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We investigate the group field theory formulation of the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov
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compare it with existing results, in particular, for a second order correction to the EPRL/FK propagator.

DOI: 10.1103/PhysRevD.82.124069 PACS numbers: 04.60.�m, 04.60.Pp

I. INTRODUCTION

Group field theories (GFTs) [1] are quantum field theo-
ries over group manifolds and can be also viewed as higher
rank tensor field theories [2,3] which generalize matrix
models. They provide one of the most promising frame-
works for a background invariant theory of quantum grav-
ity in which one sums both over topologies and geometries.
Indeed, each Feynman graph of a D dimensional GFT can
be dually associated with a discrete space-time via a spe-
cific triangulation and gluing rules given by the covariance
and vertices of the theory. The functional integral formal-
ism defines a weighted sum over triangulations with each
weight (amplitude) related to a sum over geometries via a
spin-foam formalism [4] (see [5,6] for results on power
counting and nonperturbative resummation of such
models).

Spin foams are the Feynman amplitudes of GFT. But
GFT in addition specifies the class of graphs that should
be summed, together with their combinatoric factors. This
stems from Wick contractions rules, hence (perturbative)
GFT requires to distinguish the nonquadratic part (interac-
tion) from the quadratic part (propagator) in the field action.

The simplest group field theories correspond to quanti-
zation of the B��F

�� (or BF) models, hence to topological

versions of gravity. Recently new spin-foam rules have
been proposed for the quantization of full fledged 4D
gravity [7–10]. These models stem from an improved
analysis of the Plebanski simplicity constraints. The cor-
responding so-called EPRL or FKmodels are neither of the
BF nor of the Barret-Crane type. They mix the left and

right part of SOð4Þ ’ SUð2Þ � SUð2Þ in a new way which
gives a central rôle to the Immirzi parameter. These new
theories could be called dynamical since their propagators,
combining two noncommuting projectors, have nontrivial
spectrum.
Preliminary studies of the asymptotic large spin (also

called ‘‘ultraspin’’) regime have been performed for the
EPRL/FK amplitudes of the ‘‘self-energy’’ and the ‘‘star-
fish’’ graphs (see Figs. 4 and 3) [11]. These results are a first
step towards a study of renormalizability of such theories.
In [12], a linearized approximation has been devised to

investigate the ultraspin limit of BF spin-foam amplitudes
(see also [13]). This approximation captures the correct
power counting of some graphs, such as type 1 graphs in
the Boulatov model [14], but it typically overestimates
more general graphs.
In this paper we push further the group field theory

approach to the EPRL/FK models, first introduced in [9],
and perform another step towards the general investigation
of their renormalizability. We use a coherent state repre-
sentation of the EPRL/FK propagator, as in [9], while other
representations are exhibited mainly for comparison with
other approaches. We introduce a general saddle point
approximation, as in [15], which reproduces correctly the
approximation [12] to the power counting of BF ampli-
tudes for simply connected graphs and, for nondegenerate
configurations, the EPRL/FK ‘‘self-energy graph’’ power
counting of [11]. We discuss also the case of degenerate
configurations, not studied in [11].
The plan is as follows: the next section is devoted to a

review of the BF and EPRL/FK group field models in a
field theoretical spirit. The following section presents the
stationary phase method. Finally we remark that the sign of
the self-energy graph points towards a singularity in the
effective propagator of the EPRL/FK model, which could
signal a phase transition. For completeness we included
useful formulas and normalization conventions in the
appendices.
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II. IMPLEMENTATION OF GFT

In GFT, the field arguments live on products of Lie
groups. Feynman amplitudes are spin-foams, i.e., two-
complexes with vertices, stranded lines (also called propa-
gators) and faces (that is, closed circuits of strands).

A. Fields

Since GFT represents a quantum theory of space-time
itself, the usual spin-statistic theoremmay not apply. In this
paper, we consider only Bosonic statistics. However, other
choices have been considered [16]. We also work with an
Euclidean signature.

The number of strands in the GFT lines encodes the
space-time dimension D. The natural group associated to
such a D dimensional GFT is ½SOðDÞ�D, hence a field � is
a function on ½SOðDÞ�D. We do not assume any symmetry
under permutations of the arguments.

B. Vertices

In the spin-foam literature, the term ‘‘vertex’’ usually
refers to the vertex together with the square roots of its
dressing propagators. This terminology is not the standard
one in quantum field theory. Further confusion often stems
from the fact that in BF theory the propagator is a projector
hence is equal to its square, and also to its square root.

To clarify the situation, let us return to ordinary field
theory. In that case also the definition of the vertex could be
considered ambiguous since one can dress it with a more or
less arbitrary fraction of the propagator. What fixes this
ambiguity is the usual requirement that vertices in field
theory should obey a certain locality property in direct
space. This allows to distinguish them from their dressing
(half)-propagators, which are nonlocal operators.

Since GFT is nonlocal on the group, we cannot transpose
directly this rule. To properly distinguish the vertex from
the propagator we propose to use an extended notion

of locality adapted to the GFT case, which we call
simpliciality [17].
For consistency reasons, every vertex in GFT is required

to have a total degree in the fields ensuring parity of the
number of strands. In odd dimensions, this restricts
the degree of the vertex to be even. Hence we propose
the following definition:
Definition 2.1 A vertex joining 2p strands is called

simplicial if it has for kernel in direct group space a product
of p delta functions matching strand arguments, so that
each delta function joins two strands in two different half-
lines.
The usual vertex for D� dimensional GFT is a �Dþ1

simplicial vertex in which the faces are glued in the pattern
of a D-dimensional simplex. For instance, the ordinary
Boulatov vertex in three dimensions is simplicial (with
p ¼ 6) as it writes

Sint½�� ¼ �

4

Z �Y12
i¼1

dgi

�
�ðg1; g2; g3Þ�ðg4; g5; g6Þ

��ðg7; g8; g9Þ�ðg10; g11; g12ÞKðg1; ::g12Þ; (2.1)

with a kernel

Kðg1; ::g12Þ ¼ �ðg3g�14 Þ�ðg2g�18 Þ�ðg6g�17 Þ�ðg9g�110 Þ
� �ðg5g�111 Þ�ðg1g�112 Þ (2.2)

satisfying to our definition. But remark that the ‘‘pillow
term’’ [5]

Spillowint ½�� ¼ �

4

Z �Y6
i¼1

dgi

�
�ðg1; g2; g3Þ�ðg3; g4; g5Þ

��ðg5; g4; g6Þ�ðg6; g2; g1Þ (2.3)

is also simplicial in D ¼ 3. Also in any dimension D there
are infinitely many higher than order Dþ 1 simplicial
vertices according to our definition. A possible vertex of
a four-dimensional GFT is represented in Fig. 1.

C. Propagators

We consider only field theories in which the propagator
C is Hermitian. It can be considered either as an Hermitian
operator �! C� acting on fields or as its Hermitian
kernel Cðg1; . . . ; gD; g01; . . . ; g0DÞ:

½C��ðg1; . . . ; gDÞ ¼
Z

dg01 . . .dg
0
DCðg1; . . . ; gD;g01; . . . ; g0DÞ

��ðg01; . . . ; g0DÞ: (2.4)

The corresponding normalized Gaussian measure of co-
variance C is noted d�C. Hence

Cðg1; . . . ; gD; g01; . . . ; g0DÞ ¼
Z

�ðg1; . . . ; gDÞ
��ðg01; . . . ; g0DÞd�C: (2.5)
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FIG. 1 (color online). A simplicial vertex of a four-
dimensional GFT. We have chosen here a particular matching
and orientation for each of the strands.
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D. Graphs

Graphs are generated by gluing together propagators and
vertices, according to Wick contractions, hence to
Feynman rules.

Definition 2.2 A stranded graph is called regular if it has
no tadpoles (hence any line ‘ joins two distinct vertices)
and no tadfaces (hence each face f goes at most once
through any line of the graph).

It is convenient to introduce orientations on both lines
and faces of stranded graphs. Regular oriented graphs are
natural since they are conveniently described by two ma-
trices

(i) the ordinary incidence matrix �v;‘ which has value

þ1 if the edge ‘ enters the vertex v,�1 if the edge ‘
exits vertex v and 0 otherwise. Hence

P
vj�v;‘j ¼ 2

for each ‘.
(ii) the incidence matrix �‘;f between faces and edges,

which has valueþ1 if the face f goes through edge ‘
in the same direction,�1 if the face f goes through
edge ‘ in the opposite direction and 0 otherwise.
Hence

P
fj�‘;fj ¼ D for each ‘ (see Fig. 2).

These orientations are useful to write down the inte-
grand of the Feynman amplitudes. However the integrals,
that is the spin-foam amplitudes themselves, do not depend
on these orientations, at least for the class of theories
considered in this paper.

From now on we consider only amplitudes for regular
graphs. This is for convenience, as generalization to any
graph of our formulas is possible. It has been argued that
GFT should in fact be restricted to colored models, which
generate only regular graphs [16,18,19]. Remark that every
colorable stranded graph is regular, but the converse is not
true; colorable graphs, in particular, have all their faces of
even length, hence the starfish graph of Fig. 3 with ten
faces of length 3, although regular, is not colorable.

E. The BF theory

1. Propagator in direct space

By direct space we mean the representation which uses
the group elements.

In the case of the BF theory the propagator,1 here noted
P, is just the projection on gauge invariant fields

P ð�Þðg1; . . . ; dDÞ ¼
Z

dh�ðg1h; . . . ; gDhÞ; (2.6)

where the integral is performed over the group SOðDÞ with
respect to its Haar measure. Let us remark that P2 ¼ P so
that the only eigenvalues are 0 and 1 (which means that the
BF theory has no dynamics). The operator P is Hermitian
with kernel

P ðg1; . . . ;gD;g01; . . .g0DÞ¼
Z
dh

YD
i¼1

�ðgihðg0iÞ�1Þ: (2.7)

2. Amplitudes in direct space

Suppose that we choose an arbitrary orientation of the
lines and faces of a graph G (which for simplicity has no
external legs).
Combining together the vertices (2.1) (or the general-

ization to dimension D) and the propagators (2.7) of the
graph, the integration over all g variables can be explicitly
performed, leading to the direct space representation of the
BF Feynman amplitude as an integral over line variables h

AG ¼
Z Y

‘2LG

dh‘
Y
f2FG

�

�
~Y

‘2fh
�‘f

‘

�
; (2.8)

where LG, FG are the set of lines and faces of G, respec-

tively. The oriented product ~Q
l2fh�‘f means that the prod-

uct of the variables h‘ has to be taken in the cyclic ordering
corresponding to the face orientation (starting anywhere on
the cycle).

2

3

4

1

FIG. 2 (color online). A stranded propagator with particular
orientation; two strands have �‘f ¼ 1 and the other two have

�‘f ¼ �1.

FIG. 3. The ‘‘starfish’’ graph, quantum correction to the vertex.
The dashed lines represent the edges (they do not correspond to
strands). Each edge contains 4 strands, there are 40 such strands,
forming 10 closed faces and 10 open faces. We have shown four
faces: three closed and one open which take into account all
four’’ strands of one particular edge (upper left).

1Beware that this propagator is called C in [6,20].
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As announced, the amplitude (2.8) neither depends on
the arbitrary orientation of the lines, nor on those of the
faces. A pedestrian way to see this is to exploit carefully
the parity of the � function and of the Haar measure under
h! h�1. Beware that formula (2.8) may be formal as this
amplitude can be infinite for many graphs.

3. Amplitudes in the angular momentum basis

The angular momentum basis uses the irreducible uni-
tary representation spaces Vj of dimension dj � 2jþ 1.

In this space there is a standard decomposition of unity

1 j ¼
X
m

jj; mihj;mj; (2.9)

where jj; mi, m 2 ½�j; j� is the usual orthonormal basis in
Vj.

In dimension 3, using the Peter-Weyl theorem, we can
transform (2.8) to get the representation

AG ¼
Y
f

X
jf

djf
Y
v

f6jg; (2.10)

where the Ponzano-Regge vertex is the 6j symbol (accord-
ing to Appendix A) corresponding to the six-face indices
meeting at the vertex.

In dimension 4, for simplicity wework with the covering
group SUð2Þ � SUð2Þ of SOð4Þ and we decompose the
group elements as g ¼ ðgþ; g�Þ, with g� 2 SUð2Þ.
Moreover, we write j � ðjþ; j�Þ for the eigenvalues of
the angular momentum J in each SUð2Þ component. The
Peter-Weyl decomposition leads to the similar angular
momentum representation:

AG ¼
Y
f

X
jfþ;jf�

djfþdjf�
Y
v

f15jþgf15j�g; (2.11)

where f15jg are the 15j symbols (see for example [11] for
the definition and normalization conventions).

4. Coherent states

Consider RðjÞmk ðgÞ, the matrix element of the group ele-

ment g in the representation j, computed between the states
hj; mj and jj; ki. We have

1 j ¼ dj
X
mm0
jj;mihj; m0j

Z
SUð2Þ

dgRðjÞmj ðgÞ �RðjÞm0j ðgÞ

¼ dj
Z
SUð2Þ

dgjj; gihj; gj; (2.12)

where we have introduced the notation

jj; gi � gjj; ji ¼X
m

jj; miRðjÞmj ðgÞ: (2.13)

The states jj; gi are the coherent states [21], and the last
expression in (2.12) is a decomposition of the identity in
terms of these coherent states.

Let us recall that the decomposition of the identity (2.12)
can be further simplified and taken over the coset G=H,
G ¼ SUð2Þ, H ¼ Uð1Þ:

1 j ¼ dj
Z
G=H¼S2

dnjj; nihj; nj (2.14)

with jj; ni ¼ gnjj; ji and gn defined in (A14). We suppress
the domain of integration G=H in what follows.
The states jj; ni form a generating set in Vj sometimes

called ‘‘overcomplete basis.’’
Let us now turn to the coherent states of the group

SUð2Þ � SUð2Þ. In fact, one has four possible such coher-
ent states which are given by acting with the same group
element ðgþ; g�Þ 2 SUð2Þ � SUð2Þ on either of the fol-
lowing states:

jj; ji � jj; ji; jj; ji � jj;�ji;
jj;�ji � jj; ji; jj;�ji � jj;�ji:

(2.15)

Note that these four states can be obtained from one
another by the action of an SOð4Þ group element.
However, if one considers only the action of the diagonal
SUð2Þ subgroup of elements of the form ðg; gÞ, then there
are two inequivalent states that cannot be related by such a
transformation.

5. The BF propagator and amplitudes using
coherent states

To prepare for the EPRL/FK propagator, we rewrite the
BF propagator inserting the coherent state decomposition
of identity on each strand. Let us consider SUð2Þ BF first.
Since P2 ¼ P we can introduce two distinct SUð2Þ gauge-
averaging variables, u and v at both ends of the propagator,
instead of the single variable h (e.g., u on the side where
�v;‘ ¼ �1 and v on the side where �v;‘ ¼ þ1). Between
these two variables we insert the partition of unity (2.14).
This does not modify the propagator. Working out the
algebra, we find

P ðg;g0Þ ¼
Z

dudv
Y4
f¼1

X
jf

djf TrVjf
ðugfðg0fÞ�1v�11jf Þ;

(2.16)

with gf, g
0
f, u and v elements of SUð2Þ. The index f labels

the four strands of the propagator, which belong to four
different faces (since we consider only regular graphs).
To write down the amplitudes, we need to introduce

some notations. There are now group variables 2jLGj, u‘
and v‘, and DjLGj variables n. The amplitude is again

factorized over faces:

AG ¼
Z Y

‘2LG

du‘dv‘

Y
f2FG

Af: (2.17)
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To write down Af, let us number the vertices and lines in

the (anti)-cyclic order along a face f of length p as ‘1,
v1 � � � ‘p, vp, with by definition ‘pþ1 ¼ ‘1. We have then

A f¼
X
j

dpþ1j

Z Yp
a¼1

dn‘afhj;n‘afjh
�‘af

‘a;va
h
�‘aþ1f
‘aþ1;va

jj;n‘aþ1;fi;

(2.18)

where

h‘a;va
¼ v‘a if �va;‘a ¼ þ1

h‘a;va
¼ u‘a if �va;‘a ¼ �1:

(2.19)

6. The D ¼ 4 BF case

In D ¼ 4 we work with SUð2Þ � SUð2Þ, the covering
group of SOð4Þ; we have the similar system jjþ; nþi �
jj�; n�i of coherent states and the partition of unity on the
space Vj, with j ¼ ðjþ; j�Þ
1jþ � 1j� ¼ 1j

¼ djþdj�

Z
dnþdn�jjþ; nþi � jj�; n�i

� hjþ; nþjhj�; n�j: (2.20)

The gauge-averaging variables, u ¼ ðuþ; u�Þ and v ¼
ðvþ; v�Þ at both ends of the propagator are now elements
of SUð2Þ � SUð2Þ. Between these two variables we insert
the partition of unity (2.20) and we find

Pðg; g0Þ ¼
Z

dudv
Y4
f¼1

X
jfþ;jf�

djfþdjf�

� TrVjfþ�Vjf�
ðugfðg0fÞ�1v�11jf Þ (2.21)

with gf, g
0
f, u and v elements of SUð2Þ � SUð2Þ, and we

have formulas similar to (2.17) and (2.18) for the
amplitudes.

F. The EPRL/FK GFT

The EPRL/FK model introduces a modification of the
propagator of the BF model, while the vertex remains the
same. The EPFL/FK propagator has a structure similar to
(2.21) but with replacement of 1j by a nontrivial projector.

We notice at this point that since this projector does not
commute with P, it is not possible to recombine u and v in
a single gauge-averaging variable h.

It implements in two steps the Plebanski constraints with
a nontrivial value of the Immirzi parameter �. Starting
from the (2.21) expression of the BF propagator in the
coherent states representation, the first step adds the con-
straint jþ=j� ¼ ð1þ �Þ=ð1� �Þ on the representations
summed. Remark however that this equation may have

no solution (e.g., if � is irrational) and should be true
only in an asymptotic sense in the ultraspin limit where
jþ and j� are both very large.
More precisely, this constraint reads

� > 1 j� ¼ �� 1

2
j; nþ ¼ n� (2.22)

� < 1 j� ¼ ��j ¼ 1� �

2
j; nþ ¼ n�; (2.23)

where j�, j are half-integers.
2

From now on we consider only the case 0< � � 1
where the EPRL and FK models coincide. At � ¼ 1, the
EPRL/FK model reduces to a single SUð2Þ BF theory (see
below).
The second step replaces in each strand of (2.21) the

identity 1j by a projector T�
j whose definition is

T�
j ¼ djþþj�½�jf�=jfþ¼ð1��Þ=ð1þ�Þ�

Z
dnjjþ; ni � jj�; ni

� hjþ; nj � hj�; nj: (2.24)

Let us notice here that, in the angular momentum basis, the
operator T�

j takes the form

T�
j ¼

X
k;~k;m; ~m

ðjþ; k; j�; ~kjjþ þ j�; kþ ~kÞ

� ðjþ þ j�; mþ ~mjjþ; m; j�; ~mÞjjþki � jj�~ki
� hjþmj � hj� ~mj�mþ ~m;kþ~k; (2.25)

where ð:j:Þ denotes the Clebsch-Gordan coefficients.
Grouping the four strands of a line defines a T� operator

that acts separately and independently on each strand of the
propagator

T � ¼ 	jf �4
f¼1 T

�
jf

(2.26)

so that the EPRL/FK propagator is

C ¼ PT�P;Cðg; g0Þ

¼
Z

dudv
Y4
f¼1

X
jf

½�jf�=jfþ¼ð1��Þ=ð1þ�Þ�	jf
jf

�
Z

dnf Trjfþ�jf�ðugfðg0fÞ�1v�1jjfþ; nfi � jjf�; nfi
� hjfþ; nfj � hjf�; nfjÞ; (2.27)

where

	j ¼ djþdj� ; 
j ¼ djþþj� : (2.28)

Lemma 2.1 The operator C is Hermitian.

2Moreover, in the case � > 1 the coherent states to be used
below are the ones in their ‘‘antiparallel’’ version jj; ni � jj; ni
[9].
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Proof We have

Trjfþ�jf�ðugfðg0fÞ�1v�1T�
jf
Þ ¼ 
jf

Z
dnTrjfþ�jf�ðu�T�gf�T�ðg0fÞ�1�T�v�1nfjjfþjf�ihjfþjf�jnyf Þ; (2.29)

where we have inserted the product �T� ¼ 1 with � 2 SUð2Þ defined by (A7). We arrive at

Tr jfþ�jf�ðugfðg0fÞ�1v�1T�
jf
Þ ¼ 
jf

Z
dnTrjfþ�jf�ðu�T �gfðg0fÞT�v�1nfjjfþjf�ihjfþjf�jnyf Þ

¼ 
jf

Z
dnTrjfþ�jf�ð�T �u �gfðg0fÞTvT�nfjjfþjf�ihjfþjf�jnyf Þ

¼ 
jf

Z
dnTrjfþ�jf�ð� �nfjjfþjf�ihjfþjf�jnTf�Tvg0fg�1f u�1Þ ¼ Trjfþ�jf�ðvg0fg�1f u�1T�

jf
Þ;

(2.30)

which implies the lemma. Q.E.D.
Since the propagator is Hermitian, Feynman amplitudes

are again independent of the orientations of faces and
propagators.

Lemma 2.2 T� is a projector, namely ðT�Þ2 ¼ T�.
Proof In the coherent states basis, it is easier to check

that ðT�Þ3 ¼ ðT�Þ2, which adding Hermiticity of T� im-
plies the lemma. The equation ðT�Þ3 ¼ ðT�Þ2 follows from
the same equation on each strand, since


3
j

Z
dndn0dn00jjþ; ni � jj�; nihjþ þ j�; njjþ þ j�; n0i
� hjþ þ j�; n0jjþ þ j�; n00ihjþ; n00j � hj�; n00j

¼ 
2
j

Z
dndn00jjþ; ni � jj�; nihjþ þ j�; njjþ

þ j�; n00ihjþ; n00j � j�; n00j; (2.31)

where we have used that 1jþþj� ¼ 
j

R
dn0jjþ þ j�; n0i �

hjþ þ j�; n0j. Q.E.D.
Let us also notice that the lemma is easily proven in the

angular momentum basis, where, from (2.25) it easily
follows that ðT�

j Þ2 ¼ T�
j .

Since T� and P do not commute, the propagator C
can have nontrivial spectrum (with eigenvalues between
0 and 1). Slicing the eigenvalues should allow a renormal-
ization group analysis. This is why we would like to call
these kinds of theories dynamic GFTs.

Remark that since T� is a projector, the propagator C of
the EPRL/FK theory is bounded in norm by the propagator
of the BF theory, and that Feynman amplitudes for the
EPRL/FK theory are therefore bounded by those of the BF
theory; in particular, we expect milder ultraspin (large j)
divergences in EPRL/FK.

1. Amplitudes

Combining the propagator and the vertex expressions,
the integrations over all g, g0 group variables can be
performed explicitly, leading to the amplitude of any graph
G. This amplitude is given by an integral of a product over

all faces of the graph as in (2.17), but the amplitudes for
faces are different.
To compute these face amplitudes we distinguish be-

tween closed faces (no external edges) and open faces
(which end on external edges).
Using the same numbering of the p edges and vertices

along a closed face, its amplitude is given by

Af ¼
Z Yp

a¼1
ðdg‘adg0‘aÞ

X
j‘a

	j‘a

� Trj‘aþ�j‘a�ððu‘ag‘aðg0‘aÞ�1v�1‘a
Þ�‘afT�

j‘a
ÞY

v

Vv;

(2.32)

where the constraint on jþ; j� is implicitly understood
from now on. We can perform the g integrals using (A5) or
(A6) and we arrive at

A f ¼
X
jf

	jf Trjfþ�jf�
~Yp

a¼1ðh
�‘af

‘a;va
h
�‘aþ1f
‘aþ1;va

T�
jf
Þ; (2.33)

with h‘a;va
defined in (2.19) and ‘pþ1 ¼ ‘1. Note that we

use (A5) or (A6) to take into account the fact that �‘f can

change when we follow a face f. We find

Af ¼
X
jf

	jf

Z Yp
a¼1


jfdn‘a;fhjfþn‘a;fjh
�‘af

‘a;va;þh
�‘aþ1f
‘aþ1;va;þj

� jfþn‘aþ1;fihjf�n‘a;fjh
�‘af

‘a;va;�h
�‘aþ1f
‘aþ1;va;�jjf�n‘aþ1;fi:

(2.34)

2. BF limit

Let us see how we recover the SUð2Þ BF model in the
limit � ¼ 1. In this limit j� ¼ 0, hence jþ ¼ jþ þ j�.
Thus we are left with

Afj�¼1 ¼
X
jf

dpþ1jf

Z Yp
a¼1

dn‘a;fhjf; n‘a;f

� jh�‘af

‘a;va;þh
�‘aþ1f
‘aþ1;va;þjjf; n‘aþ1;fi; (2.35)
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where only one SUð2Þ copy appears. We can use the
completeness relation for coherent states (2.14), and cy-
clicity of the trace to reorder the product according to lines
instead of vertices and we obtain

Afj�¼1¼
X
j

d2j

Z
dnhjnjYp

a¼1
h
�‘af

‘a;va;þh
�‘af

‘a;vaþ1;þjjni: (2.36)

Redefining t‘a ¼ u�1‘a;þv‘a;þ we finally obtain

A fj�¼1 ¼
X
j

d2j

Z
dnhjnjY!

a2f
t
�‘af

‘a
jjni ¼ �

�Y!
‘2f

t
�‘f

‘

�
;

(2.37)

consistently with (2.8).

3. Amplitudes with external edges

For a face with external edges, the expression is slightly
modified as there is no integration on the external data.

Let us callG and ~G the group labels of the incoming and
outgoing external strands, respectively. We omit the edge
index ‘ in the following. Moreover we indicate with uin,
vin, uout, vout the gauge transformations on the incoming,
outgoing edges, respectively. Let q be the number of
internal strands. The expression of the resulting face am-
plitude is similar to (2.32) except for the fact that we do not
integrate on the external labels. On choosing

�inf ¼ �outf ¼ 1 (2.38)

that is, the incoming and outgoing strand oriented accord-
ing to the face, we find using (A5) and (A6)

Aext ¼
X
j

	j � Tr

�
uinG ~G�1v�1outT

�
j uoutu‘1T

�
j

�
�Yq
a¼2

u‘av‘aþ1T
�
j

�
v�1‘q

v�1in T�
j

�
(2.39)

where, to simplify the notation, we have chosen all propa-
gators oriented according to the face. It is immediately
verified that it reduces to (2.33) with p ¼ qþ 2 if we glue
together the external edges with the insertion of a delta

function �ðG ~G�1Þ���0 .

III. STATIONARY PHASE FOR BF AND
EPRL/FK MODELS

Let G be a graph in a GFT corresponding to the BF or
EPRL/FK models, made of V vertices, L edges and F
faces, usually labeled by letters v, ‘ and f. In the coherent
state basis, its amplitude can in general be written as

AG¼
X
jf��

N
Z Y

dh
Y

dnexp

�X
f

jfSf½h;n�
�
; (3.1)

where N is a normalization factor which is a rational
function of the spins. As explained in the previous sections,

the precise form of the face action and of the number of
group variables h 2 SUð2Þ and unit vectors n 2 S2 de-
pends on the choice of the model. Note that the sums over
the spins jf may lead to divergences, so that we introduce

an ultraspin cutoff � that restricts the summation to spins
below �. To derive the superficial power counting, we set
jf ¼ jkf with kf 2 ½0; 1� and use the stationary phase

method to derive the large j behavior ofZ Y
dh

Y
dn exp

�
j
X
f

kfSf½h; n�
�
: (3.2)

If the action is complex but has a negative real part, the
contribution to this integral is quadratic fluctuations around
zeroes of the real part of Swhich are stationary points of its
imaginary part, otherwise the integral is exponentially sup-
pressed as j! 1.

A. BF models in the coherent state representation

For BF models we have one group element hl 2 SUð2Þ.
In dimension 4 one should work with SUð2Þ � SUð2Þ
instead, which leads to two independent copies of the
previous amplitude, so that we restrict ourselves to SUð2Þ
for simplification. The amplitude is given by (2.18).
Including the kf factor of (3.2) in the action and using

hn; jjgjn0; ji ¼ hnjgjn0i2j; (3.3)

with jni a shorthand for j 12 ni, it can be written in the form

(3.1) with

Sf½h; n� ¼ 2kf loghnj
Y!
‘2@f

h
�‘;f

‘ jni: (3.4)

Note that jnihnj is a projector

jnihnj ¼ 1

2
ð1þ � � nÞ; (3.5)

so that the action reads

Sf½h; n� ¼ kf log Tr

��Y!
‘2@f

h
�‘;f

‘

�
ð1þ � � nÞ

�
: (3.6)

Since the action is the logarithm of the trace of the product
of an unitary element and a projector, it is clear that its real
part is negative (it is the logarithm of the modulus of the
trace, obviously bounded by 1) and maximal when the
unitary element is one. This is attained at h‘ ¼ 1, but other
solutions may be possible. In particular, the BF amplitude
is invariant under the gauge transformations gv at any
vertex

h‘ ! gvh‘g
�1
v0 (3.7)

for any edge from the vertex v to the vertex v0. Therefore
gauge transformations of the trivial solution h‘ ¼ 1 yield
other equivalent solutions. More generally, there is a con-
tinuum of solutions connected to the trivial one which will
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translate into flat directions in the saddle point
approximation.

To perform the saddle point expansion, we expand the
group element to second order as

h‘ ¼ 1� A2
‘

2
þ iA‘ � �þOðA3

‘Þ; (3.8)

with A 2 suð2Þ � suð2Þ a Lie algebra element. By the
same token, we expand the unit vectors as

nf ¼ nð0Þf þ �f �
�2
f

2
nð0Þf þOð�3

fÞ; with nð0Þf � �f ¼ 0:

(3.9)

This expansion is determined by the requirement that
n2f ¼ 1 up to third order terms. To alleviate the notation,

we drop the superscript (0) in the sequel. Let us consider a
face with edges ‘1; . . . ; ‘p, then to second order

Y!
‘2@f

h
�‘;f

‘ ¼ 1� A2
f

2
þ i� � Af � i� ��f; (3.10)

with

Af ¼
X

1�a�p
�‘a;fA‘a and

�f ¼
X

1�a<b�p
�‘a;f�‘b;fA‘a ^ A‘b :

(3.11)

Expanding then to second order (3.6), we get

Sf½A‘; �f�

¼ 2kf

�
inf � Af �

A2
f

2
þ ðnf � AfÞ2

2
þ i�f � Af þ inf ��f

�
;

(3.12)

and we have to estimateZ Y
‘

dA‘

Y
f

d�f exp2j
X
f

kf

�
�
inf � Af �

A2
f

2
þ ðnf � AfÞ2

2
þ i�f � Af þ inf ��f

�
;

(3.13)

as j! 1. Note that we do not integrate over the vectors
nf; the latter have to be chosen so that they are extrema of

the imaginary part of S. Because all terms except the first
one

P
fkfnf � Af are of second order, the imaginary part is

stationary if and only ifX
f

ikfnf �Af¼
X
‘;f

i�‘;fkfnf �A‘¼0 8A‘2R3; (3.14)

which amounts to the closure conditionX
f

�‘;fkfnf ¼ 0; (3.15)

to be fulfilled for any edge ‘. This is the well-known
requirement that, in the semiclassical limit, the vectors
jfnf are the sides of a triangle (respectively, the area

bivectors of a tetrahedron) that propagates along ‘ in
dimension 3 (respectively, dimension 4). The solutions of
the closure conditions range from nondegenerate to
maximally degenerate. In three-dimensional (respectively,
four-dimensional) BF theory, a solution is said to be
nondegenerate if all the tetrahedra (respectively, four-
simplices) corresponding to the vertices of the graph
have maximal dimension. At the opposite end, we say
that a solution is maximally degenerate if all the vectors
nf are proportional to a single one n0,

nf ¼ �fn0 with �f 2 f�1;þ1g: (3.16)

1. Maximally degenerate case

Let us first concentrate on the maximally degenerate
solutions and show that for simply connected graphs (i.e.,
every closed loop can be shrunk to a point by deforming it
through the faces), the quadratic saddle point approxima-
tion yields an upper bound estimate

AG & �3F�3r; (3.17)

with r the rank of the L� F incidence matrix �‘;f. This is

in accordance with the general results for BF theory pre-
sented (see also [13]).
To derive this result, we proceed with the following five

steps.
(1) For a maximally degenerate solution, the closure

constraints amount toX
f

�‘;fxf ¼ 0; (3.18)

with xf ¼ kf�f. Since the rank of the matrix �‘;f is

r, the xf live in a F� r dimensional subspace. The

signs �f have to be adjusted so that kf > 0. We end

up with a summation over F� r independent spins
in (3.1). Let us note that since the incidence matrix
has integer coefficients, all the spins may always be
chosen to be half-integers, after multiplication by a
suitable integer.

(2) For BF theory in the coherent state representation,
we have a factor of d2j per face, so that the normal-

ization behaves as

N ¼ ðdjÞ2F 
 j2F; (3.19)

where we have discarded an inessential multiplica-
tive constant as j! 1.

(3) The integration over �f can be performed using the

Fourier representation of the � functionZ
d�f expfij�f � Ag ¼ 1

j2
�n?

0
ðAfÞ (3.20)
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with an inessential factor of ð2Þ2 absorbed in
the integration measure. Note that the vector �f is

constrained to lie in the plane orthogonal to nf, so

that it enforces the constraint Af ¼ 0 only in that

plane. Since Af ¼ P
‘�‘;fA‘, these constraints are

not independent. The number of independent con-
straints is 2r, since everything takes place in the
plane orthogonal to a vector nf ¼ �fn0 which does

not depend on the face. Altogether, the integration
over the �f yield a factor of j

�2r and implement the

constraintsX
‘

�‘;fA‘ ¼ 0 in the directions orthogonal ton0:

(3.21)

(4) Using the previous constraints, the real part of
the action involving A only vanishes, ðAfÞ2�
ðnf � AfÞ2 ¼ 0.

(5) Because the graph is simply connected, the
constraints (3.21) imply the existence of vectors
Cv 2 R3 attached to the vertices and orthogonal to
n0 such that

A‘ � ðn0 � A‘Þn0 ¼ Csð‘Þ � Ctð‘Þ; (3.22)

with sð‘Þ (respectively, tð‘Þ) the source (respec-
tively, the target) of the edge ‘. Then, the phase
associated to a face f reads

n0 ��f ¼
X
‘2@f

�‘;fn0 � ðCsð‘Þ ^ Ctð‘ÞÞ: (3.23)

The total contribution of all the faces to the action
vanishes sinceX
f

kfnf ��f ¼
X
f;‘

�‘;fkfnf � ðCsð‘Þ ^ Ctð‘ÞÞ

¼X
‘

�X
f

�‘;fkfnf

�
� ðCsð‘Þ ^ Ct‘Þ ¼ 0;

(3.24)

using the closure condition (3.15).
(6) However, its is important to note that the compo-

nents of A parallel to n0 are not constrained by
(3.22) and their contribution to the action vanishes
identically in the quadratic approximation. This is
the reason why we only get an upper bound in the
maximally degenerate case.

Accordingly, the bound for the amplitude can be esti-
mated as X

F�r independent spins
of order j��

j2F � j�2r 
�3F�3r; (3.25)

which is the result obtained in [12].
It is interesting to note that for a simply connected graph,

the rank r of the incidence matrix can be written as

r ¼ F� ðV � 1Þ. Indeed, the system of Eq. (3.21), whose
rank is 2r allows to write the 2L variables Al in terms of
2ðV � 1Þ differences Cv � Cv0 , all in the direction or-
thogonal to n0. Therefore, one has 2L� 2r ¼ 2V � 2, so
that r ¼ L� V þ 1 and the amplitude of a simply con-
nected graph scales as

AG & �3ð�G�1Þ; (3.26)

with �G ¼ F� Lþ V the Euler characteristics of the

graph. This also reproduces the result of [13], since
�G ¼ dimH2

G � dimH1
G þ dimH0

G ¼ dimH2
G þ 1 for a

simply connected graph. This is also in accordance with
the results of [12] for graphs with planar jacket. The faces
Fjacket of the planar jacket obey Fjacket � Lþ V ¼ 2, since

the associated surface has the topology of a sphere, and the
remaining faces are in bijections with the cycles followed
by the N ¼ F� Fjacket strands in the middle, so that the

degree of divergence reads !G ¼ 3ðFjacket�LþV� 1Þþ
3N¼ 3ðNþ 1Þ.

2. Nondegenerate case

In the nondegenerate case, the situation is slightly more
complicated. The integration over the variables �f yields a

system of equations analogous to (3.21), but now with a
vector nf that varies from face to face,X

‘

�‘;fA‘¼0 in the direction orthogonal tonf: (3.27)

Because for fixed ‘, the three (respectively, four) vectors
�‘;fnf in dimension 3 (dimension 4) span a space of

dimension 2 (respectively, 3), all the components of A‘

appear in the system (3.27), contrary to the maximally
degenerate case (3.21), which only involves the compo-
nents of A‘ orthogonal to n0. In the example treated in
detail below (see Sect. III B), (3.27) turns out to be equiva-
lent to

P
‘�‘;fA‘ ¼ 0, which has rank 3r and yields the

same degree of divergence. In the general case, we expect
nondegenerate configurations to have a less divergent be-
havior, since the degree of divergence 3F� 3r obtained in
[12] in the Abelian case is expected to be an overestimate
in the general case and is the correct asymptotic behavior at
least for many graphs.

3. Two-dimensional case

To close this section, let us see how the saddle point
method allows us to recover the results presented in [22] in
the simplest case of BF theory in dimension 2. In this case,
GFT graphs are ordinary ribbon graphs with trivalent
vertices representing triangles. The closure condition reads
kf1nf1 ¼ kf2nf2 for every edge that separates two different

faces and is vacuous for edges that appear twice as we go
along a face (if we restrict ourselves to triangulations of
orientable surfaces). Thus, for a genus 0 graph there is a
single spin j and a single unit vector n. Moreover, the graph
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is simply connected so the phase disappears. Choosing an
arbitrary face, all other F� 1 constraints are independent
since the corresponding faces span a sphere with one hole
that can be filled with the remaining face. Thus, r ¼ F� 1
and ! ¼ 3F� 3ðF� 1Þ ¼ 3, as expected from the rela-
tion (see [22])

AG ¼
X
j��

j�G 
��Gþ1; (3.28)

with �G the Euler characteristic.

At higher genera the graph is no longer simply con-
nected and the contribution of the antisymmetric part may
be decisive. For instance, for the nonplanar double tadpole
G1 (torus topology)

AG1
¼

Z
dh1dh2�ðh1h2ðh1Þ�1ðh2Þ�1Þ; (3.29)

an expansion to second order yields the action

S½n; A1; A2� ¼ ijn � A1 ^ A2: (3.30)

The rank of this quadratic form is 4 and the Gaussian
integration over A1 and A2 yields

AG1
¼ X

j��
j2 � j�4=2 
�; (3.31)

in accordance with (3.28).

B. Divergence of the self-energy in the EPRL/FKmodel

The self-energy graphG2 of Fig. 4 has four open faces. It
has six closed faces with two edges each. We label the
internal propagators with an index a ranging from 1 to 4
and orient them in the same direction. We label the six
closed faces with pairs of indices ða; bÞ, a < b. Its ampli-
tude reads

AG2
¼Y

a

du�a dva�Y
a<b

Aab (3.32)

where, from (2.34) the face amplitude reads

Aab ¼
X
j

djþdj�

2
j

Z
dnabdn

0
abhjþnabjuaþu�1bþjjþn0abi

� hjþn0abjvbþv�1aþjjþnabihj�nabjua�u�1b�jj�n0abi
� hj�n0abjvb�v�1a�jj�nabi: (3.33)

Using (A16), we rewrite the amplitude above as

A ab ¼
X
j

djþdj�

2
j

Z
dndn0ðhnjuaþu�1bþjn0i

� hn0jvbþv�1aþjniÞ2jþðhnjua�u�1b�jn0i
� hn0jvb�v�1a�jniÞ2j� : (3.34)

In order to perform a stationary phase analysis we rewrite
the graph amplitude as

AG2
¼X

jf

Z Y
a

du�a
Y
a

dv�a
Y
i

dni

�Y
f

fðdjf Þ2djþf dj�f expfjSþf þ jS�f gg; (3.35)

with j�f ¼ j��kf, kf 2 ½0; 1� and j large. There is one

coherent state per strand, which amounts here to label the
coherent states by a couple of a face and an edge i ¼ ðf; lÞ
such that �l;f � 0. The face action for f ¼ ab can be

written as

S�f ¼ 2��kf logfhnf;aju�a ðu�b Þ�1jnf;bi
� hnf;bjv�b ðv�a Þ�1jnf;aig: (3.36)

We employ the saddle point technique around the iden-
tity and develop the group elements as follows:

u�a ¼ 1� ðA
�
a Þ2
2
þ i� � A�a þOðA�a Þ3;

v�a ¼ 1� ðB
�
a Þ2
2
þ i� � B�a þOðB�a Þ3:

(3.37)

Moreover, introducing the projector

jniihnij ¼ 1þ i� � ni
2

; (3.38)

the action at the identity for the face f ¼ ab reads

S�f ½1; 1; ni� ¼ ��kab log Tr
�
1þ i� � nf;a

2

1þ i� � nf;b
2

�

¼ ��kab log
�
1þ nf;a � nf;b

2

�
; (3.39)

which is negative except for nf;a ¼ nf;b ¼ nf. Therefore,

we perform the expansion of the coherent state around an
unit vector common to all the strands of the face

ni ¼ nf þ �i � ð�iÞ2
2

nf þOð�iÞ3; with nf � �i ¼ 0;

(3.40)

FIG. 4 (color online). The ‘‘self-energy’’ graph G2, quantum
correction to the propagator.
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otherwise the integral is exponentially damped. To perform the expansion at second order of the action, it is convenient to
rewrite this action as

S�f ¼ ��kf log Trfjnf;aihnf;aju�a ðu�b Þ�1jnf;bihnf;bjg þ ��kf log Trfjnf;bihnf;bjv�b ðv�a Þ�1jnf;aihnf;ajg
� ��kf log Trfjnf;aihnf;ajjnf;bihnf;bjg: (3.41)

Using the projector (3.38), the expansion to second order only involves traces of products of Pauli matrices and is
straightforward but rather lengthy. A crucial intermediate result is the expansion to second order in A1, A2, �1, �2,

1

4
Tr

��
1þ�

�
nþ�1�ð�1Þ2

2
n

���
1�ðA1�A2Þ2

2
þ i� � ðA1�A2þA1 ^A2Þ

��
1þ�

�
nþ�2�ð�2Þ2

2
n

���

¼ 1�ðA1�A2Þ2
2

þ in � ðA1�A2þA1 ^A2Þ� ð�1��2Þ2
4

þ ið�1þ�2ÞA1�A2

2
þð�1��2Þn^ ðA1�A2Þ

2
: (3.42)

Gathering all terms together and taking the logarithm, we get

S�f ½A�; B�; �i� ¼ kf�
�f�ðA�a � A�b Þ2 þ ½nf � ðA�a � A�b Þ�2 � ðB�b � B�a Þ2 þ ½nf � ðB�b � B�a Þ�2 þ inf � ðA�a � A�b

þ B�b � B�a Þ þ inf � ðA�a ^ A�b þ B�b ^ B�a Þ þ ið�f;a þ �f;bÞ � ðA�a � A�b þ B�b � B�a Þ

� ð�f;a � �f;bÞ2
2

þ ð�f;a � �f;bÞ � ½nf ^ ðA�a � A�b � ðB�b � B�a ÞÞ�g: (3.43)

To complete the computation, one has to perform a Gaussian integration with an action S ¼ P
fðSþf þ S�f Þ. In order to

disentangle this computation, it is convenient to perform the following change of variables:

A�a ¼ Aa � ��Xa and B�a ¼ Ba � ��Ya: (3.44)

The interest of this change of variables is that the terms linear in A� and B� now only involve A and B, while in the
quadratic terms, the pair of variables A andB on one side and the pair X and Y on the other side decouple. We shall return in
greater detail to this change of variable in Sec. III C in the case of a arbitrary graph, since it allows to separate the action, at
the level of the quadratic approximation, into an SUð2Þ BF action (variables A and B) and an ultralocal potential that only
involves uncoupled variables attached to the vertices (variables X and Y). Turning back to the self-energy, we get

Sf½A; B; X; Y; �� ¼ Sþf ½Aþ; Bþ; �� þ S�f ½A�; B�; ��
¼ kff�ðAa � AbÞ2 þ ½nf � ðAa � AbÞ�2 � ðBb � BaÞ2 þ ½nf � ðBb � BaÞ�2 þ inf � ðAa � Ab þ Bb � BaÞ

þ inf � ðAa ^ Ab þ Bb ^ BaÞ þ ið�f;a þ �f;bÞ � ðAa � Ab þ Bb � BaÞ �
ð�f;a � �f;bÞ2

2

þ ð�f;a � �f;bÞ � ½nf ^ ðAa � Ab � ðBb � BaÞÞ�g þ kf�
þ��f�ðXa � XbÞ2 þ ½nf � ðXa � XbÞ�2

þ inf � ðXa ^ XbÞ � ðYb � YaÞ2 þ ½nf � ðYb � YaÞ�2 þ inf � ðYb ^ YaÞg: (3.45)

Performing the Gaussian integration over the two-dimensional vector �f ¼ �f;a � �f;b, one has

Z
d�f expjkf

�
��2

f

2
þ�f � ½nf ^ ðAa�Ab� ðBb�BaÞÞ�

�
¼ 2

jf
exp

jkf
2
½nf ^ ðAa�Ab� ðBb�BaÞÞ�2: (3.46)

Discarding an inessential constant in the limit j! 1 to alleviate the notations, the graph amplitude can therefore be
written as

AG2
¼X

jf

j18
�Z Y

a

dAa

Y
a

dBa

Y
f

d�f expjSBFðA;B;�Þ
Z Y

a

dXaexpjQðXÞ
Z Y

a

dYaexpjQðYÞ
�
; (3.47)

with �f ¼ �f;a þ �f;b. The BF-like action is

SBF½A; B; �� ¼
X
a<b

kab

�
� 1

2
½nf ^ ðAa � Ab þ Bb � BaÞ�2 þ inab � ðAa � Ab þ Bb � BaÞ þ inab � ðAa ^ Ab þ Bb ^ BaÞ

þ i�ab � ðAa � Ab þ Bb � BaÞ
�
; (3.48)
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while the ultralocal terms are

Q½X� ¼ �þ��
X
a<b

kabf½nab ^ ðXa � XbÞ�2

þ inab � ðXa ^ XbÞg: (3.49)

The Gaussian integral over the variables A and B can be
evaluated using the same techniques as in Sec. III A, de-
voted to BF theory. First, there are four closure conditions,
one for each edge a,

X4
b¼aþ1

kabnab �
Xa�1
b¼1

kbanba ¼ 0 (3.50)

or explicitly,

k12n12 þ k13n13 þ k14n14 ¼ 0;

�k12n12 þ k23n23 þ k24n24 ¼ 0;

�k13n13 � k23n23 þ k34n14 ¼ 0;

k14n14 þ k24n24 þ k34n34 ¼ 0:

(3.51)

Note that the first three equations are independent while the
last one is their sum, so that the rank of the incidence
matrix �l;f is 3. Let us investigate the case of nondegen-
erate configurations, which means that the six vectors
kabnab span a three-dimensional space. Geometrically,
the solution of these closure constraints can be realized
by constructing a tetrahedron (see Fig. 5) with faces
labeled 1, 2, 3, 4 and assigning the vector kabnab to an
edge between faces a and b. Consequently, we sum over 6
independent spins in (3.35).

The Gaussian integration over the variables �ab imposes
the constraints

Aa�Ba ¼ Ab�Bb in the direction orthogonal tonab:

(3.52)

However, out of the 12 relations in (3.52), only 9 of them
are independent and they are equivalent to

Aa � Ba ¼ C; (3.53)

with C 2 R3. First of all, it is clear that any solution of
(3.53) is a solution of (3.52). Let us show that the converse
also holds. Let consider all the equations involving edge 1,

A1�B1¼Aa�Ba in the direction orthogonal ton1a;

a2f2;3;4g: (3.54)

Because of the closure constraint
P

a>1k1an1a ¼ 0, the
relation A1 � B1 ¼ Aa � Ba holds in the one dimensional
space orthogonal to all three vectors k1an1a. Thus the
vectors Aa � Ba are all equal along this direction. We
then repeat the same reasoning for the other edges and
conclude that the vectors Aa � Ba are all equal along all
directions using the nondegeneracy condition. As conclu-
sion, the rank of (3.52) is 9 since it reduces the 12 degrees
of freedom of the 4 vectors Aa � Ba to a single vector and
the Gaussian integration over �ab enforcing this constraint
yields a factor of j�9.
Using this constraint, the real part of the quadratic action

obviously vanishes. The imaginary part can be dealt with
using the techniques of Sec. III A. Using first the con-
straint, we write

0 ¼ ðAa þ BbÞ ^ ðBa þ AbÞ
¼ Aa ^ Ba þ Bb ^ Ab þ Aa ^ Ab þ Bb ^ Ba: (3.55)

After summation over all faces, the net contribution of the
phases to the amplitude vanishesX

a<b

ikabnab � ½Aa ^ Ab þ Bb ^ Ba�

¼ �X
a<b

ikabnab � ½Aa ^ Ba þ Bb ^ Ab�; (3.56)

where we have use the closure constraints. Altogether, the
integration over the variables A, B and � yieldsZ Y

a

dAa

Y
a

dBa

Y
f

d�f expjSBFðA; B; �Þ 
 j�9; (3.57)

as j! 1. Note that this, together with a j12 arising from
the coherent state representation of the � function (j2

per face) and a summation over 6 independent spins,
reproduces X

6 independent spins
j<�

j12 � j�9 
�9; (3.58)

which is the known result for SUð2Þ BF theory. Since the
rank r of the incidence matrix �l;f is 3, this reproduces

with nondegenerate configurations the results of [12], with
a degree of divergence 3F� 3r.
Let us now consider the Gaussian integral over the

independent variables Xa and Ya,FIG. 5. The tetrahedron illustrating the closure condition.
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Z Y
a

dXa expjQðXÞ 
 j�ðrankðQÞ=2Þ; (3.59)

which simply amounts to compute the rank of the quadratic
form

Q½X� ¼ �þ��
X
a<b

kabf½nab ^ ðXa � XbÞ�2

þ inab � ðXa ^ XbÞg: (3.60)

This quadratic form is associated with a symmetric bilinear
form

B½X;Z�¼1

4
ðQðXþZ;XþZÞ�QðX�Z;X�ZÞÞ; (3.61)

and its kernel is defined as the subspace of the variables X
such that B½X; Z� ¼ 0 for all Z. First, notice that B½X; Z� is
complex but the variables X and Z are real. Therefore, the
orthogonality condition B½X; Z� ¼ 0 has to be fulfilled for
the real and the imaginary part separately. Since the real
part is positive (but not definite positive), X has to obeyX

a<b

kab½nab ^ ðXa � XbÞ�2 ¼ 0; (3.62)

or equivalently Xa � Xb ¼ 0 in the plane orthogonal nab.
Using the nondegeneracy of the configuration, an analysis
identical to that of the constraints (3.52) leads to Xa ¼ C
with C 2 R3 that do not depend on the edge. Then, the
imaginary part of the relation BðX; ZÞ ¼ 0 readsX

a<b

fkabnab � ðC ^ ZbÞ þ kabnab � ðZa ^ CÞg ¼ 0; (3.63)

which is identically fulfilled for any Zb because of the
closure condition (3.50). Finally, the rank of Q is the
dimension of the orthogonal of its kernel. Since the latter
has dimension 3 and we have 4 vector variables Xa, we
obtain rankðQÞ ¼ 12� 3 ¼ 9, so that the Gaussian inte-

gral over X yields a power of j�9=2. Obviously, the same
holds for the integration over Y.

Therefore, we obtain the power counting for the self-
energy with nondegenerate configurations as followsX
6 independentspins
j<�

j24�j�6�j�9�ðj�9=2Þ2
�6; (3.64)

with the factor j24 arising from a djþdj� 
 j2 for each of

the six faces and a factor dj 
 j for each of the two strand

in each face. The factor j�6 results form the Gaussian
integration over the six variables �f ¼ ð�f;a � �f;bÞ in
(3.46) and the j�9 from the integration over A and B in
(3.57). This reproduces the result of [11], with nondegen-
erate configurations. Note that this is an asymptotic behav-
ior and not a mere bound as we had before, since all the
zero modes of the quadratic approximation correspond to
gauge degrees of freedom (3.53).

It is also of interest to notice that this result should also
hold with finite nonzero spins on the external faces. Indeed,
since the latter remain finite, the contribution of the exter-
nal faces to the action can be neglected as j! 1.
Finally, let us mention that we have derived this power

counting with nondegenerate configurations. In the
next section, we shall discuss maximally degenerate
configurations.

C. A bound for maximally degenerate configurations

Consider a general graph G in the EPRL/FK model with
F faces f. Since we are going to take the limit jf ! 1 for

the internal spins, the contribution of the external faces can
be neglected, as long as their spins remain finite. Recall
that the graph amplitude can be written as

AG ¼
Z Y

dh
Y

Af; (3.65)

with the face amplitude given by (2.34). The graph ampli-
tude may be rewritten as in (3.1)

Af ¼
X
jf

�
djþ

f
dj�

f
ðdjÞp

Z Y
dn

Y
dhexpj

X
f

fSþf þ S�f g
�
;

(3.66)

with

S�f ½n; h� ¼ 2kf�
� X
1�q�p

log
n
hnf;lq

� jðhþvq;lq
Þ�vq;lq�lq;f ðhþvq;lqþ1Þ

�vq;lqþ1�lqþ1 ;f jnf;lqi
o
:

(3.67)

In the limit j! 1, we expect that the main contribution to
this integral arises from the neighborhood of the identity
for the group elements. At the identity, the action reads

S�f ½n; 1� ¼ 2kf�
� log Tr

"Y!
q

1

2
ð1þ inf;lq � �Þ

#
: (3.68)

This is the trace of a product of rank one projectors; its real
part is always negative and vanishes when all the projectors
are equal. Therefore, we expand the unit vectors nf;lq
around a unit vector nf common to all edges of the face,

nf;lq ¼ nf þ �f;lq �
ð�f;lqÞ2

2
nf þOð�f;lqÞ3; with

nf � �f;lq ¼ 0; (3.69)

together with an expansion of the group elements around
the identity

hv;l ¼ 1� ðAv;lÞ2
2
þ i� � Av;l þOðAv;lÞ3: (3.70)
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The expansion of the action to second order follows the
same steps as Sec. III B. It is convenient to introduce

D�f:vq
¼ �vq;lq�lq;fA

�
vq;lq
þ �vq;lqþ1�lqþ1;fA

�
vq;lqþ1 (3.71)

and

��f;vq
¼ �lq;f�lqþ1;fA

�
vq;lq
^ A�vq;lqþ1 : (3.72)

After some algebra, the second order expansion of the
action reads

S�f ½Av;l;�f;l� ¼ kf�
�X

q

�
ðnf ^D�f;lqÞ2þ 2inf �D�f;vq

þ 2inf ���f;vq
� 1

2
ð�f;lqÞ2þ

1

2
�f;lq ��f;lqþ1

þ i

2
nf � ð�f;lq ^�f;lqþ1Þþ i�f;lq � ðD�f;vq�1

þD�f;vq
Þþ�f;lq � ½nf ^ ðD�f;vq

�D�f;vq�1Þ�
�
:

(3.73)

In order to simplify the analysis, we perform a change of
variable similar to (3.44),

A�v;l ¼ Av;l � ��Xv;l: (3.74)

Terms linear in A�v;l are all of the form

�þLv;l �Aþv;lþ��Lv;l �A�v;l¼Lv;lAv;l; with Lv;l2R3;

(3.75)

so that they do not involve the variables Xv;l. Terms qua-

dratic in A�v;l are all of the form

�þB½Aþv;l; Aþv0;l0 � þ ��B½A�v;l; A�v0;l0 �; (3.76)

where the bilinear form B½A�v;l; A�v0;l0 � is either a scalar

product A�v;l � A�v0;l0 or a wedge product nf � ðA�v;l ^ A�v0;l0 Þ.
Substituting A�v;l and A�v0;l0 , it is easily seen that

�þB½Aþv;l; Aþv0;l0 � þ ��B½A�v;l; A�v0;l0 �
¼ B½Av;l; Av0;l0 � þ �þ��B½Xv;l; Xv0;l0 �: (3.77)

Then, we can express the total action Sf ¼ Sþf þ S�f as a

sum of a BF-type action

SBFf ½A;��¼kf
X
q

�
ðnf^Df;lqÞ2þ2inf �Df;vq

þ2inf ��f;vq
�1

2
ð�f;lqÞ2þ

1

2
�f;lq ��f;lqþ1

þ i

2
nf � ð�f;lq^�f;lqþ1Þþ i�f;lq � ðDf;vq�1þDf;vq

Þ

þ�f;lq � ½nf^ðDf;vq
�Df;vq�1Þ�

�
; (3.78)

with D�f;v and �f;v as in (3.71) and (3.72) but with Av;l

instead of A�v;l, and an ultralocal potential

Qf½X�¼�þ��kf
X
q

fðnf^Df;lqÞ2þ2inf ��f;vq
g: (3.79)

To relate the BF face action to the more conventional one
we encountered in Sec. III A, let us perform the integration
over the variables �f:vq

, starting with �f;vp
,

Z
d�f;vp

expjkf

�
1

2
ð�f;lpÞ2 þ

1

2
�f;lp � ð�f;lp�1 þ �f;l1Þ þ

i

2
�f;lp � ½nf ^ ð�f;lp�1 � �f;l1Þ�i�f;lp � ðDf;vp�1 þDf;vp

Þ

þ �f;lp � ½nf ^ ðDf;vp
�Df;vp�1Þ�

�

¼ 1

j2
exp

jkf
2

�
1

2
ð�f;lp�1 þ �f;l1Þ þ

i

2
½nf ^ ð�f;lp�1 � �f;l1Þ� þ i½Df;vp�1 þDf;vp

� nfðnf � ðDf;vp�1 þDf;vp
ÞÞ�

þ nf ^ ðDf;vp
�Df;vp�1Þ

�
2

¼ 1

j2
expjkf

�
1

2
�f;lp�1 � �f;l1 þ

i

2
nf � ð�f;lp�1 ^ �f;l1Þ � 2inf � ðDf;vp�1 ^Df;v1

Þ � 2ðnf ^Df;vp�1Þðnf ^Df;vp�1Þ

þ �f;lp�1 � ðiDf;vp
þ nf ^Df;vp

Þ þ �f;l1 � ðiDf;vp�1 þ nf ^Df;vp�1Þ
�
: (3.80)

Note that �f;vp
is orthogonal to nf so that it couples only to the projection ofDf;vp�1 þDf;vp

onto the subspace orthogonal
to nf. Gathering all the terms in the action pertaining to the edges lq�1 and l1, we get

� 1

2
ð�f;lq�1Þ2�

1

2
ð�f;l1Þ2þ

1

2
�f;lq�1 ��f;l1 þ

i

2
nf � ð�f;lq�1 ^�f;l1Þi�f;lp�1 � ðDf;vp�2 þDf;vp�1 þDf;vp

Þ
þ�f;lp�1 � ½nf ^ ðDf;vp�1 �Df;vp�2 þDf;vp

Þ�i�f;l1 � ðDf;vp
þDf;v1

þDf;vp�1Þþ�f;l1 � ½nf ^ ðDf;v1
�Df;vp�1 �Df;vp

Þ�
� ðDf;vp

^nfÞ2�ðDf;vp�1 ^ nfÞ2� 2ðDf;vp
^nfÞ � ðDf;vp�1 ^nfÞþ 2inf � ð�vq

�Df;vp�1 ^Df;v1
Þ: (3.81)
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The integration over the variable �f;lp has a simple graph-
ical interpretation. We have contracted the line lq and
merged the vertex vq (associated with Df;Vq

) with the
vertex vq�1 (associated with Df;vq�1) into a new vertex
(still called vq�1), associated with Df;vq�1 þDf;vq

and
�f;vq

�Df;vp�1 ^Df;v1
. Therefore, we may pursue this

procedure till we obtain a face with only two edges.
Then, we proceed as in Sec. III B for the self-energy
and integrate over �f;1 � �f;2. The remaining variable
�f;1 þ �f;2 is a Lagrange multiplier for the constraintP

qDf;vq
¼ 0, or explicitlyX

1�q�p
�vq;lq�lq;fAvq;lq þ �vq;lqþ1�lqþ1;fAvq;lqþ1 ¼ 0; (3.82)

which is nothing but the constraint (3.21) written in terms
of the variables �vq�1;lqAvq�1;lq þ �vq;lqAvq;lq . Then, the rest
of the discussion follows the same path as in Sec. III A.
There are 2r independent constraints in the maximally
degenerate case. The real part of the action vanishes iden-
tically as well as the imaginary part for a simply connected
graph, once we have used these constraints and the closure
constraints. Accordingly, we have

Z Y
v;l

dAv;l

Y
f;l

dnf;lexpj

�X
f

SBFf ½A;n�
�
& j

�P
f

Lf�1
�
�j�2r;

(3.83)

with Lf the number of edges in the face f.
Let us finally analyze the ultralocal terms given by the

quadratic form Qf defined in (3.79). Gathering the contri-

butions of all faces, we get

Q½X� ¼X
v

�X
f

�þ��kf½nf ^ ðA
v; l
 
f;v

� Av;~lf;v
Þ�2

þ 2inf � ðA
v; l
 
f;v

^ Av;~lf;v
Þ
�
; (3.84)

with l
 
f;v (respectively,~lf;v) the edge entering (respec-

tively, leaving) the vertex v along the face f. First we
notice that this is a sum over all vertices of quadratic forms
defined at each vertex involving only variables attached to
that vertex. This is the reason why we called such a term
‘‘ultralocal.’’

We then proceed as we did for the self-energy. The
quadratic form has a real and an imaginary part, but its
arguments are real. Therefore, the kernel of the associated
bilinear form is the intersection of the kernel of the real
part and of the imaginary part. Because the real part is a
sum of squares, at each vertex and for each face we have

A
v; l
 
f;v

¼Av;~lf;v
in the direction orthogonal tonf: (3.85)

Since in the maximally degenerate case all the nf are

proportional to n0, this simply implies that all vectors
Av;l ¼ Cv in the plane orthogonal to n0, while the compo-

nents collinear to n0 are left unconstrained. Then, as in

Sec. III B, the closure constraints imply that Av;l ¼ Cv also

lies in the kernel of the imaginary part. If we denote by dv
the valence of vertex v (dv may be lower than 5 since the
external faces carrying spin 0 have to be removed), we get
a rank of 2dv � 2, (there are 3dv variables and 2þ dv
solutions), so that

Z Y
dX expjQðXÞ & j

�
�P

v

ð2dv�2Þ=2
�
: (3.86)

Taking all the terms together, we get

AG & �
3F�3rþFþV�P

v

dv
: (3.87)

The first term is the power counting of the graph G in BF
theory with group SUð2Þ, while the second one results from
a difference of normalization between EPRL/FK and BF
theories. The last one is minus the half of sum of the ranks
of the ultra local quadratic forms at each vertex. Since the
latter are less important for nondegenerate configurations,
we expect the maximally degenerate configuration to give
a larger contribution, as long as the external spin remain
finite. In particular, for the self-energy we have dv ¼ 4 so
that the maximally degenerate configurations are bounded
by �9.
When applied to the self-energy with dv ¼ 4 because we

set the external spins to 0, we get a bound in �9, which
suggests that degenerate configurations dominate in the
EPRL model. However, this is only an upper bound since
the zero modes of the degenerate configurations are not all
gauge degrees of freedom, in particular, the component
of A and B along n0 do not contribute to the action in
the quadratic approximation. These modes require a more
thorough study involving higher order terms. Nevertheless,
using the asymptotic behavior of 6j symbols and fusion
coefficients (see [11]), we show in Appendix C that degen-
erate configurations indeed dominate this correction to the
self-energy, but with an asymptotic behavior in �7 instead
of �9. This is not in contradiction with the results of [11],
since the latter use the relation ð6jÞ2 
 1

V , which implicitly

assumes that the configuration is nondegenerate.
Therefore, in the sum over spins we have to identify a
partial sum made of spins obeying a relation such that
maximally degenerate configurations exist. This partial
sum behaves like�7, while the remaining terms containing
the nondegenerate configurations are in �6.

IV. CONCLUDING REMARK: HINT ON A
PHASE TRANSITION

By parity, the �5 4-dimensional GFT has no two-point
function contribution to first order in the coupling constant.
At second order beyond the self-energy graph G2, the only
other graphs have tadpoles, hence they are absent in the
colored model; in the noncolored model they have fewer
faces, so we can expect the amplitude of G2 to provide the
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dominant correction to the effective propagator of the
model.

Since that amplitudeAG2
is positive, we can expect the

whole self-energy correction � to be also positive. The
corresponding geometric power series for the dressed or
effective propagator

Cdressed ¼ Cþ C�Cþ C�C�Cþ . . . ¼ C

�
1

1��C

�
(4.1)

should therefore be singular when the spectrum of �C has
eigenvalue 1. This should occur for � large enough, de-
pending on the ultraviolet cutoff �. This is usually the
signal of a phase transition. For instance, in an ordinary�4

model a positive mass term corresponds to a double well
potential which signals a breaking of the �! �� sym-
metry. In the vector �4 ‘‘Ginzburg-Landau’’ model, it
leads to the famous continuous symmetry breaking with
appearance of an associated Goldstone boson.

At a more speculative level, this hint of a phase tran-
sition supports a scenario in which ordinary macroscopic
smooth space-time is an emergent phenomenon. Group
field theory, in particular its perturbative phase, might be
a more fundamental description and space-time might
result from condensation through a phase transition.
This scenario is a version of what has been called
geometrogenesis.

In this scenario the relationship of group field theory to
space-time, gravitons and general relativity would be
somewhat similar to that between QCD and effective theo-
ries of nuclear forces.

ACKNOWLEDGMENTS

T.K. and P. V. thank CPHT École Polytechnique and
LPT Orsay for the hospitality. A. T. acknowledges the
CNCSIS Grant No. Idei 454/2009, ID-44, and the Grant
No. PN 09 37 01 02. P. V. acknowledges the European
Science Foundation Exchange Grant No. 2595 under the
Research Networking Program ‘‘Quantum Geometry and
Quantum Gravity’’ and thanks the Università di Napoli for
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APPENDIX A: HARMONIC ANALYSIS ON SUð2Þ
AND COHERENT STATES

We include in this appendix well-known formulas for
self-completeness. We start withZ

dgRðjÞmk ðgÞ ¼ �j0�m0�k0 (A1)

Rð|Þmk ðgÞRð~|Þ ~m~k ðgÞ ¼
X|þ~|

J¼j|�~|j
ð|; m; ~|; ~mjJ;MÞ

� ðJ; Kj|; k; ~|; ~kÞRðJÞMK ðgÞ; (A2)

where RðjÞmk ðgÞ are unitary representations of SUð2Þ and
ðJ; Kj|; k; ~|; ~kÞ are the Clebsch-Gordan coefficients. We
use the normalizations of [4].
We haveZ

dg �RðjÞnmðgÞRðj0ÞpqðgÞ ¼ 1

dj
�ðj; j0Þ�m

q �
p
n (A3)

Z
dgRðjÞmnðgÞRðj0ÞpqðgÞ ¼ 1

dj
�ðj; j0Þ�mp�nq (A4)

with �RðjÞnmðgÞ ¼ RðjÞmnðg�1Þ which implyZ
dgTrjAgTrj0Bg

�1 ¼ 1

dj
�ðj; j0ÞTrjAB (A5)

Z
dgTrjAgTrj0Bg ¼ 1

dj
�ðj; j0ÞTrjA�BT�T (A6)

with � 2 SUð2Þ,

� ¼ 0 1
�1 0

� �
: (A7)

We have �T� ¼ 1 and �g�T ¼ �g.

1. nj symbols

We have the 3j symbols

{m1m2m3 ¼ ð�1Þ
j1�j2þm3ffiffiffiffiffiffiffi
dj3

p ðj3;�m3jj1; m1; j2; m2Þ; (A8)

the 6j symbols

j1 j2 j3
j4 j5 j6

� �
¼ X

m1::m6

{m4m3m5 {m5m1m6
{m3

m2m1 {m2m4

m6 ; (A9)

and the 9j symbols8><
>:
j1 j2 j3

j4 j5 j6

j7 j8 j9

9>=
>;

¼ X
m1::m6

{m1m2m3 {m4m5m6 {m7m8m9 {m1m4m7
{m2m5m8

{m3m6m9
: (A10)

For the 15j symbols see [4]. The indices are raised and
lowered with the tensor �.

2. Coherent states

Let us first consider the SUð2Þ case. We introduce the
following parametrization for coherent states in the
spin-1=2 fundamental representation







12 ; n

�
¼ ei�m̂�ð�=2Þ









12 ; 12
�
; (A11)

with

m̂ ¼ ðsin�;� cos�; 0Þ; (A12)
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and �i the Pauli matrices

�1 ¼ 0 1
1 0

� �
�2 ¼ 0 �i

i 0

� �
�3 ¼ 1 0

0 �1
� �

: (A13)

This represents a rotation gn of the vector n0 ¼ ð0; 0; 1Þ of
an angle � around the m̂ direction

n0 ! n ¼ ðsin� cos�; sin� sin�; cos�Þ; (A14)

with � 2 ð0; Þ; � 2 ð0; 2Þ. The coherent state jj; n> is
obtained in the same way, replacing the generators i�i=2
with the appropriate operators Ji in the 2jþ 1 dimensional
representation. With this parametrization, the scalar prod-
uct of coherent states reads

hj; njj; ~ni ¼
�
cos

�

2
cos

~�

2
þ sin

�

2
sin

~�

2
e�ið�� ~�Þ

�
2j
; (A15)

which implies

hj; njj; ~ni ¼
��

1

2
; n









12 ; ~n
��

2j
: (A16)

In the representation space Vj of dimension dj�2jþ1,

we have

1 j ¼
X
m

jj; mihj;mj; (A17)

where jj; mi, m 2 ½�j; j� is the usual orthonormal basis in
Vj. We have

Rðj0Þmm0 ðgÞ � hj;mjgjj;m0i: (A18)

Hence

�m
m0 ¼ dj

Z
SUð2Þ

dgRðjÞmj ðgÞ �RðjÞj
m0 ðgÞ: (A19)

APPENDIX B: SELF-ENERGY: COMPARISON
WITH [11] AND NORMALIZATION

CONVENTIONS

We return to the ‘‘self-energy’’ graph G2 of Fig. 4. We
first rewrite the propagator in a slightly different way, using
the gauge invariance. We perform an SUð2Þ gauge trans-
formation. We multiply the u�, v� variables simulta-

neously by SUð2Þ elements h and ~h, which are the same
for the left and right components

u� ! h�1u�; v� ! ~h�1v�; (B1)

and we integrate over h, ~h so that (2.27) becomes

Cðg;g0Þ¼
Z
dhd~hdudv

Y
f

X
jf

	f
f

Z
dnf

� X
m; ~m;k;~k

ðg0fþv�1þ jjþmihjþ ~mjuþgfþRðjþÞmjþ

�ð~hnfÞRðjþÞjþ~m ððhnfÞyÞÞ�ðg0f�v�1� jj�ki
�hj�~kju�gf�Rðj�Þkj� ð~hnfÞRðj�Þj�~k

ððhnfÞyÞÞ: (B2)

Note that we have also used (2.13). Considering the tensor
product of representations (A2), we get

Cðg; g0Þ ¼
Z

dhd~hdudv
Y
f

X
jf

	f
f

Z
dnf

X
m; ~m;k;~k

ðjþ þ j�;Mjjþ; m; j�; kÞðjþ; ~m; j�; ~kjjþ þ j�; ~MÞRðjþþj�ÞMjþþj�ð~hnfÞ

� Rðjþþj�Þjþþj� ~M
ððhnfÞyÞðg0fþv�1þ jjþmihjþ ~mjuþgfþÞ � ðg0f�v�1� jj�kihj�~kju�gf�Þ: (B3)

The integration over nf through (A4) finally yields

Cðg;g0Þ ¼
Z

dHdudv
Y4
f¼1

X
jf

	jf Trðugfðg0fÞ�1v�1T�
jf
ðHÞÞ;

(B4)

with H ¼ ~hhy, and

T�
jf
ðHÞ ¼ 
jf

X
m ~m
k~k

jjfþmfihjfþ ~mfj � jjf�kfihjf�~kfj

� {mfkf�Mf
{ ~mf

~kf� ~MfRðjfþþjf�ÞMf
~Mf
ðHÞ; (B5)

where we have used (A8). Using this expression and the
amplitude expression, it is checked below that this corre-
sponds to the normalizations of [11], with k ¼ 2.

Note that this choice k ¼ 2 is not the one advocated
in [23].

To prove this statement we rewrite the graph amplitude
for the self-energy, inserting the new expression of the

propagator (B4). We can neglect the open faces, since the
external legs have vanishing spin. Hence, we get

A ðG2Þ ¼
Z

dHdudv
Y
a<b

Aabðu; v;HÞ; (B6)

with the face amplitude

Aab ¼
X
ja;jb

	ja	jb

Z
dgabd~gab Trjaþ�ja�

� ðuagab~g�1ab v
�1
a T�

ja
ðHaÞÞ

� Trjbþ�jb�ðubgab~g�1ab v
�1
b T�

jb
ðHbÞÞ: (B7)

The amplitude for this self-energy graph is written in
[11] as

A ðG2Þ ¼
X
jab{a

Y
a<b

dðjabÞð6jðjþabÞ6jðj�abÞÞ2
�Y

a

fa

�
2
; (B8)
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where in [11], dðjabÞ ’ jkab in the ultraspin regime. One

further has

6jðjabÞ ¼ j12 j13 j14
j23 j24 j34

� �
(B9)

defined as in Eq. (A9), while

f1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dj12dj13dj14

q 8><
>:
jþ12 jþ14 jþ13
j�12 j�14 j�13
j12 j14 j13

9>=
>;; (B10)

and cyclically for f2, f3, and f4. Both expressions (B6) and
(B8) are calculated for external j0s put to zero, that is, the
contributions of faces with external legs are put to 1.

To compare our expression to (B8), we perform the
integration on the variables u and v, and we rewrite the
integrand of face amplitudes in the form

ðg�ab~g��1ab Þmab

kab
ðv��1a Þkabpab

ðT�
ja
Þpab
qab ðHaÞðu�a Þqabmab

; (B11)

where we use the shorthand notation

ðgÞmn ¼ RðjÞmn ðgÞ: (B12)

We need to perform integrals of the formZ
du�a

Y
b�a

ðu�a Þqabmab
(B13)

Z
dv�a

Y
b�a

ðv��1a Þkabpab
; (B14)

with a; b ¼ 1; . . . ; 4 (we have 16 integrals in total). Using
(A2) and (A3), we obtain for a ¼ 1Z

du�1 ðu�1 Þq12m12
ðu�1 Þq13m13

ðu�1 Þq14m14
¼ {q12q13q14� {�m12m13m14

(B15)

Z
dv�1 ðv��11 Þk12p12

ðv��11 Þk13p13
ðv��11 Þk14p14

¼ {k12k13k14� {�p12p13p14

(B16)

and similar results for a ¼ 2, 3, 4. All indices are double
for þ and � variables, that is, they should carry an extra
superscript (e.g. mab ! m�ab). We now perform the inte-

gration on the variables g, ~g. For each face Aab they
appear twice, once attached to the propagator containing
the a variables, once to the propagator containing the b
ones. This explains the switch in the indices below. We
have 6 integrals to perform for each SUð2Þ copy. By means
of (A3) we findZ

dg�abd~g
�
abðg�ab~g�1ab Þmab

kab
ðg�ab~g�1ab Þmba

kba

¼ 1

djþ
ab
dj�

ab

�mabmba�kabkba : (B17)

To compare to the expression of [11] we still have to
perform the integration over Ha appearing in the T

�
j . From

(B5) we have

ðT�
ja
Þpab
qab ðHaÞ ¼ 
a{

pþ
ab
p�
ab
Mab

{
qþ
ab
q�
ab

~MabðHaÞMab
~Mab

: (B18)

Therefore we have 4 integrals of the form


a

Y
b�a

ð{pþabp�abMab
{
qþ
ab
q�
ab

~MabÞ
Z

dHa

Y
b�a

ðHaÞMab
~Mab

: (B19)

We obtain

Z
dH1ðH1ÞM12

~M12
ðH1ÞM13

~M13
ðH1ÞM14

~M14
¼ {M12M13M14

{ ~M12
~M13

~M14

(B20)

and similarly for the others. We replace this result into
(B19) for each a 2 f1; ::; 4g. We replace then all integration
results (B15)–(B17) and (B19), into the expression for the
graph amplitude (B6) and we obtain

A ðG2Þ ¼
�Y
a<b

djþ
ab
dj�

ab

�
ð6jþab6j�abÞ2

�Y4
a¼1

fa

�
2
: (B21)

As already stated above, this reproduces (B8) with k ¼ 2.

APPENDIX C: ASYMPTOTICS OF 6jAND
FUSION COEFFICIENTS IN THE

DEGENERATE CASE

In this appendix, we investigate the asymptotic behavior
of the self-energy correction using sum over spins. We first
derive the asymptotics of the 6j symbols which yields the
power counting in the SUð2Þ BF theory and then fusion
coefficients f appearing in (B21) to obtain the power
counting in the EPRL model.

1. Degenerate 6j and BF theory

In the general case, the 6j symbols can be written using
Racah’s single sum formula (see for instance [24])

8<
: j12 j23 j13

j34 j14 j24

9=
; ¼ �ð1; 2; 3Þ�ð1; 2; 4Þ�ð1; 3; 4Þ�ð2; 3; 4Þ

�X
k

ð�1Þkðkþ 1Þ!
FðkÞ ; (C1)

with

KRAJEWSKI et al. PHYSICAL REVIEW D 82, 124069 (2010)

124069-18



�ða; b; cÞ ¼
�ð�jab þ jbc þ jacÞ!ðjab � jbc þ jacÞ!ðjab þ jbc � jacÞ!

ðjab þ jbc þ jac þ 1Þ!
�
1=2

; (C2)

and

FðkÞ ¼ ðk� j12� j23� j13Þ!ðk� j13� j34� j14Þ!ðk� j23

� j34� j24Þ!ðk� j12� j24� j14Þ!ðj12þ j23þ j34

þ j14� kÞ!ðj12þ j13þ j34þ j24� kÞ!ðj23þ j13

þ j24þ j14� kÞ!: (C3)

The sums runs over all integers k such that the arguments
of the factorials are non-negative.

Consider a degenerate tetrahedron which is reduced to a
single edge, whose vertices are labeled 1, 2, 3, 4 with 1 and
4 on the boundary of the edge. The associated spin (lengths
of the edges of the tetrahedron) between vertices a and b
(a < b) is jab and we have jac ¼ jab þ jbc if a < b< c.
Therefore only the three spins j12, j23, j34 are independent
and we have

FðkÞ ¼ ðk� 2j12 � 2j23Þ!ðk� 2j12 � 2j23 � 2j34Þ!ðk
� 2j23 � 2j34Þ!ðk� 2j12 � 2j23 � 2j34Þ!ð2j12
þ 2j23 þ 2j34 � kÞ!ð2j12 þ 2j23 þ 2j34 � kÞ!ð2j12
þ 4j23 þ 2j34 � kÞ!: (C4)

The sum over k is restricted to the single term k ¼ 2ðj12 þ
j23 þ j34Þ and we have

FðkÞ ¼ ð2j12Þ!ð2j34Þ!ð2j23Þ!: (C5)

There are also simplifications in the factors �,

�ð1; 2; 3Þ ¼
� ð2j23Þ!ð2j12Þ!
ð2j12 þ 2j23 þ 1Þ!

�
1=2

;

�ð1; 2; 4Þ ¼
� ð2j12Þ!ð2j23 þ 2j34Þ!
ð2j12 þ 2j23 þ 2j34 þ 1Þ!

�
1=2

;

�ð2; 3; 4Þ ¼
� ð2j34Þ!ð2j23Þ!
ð2j34 þ 2j23 þ 1Þ!

�
1=2

;

�ð1; 3; 4Þ ¼
� ð2j34Þ!ð2j12 þ 2j23Þ!
ð2j12 þ 2j23 þ 2j34 þ 1Þ!

�
1=2

:

(C6)

Taking all the terms together we get

8<
: j12 j23 j13

j34 j14 j24

9=
; ¼ ð�1Þ2ðj12þj23þj34Þ

� ð2j23Þ!ð2j12Þ!
ð2j12 þ 2j23 þ 1Þ!

� ð2j34Þ!ð2j23Þ!
ð2j34 þ 2j23 þ 1Þ!

� ð2j34Þ!ð2j12 þ 2j23Þ!
ð2j12 þ 2j23 þ 2j34 þ 1Þ!

� ð2j12Þ!ð2j23 þ 2j34Þ!
ð2j12 þ 2j23 þ 2j34 þ 1Þ!

�
1=2

� ð2j12 þ 2j23 þ 2j34 þ 1Þ!
ð2j12Þ!ð2j23Þ!ð2j34Þ! ; (C7)

which simplifies into

�
j12 j23 j13
j34 j14 j24

�
¼ ð�1Þ2ðj12þj23þj34Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j12 þ 2j23 þ 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j34 þ 2j23 þ 1
p :

(C8)

This yields an asymptotic behavior (kab 2 ½0; 1� fixed)�
jk12 jk23 jk13
jk34 jk14 jk24

�
2 
j!1

1

j2
: (C9)

Consequently, the degree of divergence of the SUð2Þ BF
theory graph (double sunset without external legs) made of
two vertices (each with one 6j), three edges and six faces
(each with one dj ¼ 2jþ 1) is

ddegenerateBF ¼ 3þ 6� 2 ¼ 7< dnon degenerateBF ¼ 9; (C10)

where we sum over only three spins in the maximally
degenerate case. Let us note that this is less than the degree
of divergence of nondegenerate configurations, so that the
latter are dominant in BF theory, at least for this graph.

2. Degenerate fusion coefficients and the EPRL model

Using the notations of [11] (Appendix B), the fusion
coefficients can be expressed as a product of a 9j and a 3j
coefficient,

fi
þi�
i ðj1; j2; j3; 0Þ ¼ �iþ;jþ

3
�i�;jþ

3
�i�;j3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dj1dj2dj3

q
�

� ð2jþ1 Þ!ð2j�1 Þ!ð2jþ2 Þ!ð2j�2 Þ!ðjþ1 þ j�1 þ jþ2 þ j�2 � j3Þ!ðjþ1 þ j�1 þ jþ2 þ j�2 þ j3þ 1Þ!
ð2jþ1 þ 2j�1 þ 1Þ!ð2jþ2 þ 2j�2 þ 1Þ!ðjþ1 þ jþ2 � jþ3 Þ!ðjþ1 þ jþ2 þ jþ3 þ 1Þ!ðj�1 þ j�2 � j�3 Þ!ðj�1 þ j�2 þ j�3 þ 1Þ!Þ

�
1=2

�
� ð2jþ3 Þ!ð2j�3 Þ!ðjþ3 þ j�3 � jþ1 � j�1 þ jþ2 þ j�2 Þ!ðjþ3 þ j�3 þ jþ1 þ j�1 � jþ2 � j�2 Þ!
ð1þ 2jþ3 þ 2j�3 Þ!ðjþ3 � jþ1 þ jþ2 Þ!ðjþ3 þ jþ1 � jþ2 Þ!ðj�3 � j�1 þ j�2 Þ!ðj�3 þ j�1 � j�2 Þ!Þ

�
1=2

; (C11)
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with as usual j�a ¼ 1��
2 ja. The second factor is the con-

tribution from the 9j while the third one is that of the 3j.
Let us notice that if � ¼ 1, then jþa ¼ ja and j�a ¼ 0, so
that fi

þi�
i ðj1; j2; j3; 0Þ ¼ �iþ;jþ3

�i�;j�
3
�i;j3 . Thus, the theory

reduces to an SUð2Þ BF theory using (B21).
The result is symmetrical in the indices 1, 2, 3, so let us

write the degeneracy condition on the triangle as j1 þ j2 ¼
j3 to eliminate j3. After some simplifications, we get

fi
þi�
i ðj1; j2; j3; 0Þ ¼ �iþ;jþ

3
�i�;j�

3
�i;j3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j1 þ 2j2 þ 1

ð2jþ1 þ 2jþ2 þ 1Þð2j�1 þ 2j�2 þ 1Þ

s
:

(C12)

Thus, the fusion coefficients scale as

fi
þi�
i ðjk1; jk2; jk3Þ 
j!1

�jkþ;jkþ
3
�i�;jk�

3
�i;j3ffiffiffi

j
p : (C13)

Accordingly, the power counting of the maximally degen-
erate configurations is (the summation over the inter-
twiners i is trivial thanks to the Kronecker symbols)

d
degenerate
EPRL ¼ 3þ 12þ 2

�
2� ð�1Þ þ 4��1

2

�
¼ 7> d

non degenerate
EPRL ¼ 6; (C14)

the first term is the contribution of the 6j (two per vertices)
and the second one the contribution from the fusion
coefficients (four per vertices). Therefore, the degenerate
configurations dominate in the EPRL model for this graph,
in accordance with the quadratic approximation.
Nevertheless, there is no reason to believe that this is a
general feature of the model, since the quadratic approxi-
mation only yields an upper bound.

[1] D. V. Boulatov, Mod. Phys. Lett. A 7, 1629 (1992); arXiv:
hep-th/9202.H. Ooguri, Mod. Phys. Lett. A 7, 2799
(1992); arXiv:hep-th/9205090.

[2] L. Freidel, Int. J. Theor. Phys. 44, 1769 (2005).
[3] D. Oriti, Approaches to Quantum Gravity (Cambridge

University Press, Cambridge, 2009).
[4] C. Rovelli, Quantum Gravity (Cambridge University

Press, Cambridge, 2004).
[5] L. Freidel and D. Louapre, Phys. Rev. D 68, 104004 (2003).
[6] J. Magnen, K. Noui, V. Rivasseau, and M. Smerlak,

Classical Quantum Gravity 26, 185012 (2009).
[7] J. Engle, R. Pereira, and C. Rovelli, Phys. Rev. Lett. 99,

161301 (2007).
[8] E. R. Livine and S. Speziale, Phys. Rev. D 76, 084028

(2007).
[9] L. Freidel and K. Krasnov, Classical Quantum Gravity 25,

125018 (2008).
[10] J. Engle, E. Livine, R. Pereira, and C. Rovelli, Nucl. Phys.

B799, 136 (2008).
[11] C. Perini, C. Rovelli, and S. Speziale, Phys. Lett. B 682,

78 (2009).

[12] J. B. Geloun, T. Krajewski, J. Magnen, and V. Rivasseau,
Classical Quantum Gravity 27, 155012 (2010).

[13] V. Bonzom and M. Smerlak, Lett. Math. Phys. 93, 295
(2010).

[14] L. Freidel, R. Gurau, and D. Oriti, Phys. Rev. D 80,
044007 (2009).

[15] F. Conrady and L. Freidel, Phys. Rev. D 78, 104023
(2008).

[16] R. Gurau, arXiv:0907.2582.
[17] A. Tanasa, Classical Quantum Gravity 27, 095008

(2010).
[18] R. Gurau, Annales Henri Poincare 11, 565 (2010).
[19] R. Gurau, arXiv:1006.0714.
[20] J. Ben Geloun, J. Magnen, and V. Rivasseau,

arXiv:0911.1719.
[21] A.M. Perelomov, Generalized Coherent States and Their

Applications (Springer, Berlin, 1986).
[22] J. C. Baez, Lect. Notes Phys. 543, 25 (2000).
[23] E. Bianchi, D. Regoli, and C. Rovelli, Classical Quantum

Gravity 27, 185009 (2010).
[24] R. Gurau, Annales Henri Poincare 9, 1413 (2008).

KRAJEWSKI et al. PHYSICAL REVIEW D 82, 124069 (2010)

124069-20

http://dx.doi.org/10.1142/S0217732392001324
http://arXiv.org/abs/hep-th/9202
http://arXiv.org/abs/hep-th/9202
http://dx.doi.org/10.1142/S0217732392004171
http://dx.doi.org/10.1142/S0217732392004171
http://arXiv.org/abs/hep-th/9205090
http://dx.doi.org/10.1007/s10773-005-8894-1
http://dx.doi.org/10.1103/PhysRevD.68.104004
http://dx.doi.org/10.1088/0264-9381/26/18/185012
http://dx.doi.org/10.1103/PhysRevLett.99.161301
http://dx.doi.org/10.1103/PhysRevLett.99.161301
http://dx.doi.org/10.1103/PhysRevD.76.084028
http://dx.doi.org/10.1103/PhysRevD.76.084028
http://dx.doi.org/10.1088/0264-9381/25/12/125018
http://dx.doi.org/10.1088/0264-9381/25/12/125018
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://dx.doi.org/10.1016/j.physletb.2009.10.076
http://dx.doi.org/10.1016/j.physletb.2009.10.076
http://dx.doi.org/10.1088/0264-9381/27/15/155012
http://dx.doi.org/10.1007/s11005-010-0414-4
http://dx.doi.org/10.1007/s11005-010-0414-4
http://dx.doi.org/10.1103/PhysRevD.80.044007
http://dx.doi.org/10.1103/PhysRevD.80.044007
http://dx.doi.org/10.1103/PhysRevD.78.104023
http://dx.doi.org/10.1103/PhysRevD.78.104023
http://arXiv.org/abs/0907.2582
http://dx.doi.org/10.1088/0264-9381/27/9/095008
http://dx.doi.org/10.1088/0264-9381/27/9/095008
http://dx.doi.org/10.1007/s00023-010-0035-6
http://arXiv.org/abs/1006.0714
http://arXiv.org/abs/0911.1719
http://dx.doi.org/10.1007/3-540-46552-9_2
http://dx.doi.org/10.1088/0264-9381/27/18/185009
http://dx.doi.org/10.1088/0264-9381/27/18/185009
http://dx.doi.org/10.1007/s00023-008-0392-6

