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Abstract

In this paper we prove that for any infinite word w whose set of factors is closed under
reversal, the following conditions are equivalent:

(I) all complete returns to palindromes are palindromes;

(II) P(n) + P(n+ 1) = C(n+ 1) − C(n) + 2 for all n,

where P (resp. C) denotes the palindromic complexity (resp. factor complexity) function of w,
which counts the number of distinct palindromic factors (resp. factors) of each length in w.

Keywords: return word; palindrome; palindromic complexity; factor complexity; Rauzy graph;
rich word.

MSC (2000): 68R15.

2



1 Introduction

Given an infinite word w, let P(n) (resp. C(n)) denote the palindromic complexity (resp. factor
complexity) of w, i.e., the number of distinct palindromic factors (resp. factors) of w of length n.
In [1], J.-P. Allouche, M. Baake, J. Cassaigne, and D. Damanik established the following inequality
relating the palindromic and factor complexities of a non-ultimately periodic infinite word:

P(n) ≤
16

n
C
(
n+

⌊n
4

⌋)
for all n ∈ N.

More recently, using Rauzy graphs, P. Baláži, Z. Masáková, and E. Pelantová [5] proved that for
any uniformly recurrent infinite word whose set of factors is closed under reversal,

P(n) + P(n + 1) ≤ C(n+ 1) − C(n) + 2 for all n ∈ N. (1.1)

They also provided several examples of infinite words for which P(n) + P(n + 1) always reaches
the upper bound given in relation (1.1). Such infinite words include Arnoux-Rauzy sequences,
complementation-symmetric sequences, certain words associated with β-expansions where β is a
simple Parry number, and a class of words coding r-interval exchange transformations.

In this paper we give a characterization of all infinite words with factors closed under reversal
for which the equality P(n) +P(n+ 1) = C(n+ 1)−C(n) + 2 holds for all n: these are exactly the
infinite words with the property that all ‘complete returns’ to palindromes are palindromes. Given
a finite or infinite word w and a factor u of w, we say that a factor r of w is a complete return to u
in w if r contains exactly two occurrences of u, one as a prefix and one as a suffix. Return words
play an important role in the study of minimal subshifts; see [12, 13, 14, 15, 20, 24].

Our main theorem is the following:

Theorem 1.1. For any infinite word w whose set of factors is closed under reversal, the following
conditions are equivalent:

(I) all complete returns to any palindromic factor of w are palindromes;

(II) P(n) + P(n + 1) = C(n+ 1) − C(n) + 2 for all n ∈ N.

Recently, in [19], it was shown that property (I) is equivalent to every factor u of w having
exactly |u| + 1 distinct palindromic factors (including the empty word). Such words are ‘rich’ in
palindromes in the sense that they contain the maximum number of different palindromic factors.
Indeed, X. Droubay, J. Justin, and G. Pirillo [10] observed that any finite word w of length |w|
contains at most |w| + 1 distinct palindromes.

The family of finite and infinite words having property (I) are called rich words in [19]. In
independent work, P. Ambrož, C. Frougny, Z. Masáková, and E. Pelantová [2] have considered
the same class of words which they call full words, following earlier work of S. Brlek, S. Hamel,
M. Nivat, and C. Reutenauer in [6].

Rich words encompass the well-known family of episturmian words originally introduced by
X. Droubay, J. Justin, and G. Pirillo in [10] (see Section 4 for more details). Another special class of
rich words consists of S. Fischler’s sequences with“abundant palindromic prefixes”, which were intro-
duced and studied in [16] in relation to Diophantine approximation (see also [17]). Other examples
of rich words that are neither episturmian nor of “Fischler type” include: non-recurrent rich words,
like abbbb · · · and abaabaaabaaaab · · · ; the periodic rich infinite words: (aabkaabab)(aabkaabab) · · · ,
with k ≥ 0; the non-ultimately periodic recurrent rich infinite word ψ(f) where f = abaababaaba · · ·

3



is the Fibonacci word and ψ is the morphism: a 7→ aabkaabab, b 7→ bab; and the recurrent, but not
uniformly recurrent, rich infinite word generated by the morphism: a 7→ aba, b 7→ bb. (See [19] for
these examples and more.)

From the work in [10, 19], we have the following equivalences.

Proposition 1.2. A finite or infinite word w is rich if equivalently:

• all complete returns to any palindromic factor of w are palindromes;

• every factor u of w contains |u| + 1 distinct palindomes;

• the longest palindromic suffix of any prefix p of w occurs exactly once in p.

From the perspective of richness, our main theorem can be viewed as a characterization of
recurrent rich infinite words since any rich infinite word is recurrent if and only if its set of factors
is closed under reversal (see [19] or Remark 2.1). Interestingly, the proof of Theorem 1.1 relies
upon another new characterization of rich words (Proposition 2.3), which is useful for establishing
the key step, namely that the so-called super reduced Rauzy graph is a tree. This answers a claim
made in the last few lines of [5] where it was remarked that the Rauzy graphs of words satisfying
equality (II) must have a very special form.

After some preliminary definitions and results in the next section, Section 3 is devoted to the
proof of Theorem 1.1 and some interesting consequences are proved in Section 4.

2 Preliminaries

2.1 Notation and terminology

In this paper, all words are taken over a finite alphabet A, i.e., a finite non-empty set of symbols
called letters. A finite word over A is a finite sequence of letters from A. The empty word ε is
the empty sequence. A (right) infinite word x is a sequence indexed by N+ with values in A, i.e.,
x = x1x2x3 · · · with each xi ∈ A. For easier reading, infinite words are hereafter typed in boldface
to distinguish them from finite words.

Given a finite word w = x1x2 · · · xm (where each xi is a letter), the length of w, denoted by |w|,
is equal to m. By convention, the empy word is the unique word of length 0. We denote by w̃ the
reversal of w, given by w̃ = xm · · · x2x1. If w = w̃, then w is called a palindrome.

A finite word z is a factor of a finite or infinite word w if w = uzv for some words u, v. In the
special case u = ε (resp. v = ε), we call z a prefix (resp. suffix) of w. If u 6= ε and v 6= ε, then we say
that z is an interior factor of w = uzv. Moreover, z is said to be a central factor of w if |u| = |v|.
We say that z is unioccurrent in w if z occurs exactly once in w. For any finite or infinite word w,
the set of all factors of w is denoted by F (w) and we denote by Fn(w) the set of all factors of w of
length n, i.e., Fn(w) := F (w)∩An (where |w| ≥ n if w is finite). We say that F (w) is closed under
reversal if for any u ∈ F (w), ũ ∈ F (w).

A factor of an infinite word w is recurrent in w if it occurs infinitely often in w, and w itself is
said to be recurrent if all of its factors are recurrent in it. Furthermore, w is uniformly recurrent if
any factor of w occurs infinitely many times in w with bounded gaps.

Remark 2.1. A noteworthy fact (proved in [19]) is that a rich infinite word is recurrent if and
only if its set of factors is closed under reversal.

More generally, we have the following well-known result:
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Proposition 2.2 (folklore). If w is an infinite word with F (w) closed under reversal, then w is
recurrent.

Proof. Consider some occurrence of a factor u in w and let v be a prefix of w containing u. As
F (w) is closed under reversal, ṽ ∈ F (w). Thus, if v is long enough, there is an occurrence of ũ
strictly on the right of this particular occurrence of u in w. Similarly u occurs on the right of this
ũ and thus u is recurrent in w.

2.2 Key results

We now prove two useful results, the first being a new characterization of rich words.

Proposition 2.3. A finite or infinite word w is rich if and only if, for each factor v ∈ F (w), any
factor of w beginning with v and ending with ṽ and not containing v or ṽ as an interior factor is
a palindrome.

Proof. ONLY IF: Consider any factor v ∈ F (w) and let u be a factor of w beginning with v and
ending with ṽ and not containing v or ṽ as an interior factor. If v is a palindrome, then either
u = v = ṽ (in which case u is clearly a palindrome), or u is a complete return to v in w, and hence
u is (again) a palindrome by Proposition 1.2. Now assume that v is not a palindrome.

Suppose by way of contradiction that u is not a palindrome and let p be the longest palindromic
suffix of u (which is unioccurrent in u by richness). Then |p| < |u| as u is not a palindrome. If
|p| > |v|, then ṽ is a proper suffix of p, and hence v is a proper prefix of p. But then v is an interior
factor of u, a contradiction. On the other hand, if |p| ≤ |v|, then |p| 6= |v| and p is a proper suffix
of ṽ (as ṽ is not a palindrome), and hence p is a proper prefix of v. Thus p is both a prefix and a
suffix of u; in particular p is not unioccurrent in u, a contradiction.

IF: The given conditions tell us that any complete return to a palindromic factor v (= ṽ) of w
is a palindrome. Hence w is rich by Proposition 1.2.

Proposition 2.4. Suppose w is a rich word. Then, for any non-palindromic factor v of w, ṽ is a
unioccurrent factor of any complete return to v in w.

Proof. Let r be a complete return to v in w and let p be the longest palindromic suffix of r. Then
|p| > |v|; otherwise, if |p| ≤ |v|, then p would occur at least twice in r (as a suffix of each of the two
occurrences of v in r), which is impossible as r is rich. Thus v is a proper suffix of p, and hence ṽ
is a proper prefix of p. So ṽ is clearly an interior factor of r.

It remains to show that ṽ is unioccurrent in r. Arguing by contradiction, we suppose that ṽ
occurs more than once in r. Then a complete return r′ to ṽ occurs as a proper factor of r. Using the
same reasoning as above, v is an interior factor of r′, and hence an interior factor of r, contradicting
the fact that r is a complete return to v. Thus ṽ is unioccurent in r.

Note. The above proposition tells us that for any factor v of a rich word w, occurrences of v and ṽ
alternate in w.

3 Proof of Theorem 1.1

Following the method of Baláži et al. [5], a key tool for the proof of our main theorem is the notion
of a Rauzy graph, defined as follows. Given an infinite word w, the Rauzy graph of order n for w,
denoted by Γn(w), is the directed graph with set of vertices Fn(w) and set of edges Fn+1(w) such
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that an edge e ∈ Fn+1(w) starts at vertex v and ends at a vertex v′ if and only if v is a prefix of
e and v′ is a suffix of e. For a vertex v, the out-degree of v (denoted by deg+(v)) is the number
of distinct edges leaving v, and the in-degree of v (denoted by deg−(v)) is the number of distinct
edges entering v. More precisely:

deg+(v) = ♯{x ∈ A | vx ∈ Fn+1(w)} and deg−(v) = ♯{x ∈ A | xv ∈ Fn+1(w)}.

We observe that, for all n ∈ N,

∑

v∈Fn(w)

deg+(v) = ♯Fn+1(w) =
∑

v∈Fn(w)

deg−(v).

(Note that ♯Fn+1(w) = C(n + 1).) Hence

C(n+ 1) − C(n) =
∑

v∈Fn(w)

(deg+(v) − 1) =
∑

v∈Fn(w)

(deg−(v) − 1). (3.1)

It is therefore easy to see that a factor v ∈ Fn(w) positively contributes to C(n + 1) − C(n) if and
only if deg+(v) ≥ 2, i.e., if and only if there exist at least two distinct letters a, b such that va,
vb ∈ Fn+1(w), in which case v is said to be a right-special factor of w. Similarly, a factor v ∈ Fn(w)
is said to be a left-special factor of w if there exist at least two distinct letters a, b such that av,
bv ∈ Fn+1(w). A factor of w is said to be special if it is either left-special or right-special (not
necessarily both). With this terminology, if we let Sn(w) denote the set of special factors of w of
length n, then formula (3.1) may be expressed as:

C(n+ 1) − C(n) =
∑

v∈Sn(w)

(deg+(v) − 1) for all n ∈ N. (3.2)

Using similar terminology to that in [5], a directed path P in the Rauzy graph Γn(w) is said to
be a simple path of order n if it begins with a special factor v and ends with a special factor v′ and
contains no other special factors, i.e., P is a directed path of the form vv′ or vz1 · · · zkv

′ where each
zi is a non-special factor of length n. A special factor v ∈ Sn(w) is called a trivial simple path of
order n.

In what follows, we use the following terminology for paths. Hereafter, “path” should be taken
to mean “directed path”.

Definition 3.1. Suppose w is an infinite word and let P = v · · · v′ be a path in Γn(w).

• The first vertex v (resp. last vertex v′) is called the initial vertex (resp. terminal vertex) of P .

• A vertex of P that is neither an initial vertex nor a terminal vertex of P is called an interior
vertex of P .

• P is said to be a non-trivial path if it consists of at least two distinct vertices.

• The reversal P̃ of the path P is the path obtained from P be reversing all edge labels (and
arrows) and all labels of vertices.

• We say that P is palindromic (or that P is invariant under reversal) if P = P̃ .

Note. Given a path P in Γn(w), the reversal of P does not necessarily exist in Γn(w).
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Suppose P = w1w2 · · ·wk is a non-trivial path in Γn(w), and for each i with 1 ≤ i ≤ k, let ai

and bi denote the respective first and last letters of wi. Then, by the definition of Γn(w), we have
w1b2 · · · bk = a1 · · · ak−1wk. We call this word the label of the path P , denoted by ℓP . Note that
the i-th shift of ℓP := w1b2 · · · bk begins with wi+1 for all i with 1 ≤ i ≤ k − 1.

For our purposes, it is convenient to consider the reduced Rauzy graph of order n, denoted
by Γ′

n(w), which is the directed graph obtained from Γn(w) by replacing each simple path P =
w1w2 · · ·wk−1wk with a directed edge w1 → wk labelled by ℓP . Thus the set of vertices of Γ′

n(w) is
Sn(w). For example, consider the (rich) Fibonacci word:

f = abaababaabaababaababaabaababaabaababaababaabaababaaba · · ·

which is generated by the Fibonacci morphism ϕ : a 7→ ab, b 7→ a. The reduced Rauzy graph Γ′
2(f)

consists of the two (special) vertices: ab, ba and three directed edges: ab → ba, ba → ba, ba → ab
with respective labels: aba, baab, bab.

Lemma 3.2. Let w be a rich infinite word and suppose P = w1w2 · · ·wk is a non-trivial path in
Γn(w) with k ≥ 2. Then the label ℓP = w1b2 · · · bk is a rich word.

Proof. We proceed by induction on the number of vertices k in P . The lemma is clearly true for
k = 2 since ℓP = w1b2 is a factor of w of length n + 1. Now suppose k ≥ 3 and assume that the
label of any path consisting of k − 1 vertices is rich. Consider any path consisting of k vertices,
namely P = w1w2 · · ·wk, and suppose by way of contradiction that its label ℓP = w1b2 · · · bk is
not rich. Then the longest palindromic prefix p of ℓP occurs more than once in ℓP . Hence there
exists a complete return r to p which is a prefix of ℓP . It follows that r = ℓP , otherwise r would
be a factor of the prefix u := w1b2 · · · bk−1 of ℓP , and hence a palindrome since u is rich by the
induction hypothesis. But this contradicts the maximality of the palindromic prefix p. So ℓP is
a non-palindromic complete return to p. Let q be the longest palindromic prefix of u (which is
unioccurrent in u by richness). If |p| > |q|, then q is a proper prefix of p, and hence q occurs
more than twice in u, a contradiction. On the other hand, if |p| ≤ |q|, then p is a prefix of q, and
hence p is an interior factor of ℓP (occurring as a suffix of q), a contradiction. Thus ℓP is rich, as
required.

The proof of Theorem 1.1 relies upon the following extensions of Propositions 2.3–2.4 to paths.

Lemma 3.3. (Analogue of Proposition 2.3.) Suppose w is a rich infinite word and let v be any
factor of w of length n. If P = v · · · ṽ is a path from v to ṽ in Γn(w) that does not contain v or ṽ
as an interior vertex, then P is palindromic. This property also holds for paths in Γ′

n(w).

Proof. We first observe that if P consists of a single vertex, then P = v = ṽ, and hence P is
palindromic. Now suppose P is a non-trivial path. If P = vṽ, then P is clearly palindromic.
So suppose P = vz1 · · · zkṽ where the zi are factors of w of length n. By definition, the label
ℓP = vb1 · · · bkbk+1 begins with v and ends with ṽ and contains neither v nor ṽ as an interior factor
(otherwise P would contain v or ṽ as an interior vertex, which is not possible). Thus, as ℓP is rich
(by Lemma 3.2), it follows that ℓP is a palindrome by Proposition 2.3; whence P must be invariant
under reversal too. It is easy to see that this property is also true for paths in the reduced Rauzy
graph Γ′

n(w).

Lemma 3.4. (Analogue of Proposition 2.4.) Suppose w is a rich infinite word and let v be any
non-palindromic factor of w of length n. If P = v · · · v is a non-trivial path in Γn(w) that does not
contain v as an interior vertex, then P passes through ṽ exactly once. This property also holds for
paths in Γ′

n(w).
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Note. Of particular usefulness is the fact that any path from v to v must pass through ṽ.

Proof. Let us write P = vz1 · · · zkv where the zi are factors of w of length n. By definition, the
label ℓP = vb1 · · · bkbk+1 contains exactly two occurrences of v, one as a prefix and one as a suffix
(otherwise, if ℓP contained v as an interior factor, then v would be an interior vertex of P , which
is not possible). Thus, as ℓP is rich (by Lemma 3.2), it follows that ṽ is a unioccurrent (interior)
factor of ℓP by Proposition 2.4; whence P passes through ṽ exactly once. It is easy to see that this
property is also true for paths in the reduced Rauzy graph Γ′

n(w).

3.1 (I) implies (II)

Suppose w is an infinite word with F (w) closed under reversal and satisfying property (I). Then
w is recurrent by Proposition 2.2 (i.e., w is a recurrent rich infinite word). Moreover, recurrence
implies that for all n, the Rauzy graph Γn(w) is strongly connected, i.e., there exists a directed
path from any vertex v to every other vertex v′ in Γn(w).

Fix n ∈ N and let us now consider the super reduced Rauzy graph of order n, denoted by
Γ′′

n(w), whose set of vertices consists of all [v] := {v, ṽ} where v is any special factor of length n.
Any two distinct vertices [v], [w] (with v 6∈ {w, w̃}) are joined by an undirected edge with label
[ℓP ] := {ℓP , ℓP̃ } if P or P̃ is a simple path beginning with v or ṽ and ending with w or w̃. For
example, in the case of the Fibonacci word, Γ′′

2(f) consists of only one vertex: [ab]. In general,
the super reduced Rauzy graph consists of more than one vertex and may contain multiple edges
between vertices.

Suppose Γ′′
n(w) consists of s vertices; namely [vi], i = 1, . . ., s. Since Γn(w) is strongly connected

(by recurrence), Γ′′
n(w) is connected; thus it contains at least s− 1 edges.

Now, from Lemma 3.3, we know that if v is a special factor, any simple path from v to ṽ is
palindromic (i.e., invariant under reversal). Moreover, by closure under reversal, if there exists a
simple path P from a special factor v to a special factor w, with v 6∈ {w, w̃}, then there is also
a simple path from w̃ to ṽ (namely, the reversal of the path P ). Neither of these simple paths is
palindromic.

We thus deduce that there exist at least 2(s − 1) non-trivial simple paths in the Rauzy graph
Γn(w) that are non-palindromic (i.e., not invariant under reversal). In fact, we will show that there
are exactly 2(s−1) non-trivial simple paths of order n that are non-palindromic. Indeed, if this true
then, as each palindromic factor of length n or n + 1 is a central factor of a (unique) palindromic
simple path of order n, we have:

P(n) + P(n + 1) =
∑

v∈Sn(w)

deg+(v) − 2(s − 1) + p (3.3)

where, on the right hand side, the first summand is the total number of non-trivial simple paths,
the second summand is the number of non-trivial simple paths that are non-palindromic, and p is
the number of special palindromes of length n (i.e., the number of trivial simple paths of order n
that are palindromic). By observing that the number of special factors of length n is 2s − p, we
can simplify equation (3.3) to obtain the required equality (II) as follows:

P(n) + P(n+ 1) =
∑

v∈Sn(w)

deg+(v) − (2s − p) + 2

=
∑

v∈Sn(w)

(deg+(v) − 1) + 2

= C(n+ 1) − C(n) + 2 (by (3.2)).
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We observe, in particular, that any infinite word w with F (w) closed under reversal satisfies
equality (II) if and only if any simple path between a special factor and its reversal is palindromic,
and for each n, there are exactly 2(s−1) non-trivial simple paths of order n that are non-palindromic.
The latter condition says that, for all n, the super reduced Rauzy graph Γ′′

n(w) contains exactly
s − 1 edges (with each edge corresponding to a simple path and its reversal), and hence Γ′′

n(w) is
a tree as it contains s vertices, s− 1 edges, and must be connected by the recurrence of w (which
follows from Proposition 2.2). More formally:

Proposition 3.5. An infinite word w with F (w) closed under reversal satisfies equality (II) if and
only if the following conditions hold:

1) any simple path between a special factor and its reversal is palindromic;

2) the super reduced Rauzy graph Γ′′
n(w) is a tree for all n.

Proof. Suppose w is an infinite word with F (w) closed under reversal. Then w is recurrent by
Proposition 2.2. We have already shown that conditions 1) and 2) imply that w satisfies equal-
ity (II). Conversely, if at least one of conditions 1) and 2) does not hold, then P(n) + P(n + 1) <
C(n+ 1) − C(n) + 2 (by the arguments preceding this proposition), i.e., w does not satisfies equal-
ity (II).

To complete the proof of “(I) ⇒ (II)”, it remains to show that any recurrent rich infinite word
w satisfies condition 2) of Proposition 3.5, since we have already shown that condition 1) holds
for any such w (using Lemma 3.3). The proof of the fact that w satisfies condition 2) uses the
following two lemmas (Lemmas 3.6–3.7).

Notation. Given two distinct special factors v, w of the same length n, we write v 6→ w if there
does not exist a directed edge from v to w in the reduced Rauzy graph Γ′

n(w) (i.e., if there does
not exist a simple path from v to w).

Lemma 3.6. Suppose w is a recurrent rich infinite word and let v, w be two distinct special factors
of w of the same length with v 6∈ {w, w̃}. If there exists a simple path P from v to w, then P is
unique and there also exists a unique simple path from w̃ to ṽ (namely, the reversal of P ). Moreover:

i) v 6→ w̃, and hence w 6→ ṽ (unless w is a palindrome);

ii) w̃ 6→ v, and hence ṽ 6→ w (unless v is a palindrome);

iii) w 6→ v, and hence ṽ 6→ w̃ (unless v and w are both palindromes).

Proof. By closure under reversal (Remark 2.1), if there exists a simple path P from v to w, then
the reversal of P is a simple path from w̃ to ṽ in the Rauzy graph of order |v| = |w| = n. To prove
the uniqueness of P , let us suppose there exist two different simple paths P1, P2 from v to w in the
Rauzy graph Γn(w). Then

P1 = vu1 · · · ukw and P2 = vz1 · · · zℓw for some k, l ∈ N,

where u1, . . . , uk, z1, . . . , zℓ are non-special factors of w of length n and ui 6= zi for some i. Note
that either P1 or P2 (not both) may be of the form vw.

To keep the rest of the proof as simple as possible, we assume hereafter that neither v nor w
is a palindrome; the arguments are similar, and in fact easier, in the cases when either v or w (or
both) is a palindrome.
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Consider a path Q of minimal length beginning with P1 and ending with P2 (in the Rauzy graph
Γn(w)):

Q = P1 · · ·P2 = vu1 · · · uk w · · · v︸ ︷︷ ︸
Q1

z1 · · · zℓw.

First we observe that Q contains ṽ since any path from v to itself must pass through ṽ, by
Lemma 3.4. Moreover, the left-most ṽ in Q must occur in the subpath Q1 (since ṽ is not equal to
any of the non-special factors ui, zj and ṽ 6= w). Therefore

Q = vu1 · · · ukw · · · ṽ︸ ︷︷ ︸
Q2

· · · vz1 · · · zℓw

where the subpath Q2 ends with the left-most ṽ in the path Q. By Lemma 3.4, Q2 is a path from
v to ṽ that does not contain v or ṽ as an interior vertex. Thus, by Lemma 3.3, Q2 is palindromic,
and hence Q2 ends with the reversal of the path P1 since it begins with P1. More explicitly:

Q = vu1 · · · ukw︸ ︷︷ ︸
P1

· · ·

Q3︷ ︸︸ ︷
w̃ũk · · · ũ1ṽ︸ ︷︷ ︸

eP1

· · · vz1 · · · zℓw︸ ︷︷ ︸
P2

.

We distinguish two cases.

Case 1: If the subpath Q3 contains w as a terminal vertex only, then w̃ is not an interior vertex of
Q3 by Lemma 3.4, and hence Q3 is palindromic by Lemma 3.3. It follows that k = ℓ and zi = ui

for all i = 1, . . . , k. Thus P1 = P2; a contradiction.

Case 2: If the subpath Q3 contains w as an interior vertex, then Q3 first passes through w after
taking the path P̃1 (at the beginning) and before taking the path P2 (at the end). Hence, by
Lemma 3.3, Q3 begins with a palindromic path from w̃ to w that begins with P̃1 and hence
ends with P1. But then Q passes through the path P1 at least twice before taking the path P2,
contradicting the fact that Q is a path of minimal length beginning with P1 and ending with P2.

Both cases lead to a contradiction; thus the simple path P from v to w is unique (and its
reversal P̃ is the unique simple path from w̃ to ṽ). It remains to show that conditions i)–iii) hold.
As ii) is symmetric to i), we prove only that i) and iii) are satisfied. By what precedes, it suffices
to consider paths in the reduced Rauzy graph Γ′

n(w).

i): Arguing by contradiction, let us suppose that there exists a (unique) simple path from v to
w̃, i.e., there exists a directed edge from v to w̃ in the reduced Rauzy graph Γ′

n(w). Then (from
above) we know that there also exists a directed edge from w to ṽ. Consider a shortest path Q in
the reduced Rauzy graph Γ′

n(w) beginning with vw̃ and ending with vw. By Lemma 3.4, any path
from v to itself passes through ṽ, so we may write

Q = vw̃ · · · ṽ︸ ︷︷ ︸
Q1

· · · vw,

where the subpath Q1 ends with the left-most ṽ in the path Q. By Lemmas 3.3–3.4, the path
Q1 = vw̃ · · · ṽ is palindromic, and hence it ends with wṽ. So we have Q = vw̃ · · ·wṽ · · · vw;
moreover, by Lemma 3.4, w̃ must occur between the last two w’s shown here. In particular,

Q = vw̃ · · ·wṽ · · · w̃︸ ︷︷ ︸
Q2

· · · vw
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where the subpath Q2 contains w̃ as a terminal vertex only. Thus, by Lemmas 3.3–3.4, the path
Q2 = wṽ · · · w̃ is palindromic, and hence it ends with vw̃. But then Q ends with a shorter path of
the form vw̃ · · · vw, contradicting the fact that Q is a path of minimal length beginning with vw̃
and ending with vw.

iii): Again, the proof proceeds by contradiction. Suppose there exists a (unique) simple path from
w to v. Consider a shortest path Z in the reduced Rauzy graph Γ′

n(w) beginning with wv and
ending with vw. By Lemma 3.4, the path Z must pass through w̃; thus

Z = wv · · · w̃︸ ︷︷ ︸
Z1

· · · vw.

where the subpath Z1 ends with the left-most w̃ in the path Z. Now it follows from Lemmas 3.3–3.4
that the subpath Z1 is palindromic, and hence Z1 must end with ṽw̃. So we may write

Z = wv · · · ṽw̃ · · · v︸ ︷︷ ︸
Z2

w.

If the subpath Z2 contains v as a terminal vertex only, then neither v nor ṽ is an interior vertex of
Z2 by Lemma 3.4. Thus Z2 is palindromic by Lemma 3.3, and hence Z2 ends with wv. But then
the path Z ends with the path wvw, which is impossible by Lemma 3.4. Thus, the subpath Z2

must pass through v at an earlier point, and hence we have Z2 = ṽw̃ · · · v · · · v. In particular, the
path Z2 begins with a palindromic subpath of the form ṽw̃ · · ·wv, by Lemma 3.3. But then the
path Z ends with a shorter path from wv to vw, contradicting the minimality of Z.

Notation. For a finite word v, let vǫ represent either v or ṽ and set v−ǫ := ṽǫ.

Lemma 3.7. Let w be a recurrent rich infinite word. For fixed n ∈ N+, suppose the super reduced
Rauzy graph Γ′′

n(w) contains at least three distinct vertices: [v1], [v2], . . . , [vs], s ≥ 3. Then, for
each k with 3 ≤ k ≤ s, the reduced Rauzy graph Γ′

n(w) contains a path from v1 to vǫk

k of the form:

v1v
ǫ2
2 · · · v2v

ǫ3
3 · · · vk−2v

ǫk−1

k−1 · · · vk−1v
ǫk

k ,

where for all i = 2, . . . , k− 1, the subpath vǫi

i · · · vi (which may consist of only the single vertex vǫi

i )
does not contain vj , ṽj for all j with 1 ≤ j ≤ k, j 6= i.

Proof. We use induction on k and employ similar reasoning to the proof of Lemma 3.6.
First consider the case k = 3. Recurrence implies that Γ′

n(w) is connected, so we may assume
without loss of generality that Γ′

n(w) contains a directed edge from v1 to vǫ2
2 , a directed edge from

v2 to vǫ3
3 , and a path from vǫ2

2 to v2. That is, Γ′
n(w) contains a path beginning with v1v

ǫ2
2 and

ending with v2v
ǫ3
3 . Consider such a path of minimal length:

Q = v1v
ǫ2
2 · · · v2v

ǫ3
3 .

To prove the claim for k = 3, we show that none of the special factors v1, ṽ1, v3, ṽ3 are interior
vertices of Q. If vǫ2

2 = v2, then Q = v1v2v
ǫ3
3 (by minimality) and we are done. So let us assume

that vǫ2
2 = ṽ2 6= v2.

Observe that if v1 is an interior vertex of Q, then ṽ1 must be an interior vertex of Q since any
path from v1 to itself must contain ṽ1, by Lemma 3.4. Similarly, if vǫ3

3 is an interior vertex of Q,
then v−ǫ3

3 is an interior vertex of Q. Therefore it suffices to show that ṽ1 and v−ǫ3
3 are not interior

vertices of Q. We prove this fact only for ṽ1 as the proof is similar for v−ǫ3
3 .
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Arguing by contradiction, suppose ṽ1 is an interior vertex of Q. Then Q begins with a palin-
dromic path from v1ṽ2 to ṽ1 (by Lemmas 3.3–3.4), and this palindromic path clearly ends with
v2ṽ1. Hence

Q = v1ṽ2 · · · v2ṽ1 · · · v2︸ ︷︷ ︸
Q′

vǫ3
3

where the subpath Q′ begins with a palindromic path from v2ṽ1 to ṽ2 (by Lemmas 3.3–3.4), and
this palindromic path clearly ends with v1ṽ2. But then the path Q ends with a shorter path from
v1ṽ2 to v2v

ǫ3
3 , contradicting the minimality of Q. Thus the lemma holds for k = 3.

Now suppose 4 ≤ k ≤ s and assume the claim holds for k − 1. Since Γ′
n(w) is connected,

it contains a path beginning with v1v
ǫ2
2 · · · v2v

ǫ3
3 · · · vk−2v

ǫk−1

k−1 and ending with vk−1v
ǫk

k (where the
former path satisfies the conditions of the lemma). Consider such a path of minimal length:

Z = v1v
ǫ2
2 · · · v2v

ǫ3
3 · · · vk−2︸ ︷︷ ︸

Z1

v
ǫk−1

k−1 · · · vk−1︸ ︷︷ ︸
Z2

vǫk

k (3.4)

where for all i = 2, . . . , k− 2, the subpath vǫi

i · · · vi (which may consist of only the single vertex vǫi

i )
does not contain vj, ṽj for all j with 1 ≤ j ≤ k − 1, j 6= i. To prove the induction step, we show
that the path Z satisfies the following two conditions:

i) the subpath Z1 contains neither vk nor ṽk;

ii) the subpath Z2 = v
ǫk−1

k−1 · · · vk−1 does not contain vj, ṽj for all j with 1 ≤ j ≤ k, j 6= k − 1.

First suppose that condition i) is not satisfied, i.e., Z1 contains vk or ṽk. Without loss of
generality we assume that vk is the right-most of the vertices vk, ṽk appearing in Z1.

Case 1: Suppose vǫk

k = vk 6= ṽk. Then Z ends with a path from vk to itself, which must pass
through ṽk by Lemma 3.4; moreover, ṽk must be an interior vertex of Z2 (by the choice of vk).
Thus, by Lemmas 3.3–3.4, Z2vk (and hence Z) ends with a palindromic path from ṽk to vk−1vk.
Hence Z2 contains ṽkṽk−1, and we have:

Z2vk = v
ǫk−1

k−1 · · · ṽkṽk−1︸ ︷︷ ︸
Z3

· · · vk−1vk

where the subpath Z3 ends with a palindromic path from vk−1 to ṽkṽk−1 (by Lemmas 3.3–3.4);
thus Z3 contains vk−1vk. But then Z begins with a shorter path from Z1 to vk−1v

ǫk

k , contradicting
the minimality of Z.

Case 2: Suppose vǫk

k = ṽk. Then the path Z (= Z1Z2ṽk) ends with a path of the form:

Z4 = vk · · · · · ·︸ ︷︷ ︸
no vk ,ṽk

Z2ṽk.

If vk or ṽk is an interior vertex of Z2, then we reach a contradiction using the same arguments as in
Case 1. On the other hand, if neither vk nor ṽk is an interior vertex of Z2, then Z4 is palindromic
by Lemma 3.3. So the path Z4 begins with vkṽk−1 since it ends with vk−1ṽk. But then ṽk−1 is an
interior vertex of Z1, a contradiction.

Thus the path Z satisfies condition i). In proving this fact, we have also shown that vk, ṽk are
not interior vertices of Z2. It remains to show that the subpath Z2 does not contain vj , ṽj for all j
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with 1 ≤ j ≤ k − 2 (and hence Z satisfies condition ii)). We prove only that Z2 does not contain
ṽ1 or ṽ1 since the proof is similar when considering other vj , ṽj .

Suppose on the contrary that Z2 contains v1 or ṽ1. Then, by Lemmas 3.3–3.4, Z begins with
a palindromic path from v1 to ṽ1, and this palindromic path begins with Y = Z1v

ǫk−1

k−1 (and hence

ends with Ỹ ) by the conditions on Z under the induction hypothesis. More explicitly, we have:

Z =

palindromic︷ ︸︸ ︷
v1v

ǫ2
2 · · · vk−2v

ǫk−1

k−1︸ ︷︷ ︸
Y

· · · v
−ǫk−1

k−1 ṽk−2 · · · v
−ǫ2
2 ṽ1︸ ︷︷ ︸

Ỹ

· · · vk−1v
ǫk

k︸ ︷︷ ︸
Z5

.

Hence, as vk−1 and ṽk−1 are not interior vertices of Y (by the induction hypothesis), the subpath
Ỹ Z5 begins with a palindromic path from v−ǫk

k−1 to v
ǫk−1

k−1 , and this palindromic path begins with Ỹ
(and hence ends with Y ), by Lemmas 3.3–3.4. But then Z ends with a shorter path from Y to
vk−1v

ǫk

k , contradicting the minimality of Z.
We conclude that the subpath Z2 = v

ǫk−1

k−1 · · · vk−1 does not contain vj , ṽj for all j with 1 ≤ j ≤ k,
j 6= i (i.e., the path Z satisfies condition ii)), and the proof is thus complete.

Lemma 3.8. Suppose w is a recurrent rich infinite word. Then the super reduced Rauzy graph
Γ′′

n(w) is a tree for all n ∈ N+.

Proof. First recall that for all n, Γ′′
n(w) is connected (by the recurrence property of w). Moreover,

Lemma 3.6 tells us that if two distinct vertices in Γ′′
n(w) are joined by an edge, then this edge is

unique (and corresponds to a simple path and its reversal). It remains to show that Γ′′
n(w) does

not contain any cycle (i.e., does not contain a chain linking a vertex with itself).
Suppose on the contrary that Γ′′

n(w) contains a cycle for some n. Then Γ′′
n(w) must contain at

least three distinct vertices: [v1], [v2], . . . , [vs], s ≥ 3, and a cycle of the following form:

[v1]—[v2]— · · · —[vk]—[v1] for some k with 3 ≤ k ≤ s. (3.5)

We thus deduce from Lemma 3.7 that the reduced Rauzy graph Γ′
n(w) contains a path from v1 to

vǫ1
1 of the form:

P = v1v
ǫ2
2 · · · v2v

ǫ3
3 · · · vk−2v

ǫk−1

k−1 · · · vk−1v
ǫk

k · · · vkv
ǫ1
1 ,

where for all i = 2, . . . , k, the subpath vǫi

i · · · vi (which may consist of only the single vertex vǫi

i )
does not contain vj , ṽj for all j with 1 ≤ j ≤ k, j 6= i. (Note that P corresponds to the cycle given
in (3.5).)

First suppose that v1 is a palindrome. In this case, as neither v1 nor ṽ1 is an interior vertex of
P , it must be a palindromic path by Lemma 3.3. But then vk = v−ǫ2

2 , a contradiction (as k ≥ 3).
Now suppose that v1 is not a palindrome. If vǫ1

1 = ṽ1, then we deduce (as above, using
Lemma 3.3) that the path P must be palindromic, yielding a contradiction. On the other hand, if
vǫ
1 = v1, then, by Lemma 3.4, the path P must pass through ṽ1, a contradiction.

Thus Γ′′
n(w) is a tree.

This concludes our proof of the “(I) ⇒ (II)” part of Theorem 1.1.

3.2 (II) implies (I)

Conversely, suppose w is an infinite word with F (w) closed under reversal and satisfying equal-
ity (II). Then w satisfies conditions 1) and 2) of Proposition 3.5.
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Now, arguing by contradiction, suppose w does not satisfy property (I) (i.e., w is not rich).
Then there exists a palindromic factor p that has a non-palindromic complete return u in w; in
particular, we have u = pqavbq̃p for some words q, v (possibly empty) and letters a, b, with a 6= b.
So the words pqa, bq̃p and their reversals aq̃p, pqb are factors of w. Thus pq (resp. q̃p) is a right-
special (resp. left-special) factor of w. Hence, if u does not contain any other special factors, then
u forms the label of a non-palindromic simple path beginning with pq and ending with q̃p. But
this contradicts condition 1) of Proposition 3.5. Therefore u must contain other special factors of
length n := |pq|, besides pq and q̃p. In particular, u begins with the label of a simple path of order
n beginning with pq and ending with another special factor s1 of length n. Similarly, u ends with
the label of a simple path of order n beginning with a special factor s2 of length n and ending with
q̃p. Moreover, since u is a complete return to p, neither s1 nor s2 is equal to pq or q̃p (otherwise
p occurs as an interior factor of u). Thus, in the super reduced Rauzy graph Γ′′

n(w), there is an
edge between the vertex [pq] and each of the vertices [s1] and [s2]. In particular, there exists a
path of the form: [s1]—[pq]—[s2]. Furthermore, as u contains a factor that begins with s1 and ends
with s2 and contains no occurrence of pq or q̃p, there also exists a chain (or possibly just an edge)
linking [s1] and [s2] that does not contain the vertex [pq]. Thus, if {s1, s̃1} 6= {s2, s̃2}, then we see
that Γ′′

n(w) contains a cycle, contradicting condition 2) of Proposition 3.5. On the other hand, if
{s1, s̃1} = {s2, s̃2}, then there are at least two edges joining the vertices [s1] and [pq]. Indeed, there
exists a simple path P1 from pq to s1 and there also exists a simple path P2 either from s1 to q̃p or
from s̃1 to q̃p. By closure under reversal, the reversals P̃1, P̃2 of the respective simple paths P1, P2

also exist. Moreover, none of these four simple paths coincide. Certainly, P1 6= P2, P1 6= P̃1, and
P2 6= P̃2 as neither s1 nor s̃1 is equal to pq or q̃p, and P1 6= P̃2 as the second vertex in P1 ends with
the letter a, whereas the second vertex in the path P̃2 ends with the letter b 6= a. So Γ′′

n(w) is not
a tree, contradicting condition 2) of Proposition 3.5. This concludes our proof of Theorem 1.1.

4 A few consequences and remarks

From Theorem 1.1, we easily deduce that property (I) is equivalent to equality (II) for any uniformly
recurrent infinite word. Indeed, equality (II) implies the existence of arbitrarily long palindromes
since P(n) +P(n+ 1) ≥ 2 for all n, so together with uniform recurrence one can readily show that
factors are closed under reversal; hence property (I) holds by Theorem 1.1. Conversely, richness
(property (I)) together with uniform recurrence implies closure under reversal by Remark 2.1, and
hence equality (II) holds.

Question: In the statement of Theorem 1.1, can the hypothesis of factors being closed under
reversal be replaced by the weaker hypothesis of recurrence?

As above, it follows directly from Theorem 1.1 and Remark 2.1 that for any recurrent infinite
word w, if w satisfies property (I) (i.e., if w is rich, and hence has factors closed under reversal),
then equality (II) holds. However, to prove the converse using our methods, one would need to
know that any recurrent infinite word satisfying equality (II) has factors closed under reversal. We
could not find a proof of this claim nor could we find a counter-example. Let us point out that
whilst uniform recurrence and the existence of arbitrarily long palindromes imply closure under
reversal, this is not true in the case of recurrence only. For instance, consider the following infinite
word:

s = bca2bca3bca2bca4bca2bca3bca2bca5bc · · · ,

which is the limit as n goes to infinity of the sequence (sn)n≥1 of finite words defined by:

s1 = bc and sn = sn−1a
nsn−1 for n > 1.
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This infinite word is clearly recurrent (but not uniformly recurrent) and contains arbitrarily long
palindromes, but its set of factors is not closed under reversal. (Note that s is not rich and does
not satisfy equality (II).) If one could show that recurrence together with equality (II) implies
arbitrarily long palindromic prefixes, this would be enough to prove that factors are closed under
reversal.

In the context of finite words w, the hypothesis of factors being closed under reversal can be
replaced by the requirement that w is a palindrome. Indeed, all we really need is the super reduced
Rauzy graph to be connected, which is true for palindromes.

Theorem 4.1. For any palindrome w, the following properties are equivalent:

i) w contains |w| + 1 distinct palindromes;

ii) all complete returns to palindromes in w are palindromes;

iii) P(i) + P(i + 1) = C(i+ 1) − C(i) + 2 for all i with 0 ≤ i ≤ |w|.

We now prove two easy consequences of Theorem 1.1.

Corollary 4.2. Suppose w is a recurrent rich infinite word. Then the following properties hold.

i) w is (purely) periodic if and only if P(n) + P(n + 1) = 2 for some n.

ii) (P(n))n≥1 is eventually periodic with period 2 if and only if there exist non-negative integers
K, L, N such that C(n) = Kn+ L for all n ≥ N .

Proof. Suppose w is a recurrent rich infinite word. Then P(n) + P(n + 1) = C(n + 1) − C(n) + 2
for all n, by Theorem 1.1 and Remark 2.1.

i): If P(n) + P(n + 1) = 2 for some n, then C(n + 1) = C(n), and hence w is eventually periodic;
in particular, w must be (purely) periodic as it is recurrent. Conversely, if w is periodic, then
C(n+ 1) = C(n) for some n, and hence P(n) + P(n+ 1) = 2.

ii): The condition on C(n) implies that for all n ≥ N , C(n + 1) − C(n) = K, and hence P(n) +
P(n+1) = K+2 = P(n+1)+P(n+2). Thus P(n) = P(n+2) for all n ≥ N . Conversely, suppose
(P(n))n≥1 is eventually periodic with period 2. Then there exists a non-negative integer N such
that P(n) = P(n+2) for all n ≥ N . Hence, for all n ≥ N , P(n)+P(n+1) = C(n+1)−C(n)+2 =
P(n + 1) + P(n+ 2) = M ≥ 2. Therefore C(n + 1) − C(n) = M − 2 for all n ≥ N .

Remark 4.3. Item ii) of the above corollary can be compared with a result of J. Cassaigne [8],
who proved that if C(n) has linear growth, then C(n+ 1) − C(n) is bounded.

Remark 4.4. In [5], Balaži et al. remarked: “According to our knowledge, all known ex-
amples of infinite words which satisfy the equality P(n) + P(n + 1) = C(n + 1) − C(n) + 2
for all n ∈ N have sublinear factor complexity.” Actually, there do exist recurrent rich in-
finite words with non-sublinear complexity. For instance, the following example from [19]:
abab2abab3abab2abab4abab2abab3abab2abab5 · · · (which is the fixed point of the morphism: a 7→ abab,
b 7→ b) is a recurrent rich infinite word and its complexity C(n) grows quadratically with n. Another
example that was indicated to us by J. Cassaigne is the fixed point of a 7→ aab, b 7→ b:

aabaabbaabaabbbaabaabbaabaabbbbaabaabbaabaabbbaabaabbaabaabbbbb · · · .

It is a recurrent rich infinite word and its complexity is equivalent to n2/2. More precisely, P(n) +
P(n + 1) − 2 = C(n + 1) − C(n) = n+ 1 − ♯{k > 0 | 2k + k − 2 < n}.
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In [10], X. Droubay et al. showed that the family of episturmian words (e.g., see [10, 21, 18]),
which includes the well-known Sturmian words, comprises a special class of uniformly recurrent
rich infinite words. Specifically, they proved that if an infinite word w is episturmian, then any
factor u of w contains exactly |u|+ 1 distinct palindromic factors (see [10, Cor. 2]). An alternative
proof of the richness of episturmian words can be found in the paper [3] where the fourth author,
together with V. Anne and I. Zorca, proved that for episturmian words, all complete returns to
palindromes are palindromes. (A shorter proof of this fact is also given in [7].) More recently,
P. Baláži et al. [5] showed that all strict episturmian words (i.e., Arnoux-Rauzy sequences [4, 23])
satisfy P(n) + P(n + 1) = C(n + 1) − C(n) + 2 for all n. This fact, together with Theorem 1.1,
provides yet another proof that all episturmian words are rich (since any factor of an episturmian
word is a factor of some strict episturmian word).

Sturmian words are exactly the aperiodic episturmian words over a 2-letter alphabet. They have
complexity n+ 1 for each n and are characterized by their palindromic complexity: any Sturmian
word has P(n) = 1 whenever n is even and P(n) = 2 whenever n is odd (see [11]). From these
observations, one can readily check that Sturmian words satisfy equality (II) (and hence they are
rich).

We can now say even more: the set of factors of all Sturmian words satisfies equality (II). To
show this, we first recall that F. Mignosi [22] proved that, for any n ≥ 0, the number c(n) of finite
Sturmian words of length n is given by

c(n) = 1 +

n∑

i=1

(n+ 1 − i)φ(i),

where φ is Euler’s totient function. More recently, in [9], the second author together with A. de Luca
proved that for any n ≥ 0, the number p(n) of Sturmian palindromes of length n is given by

p(n) = 1 +

⌈n/2⌉−1∑

i=0

φ(n− 2i).

Equivalently, for any n ≥ 0,

p(2n) = 1 +

n∑

i=1

φ(2i) and p(2n+ 1) = 1 +

n∑

i=0

φ(2i + 1).

Thus, for all n ≥ 0,

p(2n) + p(2n+ 1) = 2 +
n∑

i=1

{φ(2i) + φ(2i + 1)} + 2 =
2n+1∑

i=1

φ(i) + 2,

and

c(2n + 1) − c(2n) + 2 =

2n+1∑

i=1

(2n + 2 − i)φ(i) −

2n∑

i=1

(2n+ 1 − i)φ(i) + 2

= φ(2n + 1) +

2n∑

i=1

φ(i) + 2

=

2n+1∑

i=1

φ(i) + 2 = p(2n) + p(2n+ 1).
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From this point of view, it would be interesting to count for instance the number of all binary
rich words of length n for each n.
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Words (Montréal, Canada), September 13–17, 2005. Publications du LaCIM 36 (2005) 91–100.
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