), this last one being

uracil (U) in the messenger RNA. A codon is defined as an ordered sequence of three bases. Coding sequences in RNA are

y their constituting codons.

www.elsevier.com/locate/physa


ARTICLE IN PRESS
L. Frappat, A. Sciarrino / Physica A 369 (2006) 699–713700
universal behaviour suggested the presence of general biases, one of which was identified with the total exonic

GC content (denoted throughout the paper by yGC, 0pyGCp1), which is well known to play a strong role in
the evolutionary process. In fact, the values of the parameters appearing in the fitting expression, plotted vs.
the total exonic GC content of the biological species, were reasonably well fitted by a parabolic function of the
GC content. It is worthwhile to recall that the determination of the kind of law the codon rank distribution
follows is extremely interesting in the investigations of the nature of the evolutionary process, which has acted
upon the codon distribution, i.e. the eventual presence of a bias.

Possible origins of codon bias have been recognised either as the result of natural selection or as the result of
mutational pressure acting on the whole genome, also known as neutral evolution theory [3,4]. Experimental
evidence has showed now that both effects should occur (see e.g. Ref. [5] for the influence of the biased
mutation pressure in the perspective of the neutral theory of molecular evolution, Ref. [6] for exhibiting the
role of external selective forces in the case of thermophilic bacteria, Ref. [7] for an analysis of genome-wide
codon bias of bacterial species, Ref. [8] for a discussion on the relative role of mutational bias and
translational selection for codon usage in many genomes, including bacteria ones, Ref. [9] for a model
explaining trends in codon and amino-acid usage vs. GC content). Quantitative model of directional
mutational pressure has been proposed to measure to some extent the relative role of selection constraints and
neutrality [10,11]. Many efforts have also been made to study codon bias among genes of a given genome, in
particular, the influence of the gene expression level [12–14], of the tRNA abundance Ref. [15,16], of
translational accuracy [17], see also Ref. [9] and references therein.

It seemed to us interesting to continue our previous analysis on a ‘trend across species’ basis by focusing on
the bacteria, one main interest of the present study arising from the wide variation of the total GC content
ranging from 25% to 75 %, whereas the GC variation inside a bacterial genome is much smaller. Our results is
that the rank ordered distribution of the codon usage frequencies for bacteria is best fitted by a three-
parameter function, which is the sum of a constant, an exponential and a linear term in the rank n. Two of the
three parameters depend parabolically on the total exonic GC content. As the sum, over suitable sets below
defined, of the codon usage frequencies is well fitted by a straight line in the GC content, we say that
conspiracy effect has to be present. Moreover, we conjecture the existence of an averaged discrete symmetry in
the codon usage frequencies, reasonably confirmed by the data. We also calculate the rank ordered
distribution of the 20 amino acids, which is satisfactorily fitted by a straight line in yGC.

We compute the Shannon entropy (as defined in Ref. [18]) and find that its behaviour in function of the
exonic GC content is a parabola, whose apex is around the value 0.50 of the GC content, which is expected for
the behaviour of the Shannon entropy for two variables. Moreover, the Shannon entropies for the codons,
whose orders in rank are, respectively, in the ranges 1–15, 16–25 and 26–61, have peculiar features, which we
comment below.

The study of this paper was based on a sample of 109 bacteria and 14 archaea, with a codon statistics larger
than 300 000. The data were taken from Codon Usage Tabulated from GenBank [1] (see also http://
www.kazusa.or.jp/codon/), release 138 for eubacteria and mainly release 144 for archaea.

2. Codon usage probabilities distribution

Let us define the usage probability for the codon XZN (X ;Z;N 2 fA;C;G;Ug)

PðXZNÞ ¼ lim
ntot!1

nXZN

Ntot

, (1)

where nXZN is the number of times the codon XZN has been used in all considered processes, for a given
biological species, and Ntot is the total number of codons used in the same processes. It follows that our
analysis and predictions hold for biological species with sufficiently large statistics of codons. For each
biological species, codons are ordered following the decreasing order of the values of their usage probabilities,
i.e. codon number 1 corresponds to the highest value, codon number 2 is the next highest, and so on. We
denote by f ðnÞ the probability PðXZNÞ of finding XZN in the nth position. Of course the same codon occupies
in general two different positions in the rank distribution function for two different species. By plotting f ðnÞ

vs. the rank we confirm that the data are best fitted by the kind of function we found in Ref. [2], i.e. the sum of

http://www.kazusa.or.jp/codon/
http://www.kazusa.or.jp/codon/
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Fig. 1. Codon rank distribution f ðnÞ for B. burgdorferi.
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an exponential function, a linear function and a constant:

f ðnÞ ¼ a e�Zn � bnþ g. (2)

In the following analysis we shall not consider the three stop codons, whose function is very peculiar.
Therefore, the four parameters a, Z, b and g are constrained by the normalisation condition

x ¼
a e�Z

1� e�Z
� 1891bþ 61g, (3)

where xo1 is a number that is computed for any biological species from the codon usage frequency for the 61
encoding codons (note that the result is almost unchanged if the data are normalised to one summing over the
64 coding codons).2

In the following, the parameters for the different fits have been computed using a best-fit procedure, the
curve fit being based on the Levenberg–Marquardt algorithm [19]. The w2 coefficient is defined by

w2 ¼
X

i

ðyi � y0iÞ
2

y0i
(4)

and the Pearson’s R coefficient by

R ¼

P
iðyi � yÞðy0i � y0ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðyi � yÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðy
0
i � y0Þ2

q , (5)

where yi are the actual values, y0i are the calculated ones, y and y0 are the means of the actual values and of the
calculated ones, respectively. Recall that R2 represents the ratio of the explained variance on the total
variance. Fits can be considered as satisfactory for values of R2

\0:8.
In Figs. 1–4, we report the plot of f ðnÞ as a function of n for a few bacteria: Borrelia burgdorferi

(GC ¼ 28.8%), Bacillus subtilis (GC ¼ 44.4%), Escherichia coli (GC ¼ 51.8%), and Ralstonia solanacearum

(GC ¼ 67.5%). One remarks that the codon rank distributions show mainly a not far from uniform or slowly
2The procedure to fit f ðnÞ in the present paper is slightly different from the one followed in Ref. [2]. In that paper the value of the

parameter g was fixed to the value corresponding to a uniform distribution, i.e. g ¼ 1=61 ’ 0:0164. Therefore, we were left with only two

free parameters, while in the present paper we use three free parameters. While the general feature of the fit are unchanged, the present fits

are more accurate with a w2 lower of about two orders of magnitude.
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Fig. 2. Codon rank distribution f ðnÞ for B. subtilis.
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Fig. 3. Codon rank distribution f ðnÞ for E. coli.
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decreasing behaviour for most of the codons, and a peak of a small number of highly ‘overrepresented’ codons
(codon bias contribution).3

Note that the fits of the rank ordered distribution f ðnÞ by a Yule law or Zipf law are unsatisfactory. Indeed,
as emphasised in Ref. [20], when the majority of points resides in the tail of the distribution, it is necessary to
fit the whole range of data. From the previous discussion, we expect the parameters to depend on the total GC
content of the genes region (here the total exonic GC content). We have investigated this dependence and we
report in Figs. 5–8 the plots of the parameters a, b, g and Z vs. the total exonic GC content. In terms of the
total exonic GC content yGC of the biological species, one finds that the values of a and g are well fitted by
3Statistical tables specifying for each biological species the codon statistics, the total GC content, the values of the parameters a, b, Z,
computed by a best-fit procedure, the estimated errors Da, Db, DZ on these parameters, the corresponding estimators of goodness of the fit

w2 and R2 can be found on the archives at the following address: http://xxx.lanl.gov/abs/q-bio.GN/0507030v1.

http://xxx.lanl.gov/abs/q-bio.GN/0507030v1
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Fig. 4. Codon rank distribution f ðnÞ for R. solanacearum.
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Fig. 5. Parameter a vs. GC content.
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polynomial functions:

a ¼ a0 þ a1 yGC þ a2 y2
GC, (6)

where

a0 ¼ 0:250� 0:017; a1 ¼ �0:919� 0:071; a2 ¼ 0:939� 0:072, (7)

the goodness of the fit being given by

w2 ¼ 0:013 and R ¼ 0:768, (8)

and

g ¼ g0 þ g1 yGC þ g2 y2
GC, (9)
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Fig. 6. Parameter 104b vs. GC content.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.20 0.30 0.40 0.50 0.60 0.70 0.80

Fig. 7. Parameter g vs. GC content.
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where

g0 ¼ �0:0376� 0:0057; g1 ¼ 0:268� 0:024; g2 ¼ �0:275� 0:024, (10)

the goodness of the fit being given by

w2 ¼ 0:0015 and R ¼ 0:728. (11)

The Z parameter shows a ‘l-like’ behaviour in terms of yGC, centred on the value yGC ¼ 0:50, while the values
of the b parameter are mainly in the range 3� 10�4pbp5� 10�4. Note that the errors on b become large
when yGC is far from the mean value 0.50.

Of course we are not able to predict which codon occupies the nth rank. Finally, let us remark that the total
exonic GC content yGC has to satisfy the consistency condition

yGC ¼
1

3

X
i2J

dif ðiÞ, (12)
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where the sum is over the set J of integers to which the 56 codons containing G and/or C nucleotides belong
and di is the multiplicity of these nucleotides inside the ith codon.

3. Amino-acid rank distribution

It is natural to wonder if some kind of universality is also present in the rank distribution of amino acids.
From the available data for codon usage, we can immediately compute (using the bacterial code) the frequency
of appearance of any amino acid F ðnÞ (1pnp20) in the whole set of coding sequences. The calculated values
as a function of the rank are satisfactorily fitted by a straight line,

F ðnÞ ¼ F � Bn. (13)

In terms of the total exonic GC content, the parameters B and F for eubacteria show a parabolic dependence
(Figs. 9 and 10): B ¼ B0 þ B1yGC þ B2y2

GC where

B0 ¼ 0:00915� 0:00034; B1 ¼ �0:0232� 0:0014; B2 ¼ �0:0258� 0:0014, (14)

the goodness of the fit being given by

w2 ¼ 4:4� 10�6 and R ¼ 0:911, (15)

and F ¼ F0 þ F 1 yGC þ F2 y2
GC where

F0 ¼ 0:145� 0:004; F1 ¼ �0:243� 0:015; F 2 ¼ 0:270� 0:015, (16)

the goodness of the fit being given by

w2 ¼ 48� 10�5 and R ¼ 0:911. (17)

One remarks that the most frequent amino acid is always above the line. This can be easily understood in the
light of Eq. (2). Indeed, the most frequent amino acids gets, in general, a contribution of the exponential term
of (2) with a low value of n.

Of course, the frequency of an amino acid is correlated to frequencies of its encoding codons given by (2). If
the ranks of the encoding codons were completely random, we do not expect that their sum should take
equally spaced values, as is the case in a regression line. Therefore, we can infer, for the biological species
whose amino-acid frequencies are very well fitted by a line, the existence of some functional constraints
(conspiracy effect) on the codon usage. An analysis of the influence of the total GC content on the amino-acids
composition of the protein of 59 bacteria has been reported in Ref. [21], where references to previous works on
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the subject can be found, see also Refs. [10,11]. The figures, reported in Ref. [21], qualitatively agree with the
linear behavior given by Eq. (13) and show sensible quantitative differences with the expected frequencies,
computed on the basis of the neutral model, where the frequency of an amino acid is the sum of the
synonymous codon frequencies, the frequency of a codon being computed as the product of the probability of
the three nucleotides (mean field model). This analysis already hints in the direction of the presence of
functional constraints.

However, the behaviour predicted by (2) fits the experimental data very well, while the shape of the
distribution of amino acids seems more sensible to the biological species. In fact, one can remark on many
plots of the amino-acid distributions the existence of one or two plateaux, which obviously indicate an equal
probabilities of use for some amino acids. Presently, we have neither any arguments to explain the uniform
distribution of amino acids from the ranked distribution of the corresponding codons nor we know of any
explanation of this pattern of distribution.
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4. The Shannon entropy

We compute the Shannon entropy,

S ¼ �
Xn¼61
n¼1

f ðnÞ log2 f ðnÞ, (18)

related to the codon rank distribution and plot it vs. the total exonic GC content yGC for the sample of 109
eubacteria and 14 archaea, see Fig. 11. The contribution of the stop codons is negligible and represents less
than 0.5% of the total entropy. The Shannon entropy is very well fitted by a parabola

S ¼ s0 þ s1yGC þ s2y
2
GC, (19)

where

s0 ¼ 2:670� 0:084; s1 ¼ 12:36� 0:35; s2 ¼ �12:73� 0:36, (20)

the goodness of the fit being given by

w2 ¼ 0:329 and R2 ¼ 0:916. (21)

Note that the parabola has its apex for yGC � 0:50, which is expected for the behaviour of the Shannon
entropy for two variables (here GC and AU). We have computed the partial Shannon entropies for the codons
whose orders in rank are, respectively, in the ranges 1–15, 16–25 and 26–61 and we report them in Fig. 11 vs.
the GC content. In any of the three sets, we have put the codons whose contributions to the entropy, with
respect the GC content, have similar behaviour. Indeed, the codons of the first set are primarily influenced by
the exponential term in the rank distribution (2), leading for the partial entropy S1�15 to a parabolic behaviour
with positive curvature and minimum at 50% GC content. For the codons of the intermediate set, the
exponential term and the last two terms are of the same order of magnitude, hence the partial entropy S16�25 is
almost uniform with respect to the GC content. For the codons of the last set, the exponential term is
completely negligeable, and since f ðnÞ is very small, �f ðnÞ log2 f ðnÞ ’ f ðnÞ= ln 2. The trend of the partial
entropy S26�61 is thus essentially given by the behaviour of the g parameter, hence the parabolic shape with
negative curvature and maximum at 50% GC content.

The fact that the Shannon entropy is a parabola shows obviously that the codon distribution is not uniform:
the uniform distribution corresponds to the maximal entropy S ¼ log2 N, independent of the GC content,
0
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Fig. 11. Shannon entropy and partial entropies vs. GC content: (1) total entropy, (2) partial entropy rank 1–15, (3) partial entropy rank

16–25, (4) partial entropy rank 26–61.
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Table 1

Regression coefficients for
P

PðX iÞ ¼ a yGC þ b (eubacteria)P
PðX iÞ a b R (Pearson)P
PðCNN 0Þ 0:424 0:004 0:949P
PðANN 0Þ �0:452 0:490 0:960P
PðGNN 0Þ 0:283 0:209 0:928P
PðUNN 0Þ �0:255 0:297 0:955P
PðNCN 0Þ 0:239 0:108 0:925P
PðNAN 0Þ �0:338 0:467 0:959P
PðNGN 0Þ 0:215 0:065 0:955P
PðNUN 0Þ �0:117 0:358 0:898P
PðNN 0CÞ 1:067 �0:257 0:984P
PðNN 0AÞ �0:928 0:676 0:985P
PðNN 0GÞ 0:770 �0:130 0:984P
PðNN 0UÞ �0:909 0:711 0:977
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where N is the number of considered codons (here N ¼ 61). The concavity of the entropy is also well
understood in this context in terms of deviations to the uniform distribution when yGC is far from the mean
value 50%. On the contrary, the partial entropy S1�15, which is associated to the ‘overrepresented’ codons,
exhibits a convex shape. This feature can also be understood by realizing that in the case of yGC far from 50%,
the overrepresented codons distribution would be closer to the expected value for a nonbiased distribution
than in the case of yGC � 50%.

5. The mystery of the straight lines

In recent papers [22,23], it has ben remarked, for 129 eubacteria and for 19 archaea, that the codon-specific
nucleotide frequency Pi

X , i.e. the sum of the codon usage for any given nucleotide X in any fixed ith position,
that is, for example

P1
X ¼

X
Y ;Z

PðXYZÞ, (22)

is fitted, vs. the GC content, by a straight line, with coefficients depending on the position and on the nature of
the nucleotide and slightly different for eubacteria and archaebacteria (see Table 1 for eubacteria and Table 2
for archaea for the values of the slope and the axis intercept in the case of our sample of bacteria).4 There are
12 codon-specific nucleotide frequencies, which are constrained by three normalisation conditions

Pi
C þ Pi

U þ Pi
G þ Pi

A ¼ 1; i ¼ 1; 2; 3. (23)

The fact that the sum of the codon position-specific nucleotide frequencies is a linear function of GC is a
mysterious feature, which becomes more mysterious in the light of the results of Section 2, where we have
remarked that the parameters appearing in the rank ordered frequency (2) are parabolic functions of GC. A
conspiracy has to be present between the f ðnÞ, see Eq. (2), for any bacteria such that the sum of f ðnÞ over the
16-dimensional sets Q, depending on the considered bacteria and the corresponding codon position-specific
frequencies, produces a linear function of GC, that isX

n2Q

f ðnÞ ¼ a yGC þ b. (24)

Things become still more mysterious taking into accounts what we have remarked, guided by the
mathematical structure of the crystal basis model of the genetic code [24]. Let us recall that in this model the
4Note that the difference of behaviour between eubacteria and archaea could stem from the fact that eubacteria (at least in our sample)

are mainly mesophilic while archaea are essentially thermophilic.
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Table 2

Regression coefficients for
P

PðX iÞ ¼ a yGC þ b (archaea)P
PðX iÞ a b R (Pearson)P
PðCNN 0Þ 0:414 �0:028 0:951P
PðANN 0Þ �0:557 0:569 0:963P
PðGNN 0Þ 0:393 0:173 0:917P
PðUNN 0Þ �0:249 0:286 0:901P
PðNCN 0Þ 0:269 0:079 0:891P
PðNAN 0Þ �0:285 0:440 0:841P
PðNGN 0Þ 0:190 0:082 0:859P
PðNUN 0Þ �0:174 0:398 0:845P
PðNN 0CÞ 1:047 �0:241 0:982P
PðNN 0AÞ �0:923 0:687 0:988P
PðNN 0GÞ 0:687 �0:066 0:943P
PðNN 0UÞ �0:812 0:619 0:983
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four nucleotides are assigned to the 4-dim fundamental irreducible representation ð12;
1
2Þ of Uq!0ðsoð4ÞÞ �

Uq!0ðslð2Þ � slð2ÞÞ ¼ Uq!0ðslH ð2Þ � slV ð2ÞÞ (the lower labels H and V denote the two commuting slð2Þ), with
the state assignment (in the following the first number denotes the value of the label J specifying the
irreducible representation (irrep.) of slð2Þ and the second one the value of the label J3 denoting the state in the
irrep., J3 ¼ J; J � 1; . . . ;�J, 2J 2 Zþ)

C � ð1=2; 1=2ÞH ; ð1=2; 1=2ÞV ,

U � ð1=2;�1=2ÞH ; ð1=2; 1=2ÞV ,

G � ð1=2; 1=2ÞH ; ð1=2;�1=2ÞV ,

A � ð1=2;�1=2ÞH ; ð1=2;�1=2ÞV , ð25Þ

which, in matrix notation, can be written as

C U

G A

� �
.

The codons are the composite states of the three-fold tensor product of the fundamental irreducible
representation, that is

C U

G A

� ��3
,

which can be written in matrix form as

CCC CCU CUC CUU UCC UCU UUC UUU

CCG CCA CUG CUA UCG UCA UUG UUA

CGC CGU CAC CAU UGC UGU UAC UAU

CGG CGA CAG CAA UGG UGA UAG UAA

GCC GCU GUC GUU ACC ACU AUC AUU

GCG GCA GUG GUA ACG ACA AUG AUA

GGC GGU GAC GAU AGC AGU AAC AAU

GGG GGA GAG GAA AGG AGA AAG AAA

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
. (26)

Eq. (23) can be rewritten, for instance for i ¼ 1, as

P1
C þ P1

A � 1=2 ¼ �P1
U � P1

G þ 1=2 (27)
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and, looking at the codon matrix, we remark that the l.h.s., respectively the r.h.s., is, up to �1=2, the sum of
the two 4� 4 matrices obtained by mirror inversion with respect to the centre of the matrix, that is the
exchange C! A, G! U.5 So we make the following conjecture. The sum of codon usage frequencies over a
set of r codons ð4prp16Þ, placed on the same side of the diagonals of the matrix, plus the mirror set is
described by a straight line in yGC with a very small slope coefficient a (jajo0:1) and a constant term b equal to
r=32. In other words, the sum of codon usage frequencies over a set of r codons, placed on the same side of the
diagonals of the matrix with a plus the numerical factor �r=16, is equal, up a factor r=32, to the opposite of
the sum of the codon usage frequencies over the set of r mirror codons. The mirror symmetry with respect to
the secondary diagonal (resp. principal diagonal) is equivalent, in terms ofUq!0ðslH ð2Þ � slV ð2ÞÞ to the change
of the sign of the third component of J3;H and J3;V (resp. of the sign of the third component of J3;V ). Denoting
PiðXYZÞ (resp. PiðXYZÞ) the codon usage frequency of the ith codon XYZ (resp. of the mirror codon XYZÞ,
we make the ansatz that the following equation holds:

X
k2I

PkðXYZÞ þ PkðXYZÞ
� �

¼ a yGC þ
r

32
, (28)

where I is r-dimensional set of codons placed on the same side of the principal diagonal or secondary diagonal
of the codon matrix . The mirror codon XYZ with respect to the secondary diagonal (resp. to the principal
diagonal) has opposite values of J3;H and J3;V of the XYZ codon (respectively, opposite values of J3;V ). One
can see from Table 3 that indeed the values of the axis intercept b are very close to the conjectured values r=32
ð 4
32
¼ 0:125, 8

32
¼ 0:250, 12

32
¼ 0:375). So our conjecture seems supported by the experimental data and suggests

the existence of an averaged symmetry C! A, G! U or C! G, U! A for the codon usage frequencies.6

Of course when 2r is equal to the number of the codons in the considered set, the above conjecture is trivially
the normalisation condition.

An analysis over our sample of 109 eubacteria, randomly drawing 4, 8, 12 codons in the 16-dim set
of codons with a specified nucleotide in a fixed position, shows that the straight line behaviour is
surprisingly present already for 4 codons (see Table 3), where we present few examples which confirm the
conjecture. In this table, N denotes the number of random drawings of n different codons belonging to a given
set I (e.g. in the first line of Table 3, I ¼ fCNN 0g, N;N 0 ¼ A;C;G;U). For each drawing lot of codons in the
set I, we expect the sum

P
XYZ2I PðXYZÞ þ PðXYZÞ to behave linearly in terms of the GC content yGC, with

slope a and axis intercept b. We observe that the distribution of the coefficients a and b is peaked around
mean values a and b with standard deviations sa and sb, which are reported in Table 3. Two particular subsets
have also been considered, Ip ¼ fUNN0;CUN;CCC;CCU;CCA;CAC;CAU;CAA;AUN;ACU;AAUg and
Is ¼ fCNN0;GCN;GGC;GGG;GGU;GUC;GUG;GUU;UCN;UUC;UGCg, corresponding respectively to
codons above the principal and secondary diagonals of the codon matrix (26). We have summed the
experimental codon usage of these codons and of the n mirror codons with respect to the secondary diagonal.
As it can be read from Tables 1 and 3, no real meaningful difference appears between no16 and n ¼ 16 for the
first six sets I of Table 3, which correspond to fix the C or G codons (hence the A or U codons) in first, second
and third position, respectively. Note that the number of possible different configurations is 1946 for n ¼ 4 or
12 and 12 870 for n ¼ 8. Surprisingly, this behaviour is more evident for codons with fixed nucleotides in third

position, that is, for codons encoding different amino acids, strongly suggesting strong constraints between
amino acids.

Finally, let us remark that such a behaviour does not show up any longer if one chooses for I sets
which violates the diagonal symmetry (for example, the first four lines or the first four columns of the
codon matrix (26), or the whole set of codons) and considers random drawings in the same conditions as
above.
5The mirror inversion in the crystal basis formalism means change of the sign of J3;H and J3;V .
6These symmetries have already appeared in the literature in a different context. Indeed Rumer [25], as quoted in [26], remarked in the

sixties, that the first symmetry exchanges the 32 strong codons, which form quartets or the quartet subset of sextets, with the remaining 32

weak codons. This symmetry is sometimes referred to as the Rumer symmetry [26]. The second symmetry has been remarked by Konopel’

chenko and Rumer [27] as the symmetry which transforms each of the octets into itself, an octet being a set of eight dinucleotides appearing

or not appearing as the first two nucleotides in the quartets.
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Table 3

Sum of frequencies for drawing lots of n codons belonging to some subset I of size N.

sum n N a sa b sb

P
N;N 0

PðCNN 0Þ þ PðCNN 0Þ 4 1800 �0:007 0:107 0:123 0:055

idem 8 4000 �0:013 0:12 0:247 0:064
idem 12 1800 �0:02 0:107 0:370 0:055P
N;N 0

PðNCN 0Þ þ PðNCN 0Þ 4 1800 �0:024 0:113 0:144 0:060

idem 8 4000 �0:048 0:13 0:287 0:07
idem 12 1800 �0:074 0:11 0:432 0:06P
N;N 0

PðNN 0CÞ þ PðNN 0CÞ 4 1800 0:034 0:116 0:105 0:065

idem 8 4000 0:067 0:134 0:21 0:074
idem 12 1800 0:10 0:117 0:314 0:065P
N;N 0

PðGNN 0Þ þ PðGNN 0Þ 4 1800 0:007 0:115 0:126 0:061

idem 8 4000 0:013 0:132 0:253 0:070
idem 12 1800 0:021 0:115 0:379 0:061P
N;N 0

PðNGN 0Þ þ PðNGN 0Þ 4 1800 0:025 0:108 0:106 0:035

idem 8 4000 0:050 0:124 0:211 0:063
idem 12 1800 0:074 0:108 0:318 0:055P
N;N 0

PðNN 0GÞ þ PðNN 0GÞ 4 1800 �0:035 0:103 0:145 0:049

idem 8 4000 �0:074 0:120 0:293 0:057
idem 12 1800 �0:104 0:103 0:436 0:049P
N;N 0 ;N 00

PðNN 0N 00Þ þ PðNN 0N 00Þ 16 10000 �0:0024 0:21 0:50 0:112

P
N;N 0 ;N 00

PðNN 0N 00Þ þ PðNN 0N 00Þ 24 10000 �0:0042 0:245 0:75 0:128

P
N;N 0 ;N 00

PðNN 0N 00Þ 32 10000 8 10�4 0:30 0:50 0:147P
N;N 0 ;N 002Is

PðNN 0N 00Þ 16 10000 0:45 0:20 0:019 0:088

P
N;N 0 ;N 002Is

PðNN 0N 00Þ 16 10000 �0:445 0:189 0:48 0:106

P
N;N 0 ;N 002Is

PðNN 0N 00Þ þ PðNN 0N 00Þ 16 10000 0:002 0:18 0:50 0:094

P
N;N 0 ;N 002Id

PðNN 0N 00Þ 16 10000 �0:232 0:189 0:328 0:098

P
N;N 0 ;N 002Id

PðNN 0N 00Þ 16 10000 0:229 0:226 0:173 0:113

P
N;N 0 ;N 002Id

PðNN 0N 00Þ þ PðNN 0N 00Þ 16 10000 �0:003 0:18 0:50 0:094
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So, we derive the conclusion that the sum of the codon usage frequencies over a suitable set of codons is a
linear function of GC, showing a conspiracy effect between the f ðnÞ similar to the one of Eq. (24), that isX

n2Q

f ðnÞ ¼ a yGC þ b, (29)

where now Q is any 2r-dimensional set of codons satisfying the above discussed characteristics.
The results above were based on sums of codons of the type PðXYZÞ þ PðXYZÞ, the bar meaning the mirror

codon obtained by the mirror symmetry C2 A, G2U. It is interesting to see what happens if one considers
instead sums of codons and their reverse complementary codons, i.e. PðXYZÞ þ PðdZYX Þ where the hat means
the complementary rule C2G, A2U (in other words, summing codons on one strand and complementary
codons on the other strand). A preliminary analysis shows that the behaviour (28) also holds, but the slope
and axis intercept ranges are wider and the mean slope is not close to zero. Such an analysis could be
instructive because it might shed some light on the DNA strand asymmetry [28–31]. However, in the present
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work, we analyse the coding sequences extracted from the CUTG database, for which one does not know
whether the coding sequence comes from a gene on the leading strand or on the lagging strand, and the
intergenic (noncoding) sequences were obviously not considered. Hence we are unable to comment on this
point for the moment.

6. Discussion and conclusion

The distribution of the experimental codon probabilities for the total exonic region for a large sample of
bacteria is well fitted by the law (2). The spectrum of the distribution is universal, but the codon, which
occupies a fixed level, depends on the biological species. The universal form of the function f ðnÞ strongly
suggests the presence of a bias of very general origin. Indeed, in Ref. [32], a mutation model has been proposed
where the intensity of the mutation matrix, essentially in one point mutation, depends from the variation of
the labels identifying the states of the irrep. of Uq!0ðslð2Þ � slð2ÞÞ describing, in the crystal basis [24], the
codons. The numerically computed stationary solution of the master equation for the distribution of the 64
codons is nicely fitted by a function of the form Eq. (2). The model depends on the choice of the form of the
fitness function and on the values of the arbitrary parameters appearing in the mutation matrix, but unrealistic
choice of these values destroys the goodness of the fit. The remark of Ref. [23] on the mystery of the straight

line in the codon position-specific frequencies as function of the total exonic GC content, raises, on the light of
the previously discussed form of the rank ordered distribution, an even more intriguing question: which is the
mechanism which ensures that the sum of the frequencies f ðnÞ, given by Eq. (2) over a set of codons, whose
rank distribution generally depends on the biological species, is a linear function in yGC? From this property,
we say that there is a conspiracy between the different codons. These effects are more evident when we sum the
frequencies of the codons with fixed third nucleotide, which implies constraints on the amino-acids
distribution. We have also discussed in detail the structure of the Shannon entropy. It is commonly stated in
the literature that the noncoding part of DNA exhibits more correlation than the coding part, which is in
contradiction with what one would naively expect as the coding part is more subjected to functional
constraints. The results of our work points out the existence of strong correlations in the exonic part, which
very likely witness the existence of functional bias, worthwhile of further analysis, and which should be better
interpreted and understood.

It has been known for some time that the plots of the first/second codon position GC content vs. the third
codon position GC content (or vs. the total GC content) show straight line correlations [5,11,9,33]. The
straight line behaviour of the codon position-specific frequencies remarked in Ref. [23] (see also Tables 1 and
2) of course implies these correlations, but is stronger. In Ref. [9], a four-parameter model is developed to
explain the 64 codons and the 20 amino-acids usage frequencies in function of the GC content. Considering
the sums of the eight codons with the same GC content in position (which correspond to the columns of our
codon matrix (26)), a satisfactory agreement between experimental values and theoretical curves is found. The
authors conclude that the GC content primarily drives the codon usage rather than the inverse. Our results,
concerning the GC dependence of the codon usage, although settled on different grounds, go in the same
direction.

As a last remark, let us make some comments on genes. Although the GC content varies much less inside a
genome than across genomes for bacteria, it is instructive to see whether the straight line effect also occurs at
the gene level. In the case of E. coli K12 for example, for which the mean GC content is 51.8%, most of the
genes correspond to values of GC close to the mean value, but the tails of the Pi

X distributions (X ¼ C;G;U;A
and i ¼ 1; 2; 3) show a trend towards straight lines. Surely, a more detailed study deserves attention.
Analogous trend for Homo sapiens has been observed in Ref. [33].

Finally, we have conjectured the existence of a quasi-symmetry with respect to the principal and secondary
diagonal of the codon matrix, written in the form suggested by the crystal basis model of the genetic code [24].
Clearly, these discrete symmetries can be formulated without any reference to the crystal basis, but they
appear naturally in this mathematical modellisation. So, as conclusive remark, let us point out that crystal
basis model seems to provide the kinematical variables useful to describe some properties of the genetic code.
As it is well known, the use of appropriate variables in mathematics, in physics, and, very likely, also in
biology is an essential step for facing effectively a problem.
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