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1 Introduction

Model checking has come of age. A number of techniques are increasingly used in
industrial setting to verify hardware and software systems, both against models
and concrete implementations. While it is generally accepted that obstacles still
remain, notably handling infinite state systems efficiently, much of current work
involves refining and improving existing techniques such as predicate abstraction.

At scientific level a major avenue of work remains the development of verifi-
cation techniques against rich and expressive specification languages. Over the
years there has been a natural progression from checking reachability only to a
large number of techniques (BDDs, BMC, abstraction, etc.) catering for LTL [28],
CTL [10], and CTL⋆ [12]. More recently, ATL and ATL⋆ [3] were introduced
to analyse systems in which some components, or agents, can enforce temporal
properties on the system. The paths so identified correspond to infinite games
between a coalition and its complement. ATL is well explored theoretically and
at least two toolkits now support it [4, 19, 20].

It has however been observed that ATL⋆ suffers from a number of limitations
when one tries to apply it to multi-agent system reasoning and games [1, 2, 5, 15,
17, 21, 31]. One of these is the lack of support for binding strategies explicitly
to various agents or to the same agent in different contexts. To overcome this
and other difficulties, Strategy Logic (SL) [27], as well as some useful variants of
it [8, 24–26], has been put forward. Key game-theoretic properties such as Nash
equilibria, not expressible in ATL⋆, can be captured in SL.

In this paper we describe the model checker MCMAS-SLK. The tool supports
the verification of systems against specifications expressed in a variant of SL
that includes epistemic modalities. The synthesis of agents’ strategies to satisfy
a given parametric specification, as well as basic counterexample generation,
are also supported. MCMAS-SLK, released as open-source, implements novel
labelling algorithms for SL, encoded on BDDs, and reuses existing algorithms
for the verification of epistemic specifications [29].

2 Epistemic Strategy Logic

Underlying Framework. Differently from other treatments of SL, originally
defined on concurrent game structures, we here define the logic on interpreted



systems [14]. Doing so enables us to integrate the logic with epistemic concepts.
Each agent is modelled in terms of its local states (given as a set of variables), a
set of actions, a protocol specifying what actions may be performed at a given
local state, and a local evolution function returning a target local state given
a local state and a joint action for all the agents in the system. Interpreted
systems are attractive for their modularity; they naturally express systems with
incomplete information, and are amenable to verification [16,19].

Syntax. SL has been introduced as a powerful formalism to reason about
various equilibria concepts in non-zero sum games and sophisticated cooperation
concepts in multi-agent systems [8,27]. These are not expressible in previously
explored logics including those in the ATL⋆ hierarchy. We here put forward an
epistemic extension of SL by adding a family of knowledge operators [14].

Formulas in epistemic strategy logic, or strategy logic with knowledge (SLK),
are built by the following grammar over atomic propositions p ∈ AP, variables
x ∈ Vr, and agents a ∈ Ag (A ⊆ Ag denotes a set of agents):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈x〉〉ϕ | (a, x)ϕ | Kaϕ | DAϕ | CAϕ.

SLK extends LTL [28] by means of an existential strategy quantifier 〈〈x〉〉 and
agent binding (a, x). It also includes the epistemic operators Ka, DA, and CA for
individual, distributed, and common knowledge, respectively [14]. Intuitively,
〈〈x〉〉ϕ is read as “there exists a strategy x such that ϕ holds”, whereas (a, x)ϕ
stands for “bind agent a to the strategy associated with the variable x in ϕ”. The
epistemic formula Kaϕ stands for “agent a knows that ϕ”; DAϕ encodes “the group
A has distributed knowledge of ϕ”; while CAϕ represents “the group A has common
knowledge of ϕ”. Similarly to first-order languages, we use free(ϕ) to represent
the free agents and variables in a formula ϕ. Formally, free(ϕ) ⊆ Ag∪Vr contains
(i) all agents having no binding after the occurrence of a temporal operator and
(ii) all variables having a binding but no quantification. For simplicity, we here
consider only formulas where the epistemic modalities are applied to sentences,
i.e., formulas without free agents or variables. Lifting this restriction is not
problematic. To establish the truth of a formula, the set of strategies over which
a variable can range needs to be determined. For this purpose we use the set
sharing(ϕ, x) containing all agents bound to a variable x within a formula ϕ.

Semantics. The concepts of path, play, strategy, and assignment (for agents
and variables) can be defined on interpreted systems similarly to the way they
are defined on concurrent game structures. We refer to [23, 27] for a detailed
presentation. Intuitively, a strategy identifies paths in the model on which a
formula needs to be verified. Various variants of interpreted systems have been
studied. We here adopt the memoryless version where the agents’ local states
do not necessarily include the local history of the run. Consequently, strategies
are also memoryless. Note that this markedly differs from the previous perfect
recall semantics of SL, which is defined on memoryful strategies. We consider
this setting because memoryful semantics with incomplete information leads to
an undecidable model checking problem [11].

Given an interpreted system I having G as a set of global states, a state
g ∈ G, and an assignment χ defined on free(ϕ), we write I, χ, g |= ϕ to indicate



that the SLK formula ϕ holds at g in I under χ. The semantics of SLK formulas
is inductively defined by using the usual LTL interpretation for the atomic
propositions, the Boolean connectives ¬ and ∧, as well as the temporal operators
X and U. The epistemic modalities are interpreted as standard by relying on
notions of equality on the underlying sets of local states [14]. The inductive
cases for strategy quantification 〈〈x〉〉 and agent binding (a, x) are given as
follows. I, χ, g |= 〈〈x〉〉ϕ iff there is a memoryless strategy f for the agents in
sharing(ϕ, x) such that I, χ[x 7→ f], g |= ϕ where χ[x 7→ f] is the assignment equal
to χ except for the variable x, for which it assumes the value f. I, χ, g |= (x, a)ϕ
iff I, χ[a 7→ χ(x)], g |= ϕ, where χ[a 7→ χ(x)] denotes the assignment χ in which
agent a is bound to the strategy χ(x).

Model Checking and Strategy Synthesis. Given an interpreted system I,
an initial global state g0, an SLK specification ϕ, and an assignment χ defined on
free(ϕ), the model checking problem concerns determining whether I, χ, g0 |= ϕ.
Given an interpreted system I, an initial global state g0, and an SLK specification
ϕ, the strategy synthesis problem involves finding an assignment χ such that
I, χ, g0 |= ϕ.

The model checking problem for systems with memoryless strategies and
imperfect information against ATL and ATL⋆ specifications is in PSpace [7].
The algorithm can be adapted to show that the same result applies to SLK. It
follows that SLK specifications do not generate a harder model checking problem
even though they are more expressive.

3 The Model Checker MCMAS-SLK

State Labelling Algorithm. The model checking algorithm for SLK extends
the corresponding ones for temporal logic in two ways. Firstly, it takes as input
not only a formula, but also a binding which assigns agents to variables. Secondly,
it does not merely return sets of states, but sets of pairs 〈g, χ〉 consisting of a
state g and an assignment of variables to strategies χ. A pair 〈g, χ〉 ∈ Ext is
called an extended state; intuitively, χ represents a strategy assignment under
which the formula holds at state g.

Given an SLK formula ϕ and a binding b ∈ Bnd , Ag → Vr, the model
checking algorithm Sat : SLK× Bnd → 2Ext, returning a set of extended states,
is defined as follows, where a ∈ Ag is an agent, A ⊆ Ag a set of agents, and
x ∈ Vr a variable:

– Sat(p, b) , {〈g, χ〉 : g ∈ h(p) ∧ χ ∈ Asg}, with p ∈ AP;
– Sat(¬ϕ, b) , neg(Sat(ϕ, b));
– Sat(ϕ1 ∧ ϕ2, b) , Sat(ϕ1, b) ∩ Sat(ϕ2, b);
– Sat((a, x)ϕ, b) , Sat(ϕ, b[a 7→ x]);
– Sat(〈〈x〉〉ϕ, b) , {〈g, χ〉 : ∃f ∈ Strsharing(ϕ,x). 〈g, χ[x 7→ f]〉 ∈ Sat(ϕ, b)};

– Sat(Xϕ, b) , pre(Sat(ϕ, b), b);
– Sat(ϕ1Uϕ2, b) , lfpX [Sat(ϕ2, b) ∪ (Sat(ϕ1, b) ∩ pre(X, b))];
– Sat(Kaϕ, b) , neg({〈g, χ〉 : ∃ 〈g′, χ′〉 ∈ Sat(¬ϕ,∅).g′ ∼a g});



– Sat(DAϕ, b) , neg({〈g, χ〉 : ∃ 〈g′, χ′〉 ∈ Sat(¬ϕ,∅).g′ ∼D

A g});

– Sat(CAϕ, b) , neg({〈g, χ〉 : ∃ 〈g′, χ′〉 ∈ Sat(¬ϕ,∅).g′ ∼C

A g}).

Above we use h(p) to denote the set of global states where atom p is true; pre(C, b)
is the set of extended states that temporally precede C subject to a binding b;
neg(C) stands for the set of extended states 〈g, χ〉 such that for each extended
state 〈g, χ′〉 ∈ C, there is some variable x ∈ dom(χ) ∩ dom(χ′), such that the
strategies χ(x) and χ′(x) disagree on the action to be carried out in some global
state g′ ∈ dom(χ(x)) ∩ dom(χ′(x)) (i.e., χ(x)(g′) 6= χ′(x)(g′)); Strsharing(ϕ,x) is
the set of strategies shared by the agents bound to the variable x in the formula
ϕ; finally, ∼a, ∼

D

A, and ∼C

A represent the individual, distributed, and common
epistemic accessibility relations for agent a and agents A defined on the respective
notions of equality of agents’ local states. The set of global states of an interpreted
system I satisfying a given formula ϕ ∈ SLK is calculated from the algorithm
above by computing ‖ϕ‖

I
, {g ∈ G : 〈g,∅〉 ∈ Sat(ϕ,∅)}.

BDD Translation. Given an interpreted system I and an SLK formula ϕ,
we now summarise the steps required to implement the labelling algorithm above
using OBDDs [6]. We represent global states and joint actions as Boolean vectors
v and w, respectively [29]. Similarly, an assignment χ is represented as a Boolean

vector u with K =
∑

x∈Vr

∑

S∈G/∼C

sharing(ϕ,x)

⌈

log2

∣

∣

∣

⋂

g∈S

⋂

a∈sharing(ϕ,x) Pa(la(g))
∣

∣

∣

⌉

Boolean variables. Intuitively, for each variable x ∈ Vr and set of shared local
states S ∈ G/ ∼C

sharing(ϕ,x), we store which action should be carried out. An

extended state 〈g, χ〉 ∈ Ext is then represented as a conjunction of the variables
in vg and uχ.

Given a binding b ∈ Bnd, we encode the protocol P (v, w), the evolution
function t(v, w, v′), and the strategy restrictions Sb(v, w, u), as in [20]. The
temporal transition is encoded as Rb

t(v, v
′, u) =

∨

w∈Act
t(v, w, v′) ∧ P (v, w) ∧

Sb(v, w, u). Observe that we quantify over actions, encoded as w, as in [20], but
we store the variable assignment in the extra parameter u. Quantification over
the variable assignment is performed when a strategy quantifier is encountered.

Given this, the algorithm Sat(·, ·) is translated into operations on BDDs
representing the encoded sets of extended states.

Implementation and Usage. The model checker MCMAS-SLK [22] con-
tains an implementation of the procedure described previously. To do this, we
took MCMAS as baseline [19]. MCMAS is an open-source model checker for the
verification of multi-agent systems against ATL and epistemic operators. We
used MCMAS to parse input and used some of its existing libraries for handling
counter-examples, which were extended to handle SLK modalities.

MCMAS-SLK takes as input a system description given in the form of an
ISPL file [19] providing the agents in the system, their possible local states, their
protocols, and their evolution functions. Upon providing SLK specifications, the
checker calculates the set of reachable extended states, encoded as OBDDs, and
computes the results by means of the labelling algorithm described previously. If
the formula is not satisfied, a counterexample is provided in the form of strategies
for the universally quantified variables.



4 Experimental Results and Conclusions

Evaluation. To evaluate the proposed approach, we present the experimental
results obtained on the dining cryptographers protocol [9, 19] and a variant
of the cake-cutting problem [13]. The experiments were run on an Intel Core
i7-2600 CPU 3.40GHz machine with 8GB RAM running Linux kernel version
3.8.0-34-generic. Table 1 reports the results obtained when verifying the dining
cryptographers protocol against the specifications φCTLK , AGψ and φSLK , ℘Gψ,
with [[x]]ϕ , ¬〈〈x〉〉¬ϕ, where:

ψ , (odd∧¬paid1) → (Kc(paid2 ∨· · ·∨ paidn)) ∧ (¬Kcpaid2 ∧· · ·∧ ¬Kcpaidn)

℘ , [[x1]] · · · [[xn]][[xenv]] (c1, x1) · · · (cn, xn)(Environment, xenv)

Table 1. Verification results for the dining cryptographers protocol.

n crypts possible states reachable states reachability (s) CTLK (s) SLK (s)

10 3.80× 1014 45056 4.41 0.30 2.11

11 9.13× 1015 98304 1.79 0.04 5.51

12 2.19× 1017 212992 2.43 0.02 11.78

13 5.26× 1018 458752 2.17 0.11 32.41

14 1.26× 1020 983040 2.08 0.09 85.29

15 3.03× 1021 2.10× 106 22.67 0.33 171.61

16 7.27× 1022 4.46× 106 7.13 0.09 451.41

17 1.74× 1024 9.44× 106 9.77 0.13 768.34

φCTLK is the usual epistemic specification for the protocol [19,30] and φSLK
is its natural extension where strategies are quantified. The results show that the
checker can verify reasonably large state spaces. The performance depends on
the number of Boolean variables required to represent the extended states. In
the case of SLK specifications, the number of Boolean variables is proportional
to the number of strategies (here equal to the number of agents). The last two
columns of Table 1 show that the tool’s performance drops considerably faster
when verifying SLK formulas compared to CTLK ones. This is because CTLK

requires no strategy assignments and extended states collapse to plain states. In
contrast, the performance for CTLK is dominated by the computation of the
reachable state space.

We now evaluate MCMAS-SLK with respect to strategy synthesis and speci-
fications expressing Nash equilibria. Specifically, we consider a variation of the
model for the classic cake-cutting problem [13] in which a set of n agents take
turns to slice a cake of size d and the environment responds by trying to en-
sure the cake is divided fairly. We assume that at each even round the agents
concurrently choose how to divide the cake; at each odd round the environment
decides how to cut the cake and how to assign each of the pieces to a subset of
the agents. Therefore, the problem of cutting a cake of size d between n agents
is suitably divided into several simpler problems in which pieces of size d′ < d
have to be split between n′ < n agents. The multi-player game terminates once
each agent receives a slice.



The model uses as atomic propositions pairs 〈i, c〉 ∈ [1, n]× [1, d] indicating
that agent i gets a piece of cake of size c. The existence of a protocol for the
cake-cutting problem is given by the following SL specification ϕ:

ϕ , 〈〈x〉〉(ϕF ∧ ϕS),where

– ϕF , [[y]] . . . [[yn]](ψNE → ψE) ensures that the protocol x is fair, i.e., all
Nash equilibria (y, . . . , yn) of the agents guarantee equity of the splitting;

– ϕS , 〈〈y〉〉 . . . 〈〈yn〉〉ψNE ensures that the protocol has a solution, i.e., there
is at least one Nash equilibrium;

– ψNE ,
∧n

i=1(
∧d

v=1(〈〈z〉〉♭ipi(v)) → (
∨d

c=v ♭pi(c))) ensures that if agent i has a
strategy z allowing him to get from the environment a slice of size v once the
strategies of the other agents are fixed, he is already able to obtain a slice of
size c ≥ v by means of his original strategy yi (this can be ensured by taking
♭,(Environment, x)(1, y) . . . (n, yn), ♭i,(Environment, x)(1, y) · · · (i, z) · · ·
(n, yn), and pi(c),F 〈i, c〉);

– ψE , ♭
∧n

i=1 pi(⌊d/n⌋) ensures that each agent i is able to obtain a piece of
size ⌊d/n⌋ (♭ and pi are the same as in the item above).

We were able to verify the formula ϕ defined above on a system with n = 2 agents
and a cake of size d = 2. Moreover, we automatically synthesised a strategy
x for the environment (see [22] for more details). We were not able to verify
larger examples; for example with n = 2, d = 3, there are 29 reachable states; the
encoding required 105 Boolean variables (most of them represent the assignments
in the sets of extended states), and the intermediate BDDs were found to be
in the order of 109 nodes. This should not be surprising given the theoretical
difficulty of the cake-cutting problem. Moreover, we are synthesising the entire
protocol and not just the agents’ optimal behaviour.

Conclusions. In this paper we presented MCMAS-SLK, a novel symbolic
model checker for the verification of systems against specifications given in SLK.
A notable feature of the approach is that it allows for the automatic verification
of sophisticated game concepts such as various forms of equilibria, including Nash
equilibria. Since MCMAS-SLK also supports epistemic modalities, this further
enables us to express specifications concerning individual and group knowledge
of cooperation properties; these are commonly employed when reasoning about
multi-agent systems. Other tools supporting epistemic or plain ATL specifications
exist [4,16,18,19]. In our experiments we found that the performance of MCMAS-
SLK on the ATL and CTLK fragments was comparable to that of MCMAS, one
of the leading checkers for multi-agent systems. This is because we adopted an
approach in which the colouring with strategies is specification-dependent and is
only performed after the set of reachable states is computed.

As described, a further notable feature of MCMAS-SLK is the ability to
synthesise behaviours for multi-player games, thereby going beyond the classical
setting of two-player games.

We found that the main impediment to better performance of the tool is the
size of the BDDs required to encode sets of extended states. Future efforts will
be devoted to mitigate this problem as well as to support other fragments of SL.
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