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Abstract
The scientific and application-oriented interest in the Laplace transform and
its inversion is testified by more than 1000 publications in the last century.
Most of the inversion algorithms available in the literature assume that the
Laplace transform function is available everywhere. Unfortunately, such an
assumption is not fulfilled in the applications of the Laplace transform. Very
often, one only has a finite set of data and one wants to recover an estimate
of the inverse Laplace function from that. We propose a fitting model of data.
More precisely, given a finite set of measurements on the real axis, arising from
an unknown Laplace transform function, we construct a dth degree generalized
polynomial smoothing spline, where d = 2m−1, such that internally to the data
interval it is a dth degree polynomial complete smoothing spline minimizing a
regularization functional, and outside the data interval, it mimics the Laplace
transform asymptotic behavior, i.e. it is a rational or an exponential function
(the end behavior model), and at the boundaries of the data set it joins with
regularity up to order m − 1, with the end behavior model. We analyze in detail
the generalized polynomial smoothing spline of degree d = 3. This choice
was motivated by the (ill)conditioning of the numerical computation which
strongly depends on the degree of the complete spline. We prove existence
and uniqueness of this spline. We derive the approximation error and give a
priori and computable bounds of it on the whole real axis. In such a way, the
generalized polynomial smoothing spline may be used in any real inversion
algorithm to compute an approximation of the inverse Laplace function.
Experimental results concerning Laplace transform approximation, numerical
inversion of the generalized polynomial smoothing spline and comparisons
with the exponential smoothing spline conclude the work.

(Some figures may appear in colour only in the online journal)
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1. Introduction

In many applications of the Laplace transform (Lt) inversion, the observed data are related
to the inverse function only by a finite amount of data (often measurements) on the Lt. Very
often, the Lt function is unknown [7, 30–32]. As expected, the fact that the Lt is only known
on a finite set of points on the real axis makes the inversion problem much more difficult.
The approaches that can be found in the literature attempt to find a constrained least-squares
solution minimizing the residual together with some additional constraints [2, 14]. The limit
of these methods mainly consists of the numerical difficulty of the inversion procedure for a
finite amount of experimental data.

We propose to construct a fitting model of the data set. Such a model may be employed
in any inversion method able to compute the inverse Laplace function in the real case. Let us
describe the mathematical problem that we are going to address.

P1: given a finite set of real values xi ∈ �n where

�n = {x1 < x2 < · · · < xn} ⊂ Re+, (1)

let F be a Lt function defined on the half-plane of convergence HC = {s ∈ C : Re(s) > σ0},3
where σ0 � 0 is the abscissa of convergence of F .

Let us assume that F is only given at

xi ∈ �n ⊂ (Re+ ∩ HC), i = 1, ..., n, (2)

and (yi)i=1,...,n be n measurements of F at (xi)i=1,...,n. Moreover, let xn+1 = +∞. We deal with
the inverse problem concerning the construction of an approximation of F on the whole real
axis starting from the data set (xi, yi), i = 1, . . . , n.

A number of papers have been written for data smoothing [8, 13, 16, 25, 28]. One
of the most effective ways to do this is by using spline functions [5, 10, 15, 17–19, 26,
27]. Natural splines are well known and widely used in many applications; unfortunately,
these functions do not do well near the boundary of the data set because the second-order
derivative of natural splines at the end points are zero. Better results can be obtained if one
requires that the regularity of the spline and its derivatives at the boundaries of the data
set be equal to known values. Splines which fit data with constraints on their derivatives
at the boundaries of the data set are called complete splines [4, 6]. In the special case
of interpolation at all integers, i.e. xi = i, i = 0,±1,±2, . . ., the so-called polynomial
cardinal splines have been extensively studied and are the subject of a monograph by
Shoenberg [19]. The existence and uniqueness results regarding the interpolation problem
using the polynomial cardinal spline were generalized by Micchelli [11], to the cardinal
L-spline, where L is a differential operator with constant real coefficients. Finally, the
Shoenberg one-dimensional cardinal splines were extended in Ren by Kounchev, who in
[9] introduced the piecewise polyharmonic splines (the so-called polysplines). Polysplines are
multivariate splines made up of polyharmonic functions that allow us to interpolate functions
prescribed on surfaces of co-dimension 1.

In our preliminary results [3], we used a complete spline interpolating the data set with
a rational asymptotic decay. Here, starting from n measurements (xi, yi), i = 1, . . . , n, we
construct a dth degree generalized polynomial smoothing spline4, where d = 2m − 1, such
that internally to the data interval it is a dth degree polynomial complete smoothing spline
solution of a regularization problem, and outside the data interval, it mimics the Lt asymptotic
behavior, i.e. it is a rational or an exponential function (the end behavior model), and at the

3 C denotes the complex plane.
4 From now on, we refer to the polynomial splines also simply as splines.
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boundaries of the data set it joins with regularity up to order m − 1, with the end behavior
model. The selection of the former or of the latter end behavior model may be done according
to information a priori that we have on the observed data or on the inverse function. For
instance, taking into account Abelian/Tauberian results, if we estimate the behavior of the
inverse function at zero, we can use this information to choose the end decay of the generalized
polynomial smoothing spline.

We address in detail the generalized polynomial smoothing spline of degree d = 3. This
choice was motivated by the (ill)conditioning of the numerical computation which strongly
depends on the degree of the complete spline. We prove existence and uniqueness of the
generalized spline. Moreover, the error analysis is carried out together with a priori and
computable bounds of the approximation error between the generalized smoothing spline and
the n measurements. It is worth noting that the generalized smoothing spline can be constructed
using, internally to the data interval, spline functions which are different from the polynomial
splines. For instance, we report some comparisons with the generalized exponential smoothing
spline, obtained by using the exponential splines as described in [22].

The organization of the paper is as follows. In section 2, we give some preliminary
definitions, according to the asymptotic behavior of a Lt function, and we introduce the set of
functions with asymptotic rational decay and the set of functions with asymptotic exponential
decay. Section 3 is devoted to the definition of the fitting model, and to its existence and
uniqueness. In section 4, we study the approximation error and give a priori and computable
bounds. Section 5 is devoted to the round-off error propagation during the construction and
evaluation of the spline model. In order to show the usefulness of this approach, experiments
concerning the numerical inversion of the generalized smoothing spline and comparisons with
another fitting spline are given in section 6. Conclusions and future works are discussed in
section 7.

2. Preliminaries

Let � ⊆ Re+ such that [c,∞[⊂ � for a constant c > 0. Let T (�) be the set of analytic
functions on � ⊆ Re+.

Definition 2.1. If α > 0, then the function space

Rα
decay(�) =

⎧⎪⎪⎨⎪⎪⎩
∃ H(x) = a1x−α + a2x−(α+δ)

G ∈ T (�) : a1, a2, δ ∈ Re, a1 �= 0, δ > 0 s.t.
for x → ∞, G(k)(x) = H (k)(x) + o

(
x−(α+δ+k)

)
for k = 0, 1, . . .

⎫⎪⎪⎬⎪⎪⎭ (3)

denotes functions with the rational decay of order α on �.

Definition 2.2. If α > 0, then the function space

Eα
decay(�) =

{
G ∈ T (�) : ∃ a bounded function H(x) defined on �

s.t.G(x) = e−αxH(x)

}
(4)

denotes functions with exponential decay of order α in �.

Let Sd (�n) be the space of (polynomial) dth degree splines defined on �n, then

Definition 2.3 [4]. Let m > 0 be a positive integer, d = 2m−1, and {Si
L}i=1,...,m−1, {Si

R}i=1,...,m−1

2m − 2 real numbers. If s ∈ Sd(�n) satisfies the following properties:

s(i)(x1) = Si
L, i = 1, . . . , m − 1 (5)

s(i)(xn) = Si
R, i = 1, . . . , m − 1,

3
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then s is said to be a complete dth degree spline. The space of complete dth degree splines is
denoted by Scom,d (�n, Si

L, Si
R). Moreover, if s satisfies the following property:

• s(xi) = yi, i = 1, . . . , n,

then s(x) is said to be a complete dth degree spline interpolating (xi, yi)i=1,...,n,
{Si

L, Si
R}i=1,...,m−1.

Let Lm
2 [x1, xn] = { f ∈ Cm−1[x1, xn] : f (m−1) be absolutely continuous and f (m) ∈

L2[x1, xn]} and consider the following functional:

E( f ) =
n∑

i=1

wi[ f (xi) − yi]
2 +

m−1∑
i=1

wL
i

[
f (i)(x1) − Si

L

]2 +
m−1∑
i=1

wR
i

[
f (i)(xn) − Si

R

]2
, (6)

where {w1, . . . , wn}, {wL
1 , . . . , wL

m−1} and {wR
1 , . . . , wR

m−1} are positive weights, and let

J( f ) =
∫ xn

x1

( f (m)(t))2dt. (7)

To solve the inverse problem P1, we introduce the regularization problem P2:

minimize {ρJ( f ) + E( f )} over f ∈ Lm
2 [x1, xn], (8)

where ρ � 0 is the so-called regularization parameter controlling the weight of J( f ) with
respect to E( f ).

If ρ = 0, then problem (8) has a unique solution which is just the complete (2m − 1)th
degree spline interpolating (xi, yi)i=1,...,n, {Si

L, Si
R}i=1,...,m−1, while, for each choice of ρ > 0,

the unique solution is a (2m − 1)th degree spline.

Theorem 2.4 [4]. Let m > 0 be a positive integer and d = 2m − 1. For every given data set,

{(xi, yi)}i=1,...,n,
{
Si

L

}
i=1,...,m−1,

{
Si

R

}
i=1,...,m−1, (9)

for every given set of positive weights

{wi}i=1,...,n,
{
wL

i

}
i=1,...,m−1, {wR

i }i=1,...,m−1 (10)

and for every choice of the regularization parameter ρ > 0, the problem (8) has a unique
solution. This solution is a dth degree spline denoted by sρ ∈ Sd (�n).

As ρ → ∞, the function sρ converges to the polynomial of degree m − 1 which fits data
(xi, yi)i=1,...,n best in the least-squares sense.

As ρ → 0, the function sρ converges to the dth degree complete spline interpolating
(xi, yi)i=1,...,n, {Si

L, Si
R}i=1,...,m−1.

As in [4] we give the following.

Definition 2.5. The unique solution sρ of the regularization problem (8) is said to be a complete
smoothing dth degree spline. The space of complete smoothing dth degree splines is denoted
by

Ssm
com,d

(
�n, Si

L, Si
R

) = {sρ}ρ�0. (11)
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3. The generalized complete smoothing spline

Let us assume that

yn−1/yn > 1, yi �= 0, i = 1, . . . , n. (12)

We introduce the generalized smoothing spline that internally to the data interval �n is
a complete smoothing spline and outside the data interval, it mimics the Lt asymptotic
behavior. The subsequent numerical analysis will address both the rational and the exponential
asymptotic decay behavior. To this aim, in the following we refer to the rational decay and to
the exponential decay by using the index f ≡ r or f ≡ e, respectively, to define the function
γ f , where

γ f (x, pow) =
{

xpow if f ≡ r
ex·pow if f ≡ e

(13)

and the function space

Wg
f = span{γ f (x,−g)} (x ∈ Re+, g ∈ Re). (14)

Definition 3.1. For j = 2, . . . , n let5

β
f
j · γ f

(
x,−α

f
j

) ∈ Wα
f
j

f , (15)

where

α
f
j =

⎧⎪⎪⎨⎪⎪⎩
ln(y j−1/y j)

ln(x j/x j−1)
, f ≡ r

ln(y j−1/y j)

x j − x j−1
, f ≡ e

(16)

and

β
f
j = y j · γ f

(
x j, α

f
j

)
. (17)

If f ≡ r, then the functions in (15) are referred to as the rational end behavior models (rational
e.b.m); if f ≡ e, then these functions are referred to as the exponential end behavior models
(exponential e.b.m).

Let us introduce Kronecker’s symbol

ζa,b =
{

1 a = b
0 a �= b

. (18)

We assume m = 2, that is, we consider complete polynomial smoothing splines of degree
d = 36. Consider the regularization problem as defined in (8), where

S1
L = [β f

2 γ f
(
x1,−α

f
2

)](1) = −α
f
2 y1γ f (x1,−ζ f ,r) (19)

S1
R = [β f

n γ f
(
xn,−α f

n

)](1) = −α f
n ynγ f (xn,−ζ f ,r),

whose solution is sρ ∈ Ssm
com,3(�n, S1

L, S1
R), i.e. the complete smoothing spline of third degree.

Following [20], we introduce the space of generalized smoothing splines defined on
[x1,+∞) whose restriction in [x1, xn] is a complete smoothing spline.

5 The constants α
f
j and β

f
j will be obtained by requiring that each function in (15) interpolates the two points

Pj−1 = (x j−1, y j−1) and Pj = (x j, y j ).
6 As explained by the sensitivity analysis in section 5, this choice gives the right trade-off between end regularity of
the complete spline and conditioning of its numerical computation.
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Definition 3.2. Let SWg
f

be defined as follows:

SWg
f
=
⎧⎨⎩

sρ,g : there exist sρ ∈ Ssm
com,3(�n, S1

L, S1
R), sg ∈ Wg

f :
sρ,g ≡ sρ on [x1, xn], sρ,g ≡ sg on [xn,∞) and
sρ (xn) = sg(xn), s(1)

ρ (xn) = s(1)
g (xn)

⎫⎬⎭ .

If the index f equals r, then the function sρ,g ∈ SWg
f

is said to be a generalized complete
smoothing spline with rational end behavior; if the index f equals e, then it is said to be a
generalized complete smoothing spline with exponential end behavior.

The next result addresses the existence and uniqueness of the generalized complete
smoothing spline.

Theorem 3.3. Let sρ be the solution of (8), where ρ � 0. Let

α f
n (ρ) =

{−xns(1)
ρ (xn)/sρ (xn) if f ≡ r ,

−s(1)
ρ (xn)/sρ (xn) if f ≡ e

(20)

and

β f
n (ρ) = sρ (xn)γ f (xn, α

f
n (ρ)). (21)

For every ρ � 0, there exists a unique s
ρ,α

f
n (ρ)

∈ S
Wα

f
n (ρ)

f

, whose restriction on [x1, xn] is sρ ,

and whose restriction on [xn,∞) is s
α

f
n (ρ)

(x) = β
f

n (ρ)γ f (x,−α
f
n (ρ)) ∈ Wα

f
n (ρ)

f .
As ρ → ∞, the function s

α
f
n (ρ)

converges to the polynomial of degree m − 1 which fits
data (xi, yi)i=1,...,n best in the least-squares sense.

Moreover, if ρ = 0, then s0 is the dth degree complete spline interpolating
(xi, yi)i=1,...,n, S1

L, S1
R. α

f
n (ρ) and β

f
n (ρ) become α

f
n and β

f
n as defined in (16), (17) and

s
α

f
n (ρ)

is s
α

f
n
(x) = β

f
n γ f (x,−α

f
n ).

Proof. s
ρ,α

f
n (ρ)

∈ S
Wα

f
n (ρ)

f

is obtained from sρ ∈ Ssm
com,3(�n, S1

L, S1
R) on [x1, xn) and from

β
f

n (ρ)γ f (x,−α
f
n (ρ)) on [xn,∞). Existence and uniqueness of sρ at [x1, xn) are derived from

theorem 2.4. Moreover, if continuity conditions in xn of the function s
ρ,α

f
n (ρ)

imply

s
α

f
n (ρ)

(xn) = β f
n (ρ)γ (xn,−α f

n (ρ)) = sρ (xn), s(1)

α
f
n (ρ)

(xn) = s(1)
ρ (xn),

then s
ρ,α

f
n (ρ)

on [xn,∞) coincides with the end behavior model defined by (20) and (21).
As ρ → ∞, from theorem 2.4, the function s

α
f
n (ρ)

converges to the polynomial of degree
m − 1 which fits data (xi, yi)i=1,...,n best in the least-squares sense. From theorem 2.4, as
ρ → 0, s

α
f
n (0)

is the dth degree complete spline interpolating (xi, yi)i=1,...,n, S1
L, S1

R. Finally, if
ρ = 0, then from (20) it is

α f
n (0) = −γ f (xn, ζ f ,r)s

(1)

0 (xn)

s0(xn)

and from (5) it is

−γ f (xn, ζ f ,r)S1
R

yn

which, from (18), is equal to α
f
n . By the same way, from (21) we obtain

β f
n (0) = s0(xn)γ f (xn, α

f
n (0))

which from (17) is equal to β
f

n . �

6
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4. Error analysis

We consider the interpolating generalized complete spline s
α

f
n (0)

, with rational (if f ≡ r) or
exponential (if f ≡ e) end behavior, obtained by setting ρ = 0 in theorem 3.3. For the sake of
simplicity, we denote this function by sF .

Moreover, we set

y(k)
j = F (k)(x j), j = 1, . . . , n , k � 0, (22)

hj+1 = x j+1 − x j, j = 1, . . . , n − 1,

‖�n‖ = max
j=2,...,n

h j, (23)

hmin = min(h2, hn).

Definition 4.1. We define

Ej(x) = Ej(F, [x j, x j+1)) = max
x∈[x j,x j+1)

|sF (x)−F(x)|, j = 1, . . . , n, (24)

to be the error at [x j, x j+1), measuring the distance between F and sF .

The main result of this section is to provide computable estimates of the errors Ej for
j = 1, . . . , n. To this aim, we first determine upper bounds of Ej (see theorem 4.2 in the
case of j = n, and theorem 4.7, if j < n ), and then we replace these upper bounds with
computable quantities (see theorem 4.5 in the case of j = n and theorem 4.8, if j < n), i.e.
with quantities that can be obtained only using data points. Finally, we give the definition of
computable estimates of Ej (see definition 4.6 if j = n and definition 4.9, if j < n).

Let us consider En(x) for x � xn. Then the following result holds.

Theorem 4.2. If we set

Bn = |D f
n |

|a1|
γ f (xn, α)

+ max

{
|D f

n |
|a1|

γ f (xn, α)
,

|α f
n − α|
α

|yn|
}

, (25)

where

D f
j = a2

a1 γ f (x j, δ)
, j = 1, . . . , n, (26)

and the Lt function F ∈ Rα
decay is as in (3), if f ≡ r, or F(x) ≡ F1(x) ∈ Eα

decay, where

F1(x) = a1e−αx + a2e−(α+δ)x + o
(
e−(α+δ)x

)
, if f ≡ e, α

f
n and β

f
n are as in (16) and (17), and

sF ∈ SWg
f
, it holds that

En(x) � Bn (x � xn).

In order to prove this result we need the following two lemmas.

Lemma 4.3. In the same hypothesis of theorem 4.2, let

ψ(x) =
∣∣∣∣∣ a1

γ f (x, α)
− β

f
n

γ (x, α f
n )

∣∣∣∣∣
and x � xn. If

α f
n = α or β f

n /a1 < 0, (27)

then ψ is a decreasing function on [xn,∞).

7
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Proof. If α
f
n = α, from (17), we have that

ψ(x) =
∣∣∣∣∣ a1

γ f (x, α)
− yn

γ f (xn, α
f
n )

γ f (x, α
f
n )

∣∣∣∣∣ =
∣∣∣∣ 1

γ f (x, α)
[a1 − γ f (xn, α)]

∣∣∣∣
which is a decreasing function with respect to x because it is the product of a constant term
with | 1

γ f (x,α)
| which is a decreasing function with respect to x.

Let M = −β
f

n /a1; if M > 0, then

ψ(x) =
∣∣∣∣∣ a1

γ f (x, α)
− β

f
n

γ f (x, α
f
n )

∣∣∣∣∣ =
∣∣∣∣∣a1

(
1

γ f (x, α)
+ M

γ f (x, α
f
n )

)∣∣∣∣∣
is a decreasing function of x because it is the sum of two decreasing functions of x. �

Lemma 4.4. In the same hypothesis of theorem 4.2, let ψ(x) be defined as in lemma 4.3. Then

max
x�xn

ψ(x) � max

{
|a2|

γ f (xn, α + δ)
,
|α f

n − α|
α

|yn|
}

.

Proof. We consider two cases.

(i) If

β f
n /a1 < 0 or α f

n = α, (28)

then from lemma 4.3 ψ is a decreasing function on [xn,∞). Hence, ψ(xn) is the global
maximum of ψ(x). From (16) and (17) it follows

ψ(xn) =
∣∣∣∣∣ a1

γ f (xn, α)
− β

f
n

γ f (xn, α
f
n )

∣∣∣∣∣ =
∣∣∣∣ a1

γ f (xn, α)
− yn

∣∣∣∣ � |a2|
γ f (xn, α + δ)

,

where the last inequality is true taking into account the hypothesis on F . In the first case
the thesis follows.

(ii) If (28) is not verified, then a unique local maximum of ψ is at x̄ = ( α
f
n β

f
n

a1α

) 1

α
f
n −α if f ≡ r or

x̄ = ln
(

α
f
n β

f
n

a1α

) 1

α
f
n −α if f ≡ e. We obtain

ψ(x̄) = ∣∣a1γ f (x̄,−α) − β f
n γ f (x̄,−α f

n )
∣∣ = ∣∣∣∣∣a1γ f (x̄, α

f
n − α) − β

f
n

γ f (x̄, α
f
n )

∣∣∣∣∣ =
∣∣∣∣∣∣a1

α
f
n β

f
n

a1α
− β

f
n

γ f (x̄, α
f
n )

∣∣∣∣∣∣
�
∣∣∣∣∣α f

n − α

α

β
f

n

γ f (x̄, α
f
n )

∣∣∣∣∣ � |α f
n − α|
α

|yn|.

�
Let us demonstrate theorem 4.2.

Proof. By adding and subtracting a1/γ f (x, α) to sF (x)− F(x) and taking into account that for
x � xn, sF is the end behavior model (15), we obtain

En = max
x�xn

∣∣sF (x) − F(x) − a1/γ f (x, α) + a1/γ f (x, α)
∣∣

� max
x�xn

∣∣∣∣F(x) − a1

γ f (x, α)

∣∣∣∣+ max
x�xn

∣∣∣∣∣ a1

γ f (x, α)
− β

f
n

γ f (x, α
f
n )

∣∣∣∣∣ .
8
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For the first addend, taking the hypothesis on F it follows that

max
x�xn

∣∣∣∣F(x) − a1

γ f (x, α)

∣∣∣∣ = max
x�xn

∣∣∣∣ a2

γ f (x, α + δ)
+ o

(
1

γ f (x, α + δ)

)∣∣∣∣
� |a2|

γ f (xn, α + δ)
. (29)

For the second addend, using lemma 4.4, we obtain

max
x�xn

∣∣∣∣∣ a1

γ f (x, α)
− β

f
n

γ f (x, α
f
n )

∣∣∣∣∣ � max

{
|a2|

γ f (xn, α + δ)
,
|α f

n − α|
α

|yn|
}

. (30)

Collecting (29) and (30), it follows that

En � |a2|
γ f (xn, α + δ)

+ max

{
|a2|

γ f (xn, α + δ)
,
|α f

n − α|
α

|yn|
}

and the thesis follows. �
Theorem 4.2 provides an upper bound of the error En. Unfortunately, Bn depends on

quantities that are not known a priori; hence, En may not be estimated only using data. Our
aim is to get to an approximation of Bn, and thus of En, which is actually computable, i.e.
only using data. In this way, we are able to provide the estimate of the approximation error
introduced by replacing the function F by the generalized smoothing spline sF . This estimate
may be useful, for instance, to validate the solution computed by any Lt inversion algorithm.

Corollary 4.5. In the same hypothesis of theorem 4.2, an approximation of Bn is given by

|yn||D f
n | + max

{
|yn||D f

n | ,
|α f

n − α|
α

f
n

|yn|
}

. (31)

Proof. It follows by taking into account that in (25) yn = F(xn) = a1/γ f (xn, α). �
The following proposition provides an approximation of |α f

n − α|.
Proposition 4.6. If α

f
j is defined as in (16), then for j = 2, . . . , n it is

α
f
j = α + δD f

j + O(h j). (32)

Proof. From Taylor’s formula of the ln(1 + z) function centered at zero,

ln(1 + z) = z − z2/2 + o(z2) , (z → 0), (33)

using 1 + z = y j−1

y j
in (33), we obtain

ln
y j−1

y j
=
(

y j−1

y j
− 1

)
− 1

2

(
y j−1

y j
− 1

)2

+ o

((
y j−1 − y j

y j

)2
)

.

Taking into account that if hj → 0, then y j−1 → y j, we may write that

ln
y j−1

y j
=
(

y j−1

y j
− 1

)
− 1

2

(
y j−1

y j
− 1

)2

+ o
(
h2

j

)
.

Taking Taylor’s formula of F centered at x j evaluated at x j−1,

F(x j−1) = F(x j) − h jF
(1)(x j) + 1

2 h2
j (F

(2)(x j))
2 + o

(
h2

j

)
and using the relations in (22), we obtain

y j−1 = F(x j−1) = y j − h jy
(1)
j + 1

2 h2
j (y

(2)
j )2 + o

(
h2

j

)
. (34)

9
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Hence, it follows

ln
y j−1

y j
= −h jy

(1)
j + h2

j/2
(
y(2)

j

)2 + o
(
h2

j

)
y j

− 1

2

(
h jy

(1)
j + h2

j/2
(
y(2)

j

)2 + o
(
h2

j

)
y j

)2

+ o
(
h2

j

)

= −h jy
(1)
j

y j
+ h2

j (y
(2)
j )2

2y j
− 1

2

(
h jy

(1)
j

y j

)2

+ o
(
h2

j

)

= h j

⎡⎣−y(1)
j

y j
+ h j

2

(y(2)
j )2

y j
− h j

2

(
y(1)

j

y j

)2

+ o(h j)

⎤⎦ .

Finally, we obtain

1

h j
ln

y j−1

y j
= −y(1)

j

y j
− h j

2

⎡⎣(y(1)
j

y j

)2

+
(
y(2)

j

)2
y j

+ o(h j)

⎤⎦ . (35)

By using the properties of the ln function, it follows that(
ln

x j

x j−1

)−1

=
(

− ln

(
x j−1

x j

))−1

= −
(

ln

(
1 − h j

x j

))−1

= − 1

ln
(

1 − h j

x j

) ,

that is, by using (33), where z = − h j

x j
,(

ln
x j

x j−1

)−1

= − 1

− h j

x j
− 1/2(

h j

x j
)2 + o

(
h2

j

) = 1
h j

x j
+ 1/2(

h j

x j
)2 + o

(
h2

j

)
= x j

h j

⎛⎝ 1

1 + 1/2 h j

x j
+ O

(
h2

j

)
⎞⎠ = x j

h j

(
1 − 1

2

h j

x j
+ O

(
h2

j

))
. (36)

By multiplying (35) and (36), we have

ln y j−1

y j

ln x j

x j−1

= −x j

⎡⎣y(1)
j

y j
+ h j

2

⎛⎝(y(1)
j

y j

)2

+
(
y(2)

j

)2
y j

⎞⎠− h j

2x j

y(1)
j

y j

⎤⎦+ O(h j);

then

αe
j = 1

h j
ln

y j−1

y j
= −y(1)

j

y j
+ h j

2

⎛⎝(y(1)
j

y j

)2

+
(
y(2)

j

)2
y j

⎞⎠+ O(h j)

and

αr
j =

ln y j−1

y j

ln x j

x j−1

= −x j

⎡⎣y(1)
j

y j
− h j

2

⎛⎝(y(1)
j

y j

)2

+
(
y(2)

j

)2
y j

⎞⎠− h j

2x j

y(1)
j

y j

⎤⎦+ O(h j).

These relations can be rewritten as

αe
j = −y(1)

j

y j
+ O(h j)

and

αr
j = −x j

y(1)
j

y j
+ O(h j).

10
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If F ∈ Rα
decay as in (3), then for x � xn we obtain

−y(1)
j x j

y j
=

[
α a1

xα+1
j

+ (α + δ) a2

xα+δ+1
j

]
x j

F(x j)
=

αF(x j) + δ a2

xα+δ
j

F(x j)
= α + δ

a2

a1

1

xδ
j

= α + δDr
j.

If F ≡ F1(x) ∈ Eα
decay(�)), as in theorem 4.2, then we obtain

−y(1)
j

y j
=

α a1

eδx j
+ (α + δ) a2

e(α+δ)x j

F(x j)

=
αF(x j) + δ a2

e(α+δ)x j

F(x j)
= α + δ

a2

a1

1

eδx j
= α + δDe

j.

By collecting these results it follows that

α
f
j = α + δD f

j + O(h j).

�
The following proposition provides a computable expression of D f

j .

Proposition 4.7. Let

D
f

j = γ f (x j−1, ζ f ,r)
α

f
j − α

f
j−1

x j − x j−1
, (37)

where ζ f ,r is defined as in (18), be computed at j = 2, . . . , n. It follows that

|D f
j | � |D f

j | + O(h j).

Proof. By definition of D
f

j , if f ≡ r, then it follows that

D
r
j = x j−1

αr
j − αr

j−1

x j − x j−1
(38)

while, if f ≡ e,

D
e
j = αe

j − αe
j−1

x j − x j−1
. (39)

If f ≡ r, from (32), we obtain

D
r
j = x j−1δ

Dr
j − Dr

j−1

h j
+ O(h j) = x j−1δ

1 − xδ
j

xδ
j−1

h j
Dr

j + O(h j)

= x j−1δ
1 − (1 + h j

x j−1

)δ
h j

Dr
j + O(h j) = −δ2Dr

j + O(h j),

while, if f ≡ e, it holds that

D
e
j = δ

De
j − De

j−1

h j
+ O(h j) (40)

= δ
1 − De

j−1

De
j

h j
De

j + O(h j) = δ
1 − eδh j

h j
De

j + O(h j)

= −δ2De
j + O(h j). (41)

11
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By assuming δ � 1, it follows that

|D r
j | � δ|Dr

j| + O(h j) � |Dr
j| + O(h j) (42)

and ∣∣D e
j

∣∣ � δ|De
j| + O(h j) � |De

j| + O(h j). (43)

Collecting (42) and (43), by assuming δ � 1, it follows that

|D f
j | � δ|D f

j | + O(h j) � |D f
j | + O(h j).

�

Finally, we may give the following definition.

Definition 4.8. Let

Bn = ∣∣yn D
f
n

∣∣+ max

{∣∣yn D
f
n

∣∣, ∣∣yn D
f
n

∣∣
αn

}
be the computable estimate of En.

The restriction of sF at [x1, xn] is the complete third degree spline interpolating (xi, zi)i=1,...,n,
S1

L, S1
R as defined in 2.3, then, if

|F (4)(x)| � Lj, x ∈ I j = [x j, x j+1], for j = 1, . . . , n − 1,

we make use of the following result.

Theorem 4.9 [24]. Let F ∈ C4[x1, xn] and sF ∈ S
Wα

f
n

f

then, if

B j = h2
j+1 · R(‖�n‖2) + h4

j+1

4
Lj = O(‖�n‖4), (44)

where R(‖�n‖2) = max j=1,...,n r j and

r1 = 3

4
h2

2L1,

r j = 3

4
max(h j, h j+1)

2 max(Lj, Lj+1) ( j = 2, . . . , n − 1),

rn = 3

4
h2

nLn−1, (45)

then it holds

Ej � Bj, j = 1, . . . , n − 1.

Theorem 4.10. If F ∈ Rα
decay(�) (or F ≡ F1(x) ∈ Eα

decay(�), where F1(x) = a1e−αx +
a2e−(α+δ)x + o(e−(α+δ)x

)
) F ∈ C4[x1, xn] and sF ∈ S

Wα
f
n

f

, then,

L
f
j =

(
α

f
j+1

)(4) f

γ f (x j, 4 · ζ f ,r)
|y j| (46)

where

(4) f =
{
(4) f ≡ r
4 f ≡ e,

12
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while (4) indicates the exponential of a rising factorial7 and ζa,b is the Kronecker symbol
defined in (18). If x → ∞, it holds that

L j = L
f

j + o

(
1

γ f (x, α + 4 · ζ f ,r)

)
.

Proof. If F ∈ Rα
decay(�), then from (3) we obtain

|Lj| = max
I j

|F (4)| = max
I j

∣∣∣∣α(4)a1

xα+4
+ o

(
1

xα+4

)∣∣∣∣ .
By replacing F by the function in (15), it follows

|Lj| =
∣∣∣∣∣∣
(
αr

j+1

)(4)
βr

j+1

x
αr

j+1+4

j

∣∣∣∣∣∣+ o

(
1

xα+4

)
=
(
αr

j+1

)(4)

x4
j

∣∣y j

∣∣+ o

(
1

xα+4

)
, (47)

where α(4) and
(
αr

j

)(4)
are rising factorials. By setting in (47)

L
r
j =

(
αr

j+1

)(4)

x4
j

|y j|, (48)

it follows that

|Lj| = L
r
j + o

(
1

xα+4

)
.

If F ∈ Eα
decay(�), then we obtain

|Lj| = max
I j

|F (4)| = max
I j

∣∣∣∣α4a1

eαx
+ o

(
1

eαx

)∣∣∣∣ .
By replacing F by the function in (15), it follows that

|Lj| =
∣∣∣∣∣∣
(
αe

j+1

)4
βe

j+1

eαe
j+1x

∣∣∣∣∣∣+ o

(
1

eαx

)
= (αe

j+1

)4 ∣∣y j

∣∣+ o

(
1

eαx

)
. (49)

By setting in (49)

L
e
j = (αe

j+1)
4|y j|, (50)

it follows that

|Lj| = L
e
j + o

(
1

eαx

)
.

By collecting these results, we obtain

|Lj| =
(
αr

j+1

)(4) f

γ f (x j, 4 · ζ f ,r))

∣∣y j

∣∣+ o

(
1

γ f (x, α + 4 · ξ f ,r)

)
. (51)

Hence, the thesis follows. �
As expected, a sharper bound of Ej can be obtained by substituting R(‖�n‖2) in (44) by

r j in (45). Hence, we give the following.

7 The rising factorial is defined as

x(n) = x(x + 1)(x + 2) · · · (x + n − 1).
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Figure 1. Experiment 1: local errors E j (−∗) versus theoretical bounds B j (−o) versus computable
estimates B j (−�). x-values belong to the sample interval [0.1,14.6].
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Figure 2. Experiment 2: local errors E j (−∗) versus theoretical bounds B j (−o) versus computable
estimates B j (−�). x-values belong to the sample interval [19].

Definition 4.11. If

r1 = 3
4 h2

2L
f
1 , r j = 3

4 max
(
h j, h j+1

)2
max(L

f
j , L

f
j+1), rn−1 = 3

4 h2
nL

f
n−1,

then

Bj = h2
j+1r j + h4

j+1

4
L

f
j (52)

is the computable estimate of E j ( j = 1, . . . , n − 1).

In figures 1 and 2, we show the behavior of Ej compared with its theoretical bound Bj

and the computable estimate Bj for a Lt F ∈ Rα
decay (experiment 1) and for a Lt F ∈ Eα

decay
(experiment 2), respectively. Following [1], we consider two data point distributions: uniform
and geometric; the former is characterized by giving the distance between two adjacent points,
and the latter by giving the ratio between two adjacent points. Geometrical sampling is a

14
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uniform sampling in the variable ln(x) and this is the reason why it seems to be natural for the
Lt. We consider these distributions because the Lt function may be uniquely determined by
them as the number of points tends to infinity.

Experiment 1. Generalized complete smoothing spline with rational end behavior.
Assume that

F(x) = 2x/((1 + x2)2)

is only known at n = 30 real samples �n = {x1 = 0.1, . . . , xn = 14.6} linearly equi-spaced
between x1 and xn. If F ∈ R3

decay(Re), we obtain Bn = 5.08 × 10−5 and En = 5.42 × 10−7.
Observe that F(xn) = 6.36 × 10−4, i.e. the generalized complete smoothing spline sF with
rational end behavior offers a sharp approximation of the asymptotic behavior of F .

Experiment 2. Generalized complete smoothing spline with exponential end behavior.
Assume that

F(x) = e−x(x + 1)−1

is only known at n = 30 real samples �n = {x1 = 5, . . . , xn = 20} distributed between x1 and
xn as follows:

x1 = a, xn = b, xi+1 = xi · (b/a)1/(n−1), i = 1, ..., n − 1.

If F ∈ Eα
decay(�), we obtain Bn = 9.07 × 10−12 and En = 8.30 × 10−14. Observe that

F(xn) = 9.8150 × 10−11, i.e. the generalized complete smoothing spline sF with exponential
end behavior offers a sharp approximation of the asymptotic behavior of F .

5. Sensitivity analysis

This section analyzes the round-off error propagation on s(x) where x ∈ [x1,∞) and
s = s

ρ,α
f
n (ρ)

is the generalized complete smoothing spline of degree d = 2m − 1, m > 0.
Let us introduce the following application P:

P : ((x1, y1), . . . , (xn, yn), x) ∈ (Re2
)n × Re → s(x) ∈ Re. (53)

We write P as P = P2 ◦ P1, where

(i) P1 describes the computation of s and
(ii) P2 describes the evaluation of s.

Consider the representation of s as a linear combination of B-splines as given in [4]:

s(x) =
n+2m−2∑

j=1

c jN
2m
j (x), (54)

where N2m
j is the normalized B-spline of order 2m on [τ j, τ j+2m] and

τi = x1, τn+2m−2+i = xn, i = 1, . . . , 2m, and τ2m+i−1 = xi, i = 2, . . . , n − 1.

c is the solution of the linear system [4]

(B + ρE )c = z, (55)

where

z = (Sm−1
L , . . . , S1

L, y1, . . . , yn, S1
R, . . . , S2m−1

R )t, (56)

and for j = 1, . . . , n + 2m − 2:

Bi j =
⎧⎨⎩

Dm−iN2m
j (x1) i = 1, . . . , m

N2m
j (xi−m+1) i = m + 1, . . . , m + n − 2

Di−m−n+1N2m
j (xn) i = m + n − 1, . . . , n + 2m − 2

15
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and

Ei j =
⎧⎨⎩

(−1)i(wL
m−i)

−1Dm+i−1N2m
j (x1) i = 1, . . . , m − 1

(−1)m(wi−m+1)
−1D2m−1N2m

j (xi−m+1) i = m, . . . , m + n − 1
(−1)n+2m−2−i(wR

i−m−n+1)
−1Dn+3m−2−iN2m

j (xn) i = m + n, . . . , n + 2m − 2.

So we obtain

(i) P1: given (xi, yi), computes the coefficients c solving the linear system (55);
(ii) P2: given c and x, evaluates (54).

In the following, we analyze the round-off error propagation of steps (i) and (ii). The main
results of this section are theorem 5.4 (for step (i)) and theorem 5.5 (for step (ii)). We show
that, if the linear system (55) is well conditioned, then the round-off error propagates linearly
as θ , the initial error on yi, depending on the reciprocal of hmin = min(h2, hn). Furthermore,
for x � xn, the distance between s(x) and sθ (x) grows linearly as θ depending on |yn|.

Remark: We note that if (δ j) j=1,...,n denotes the error affecting x j-values and F(x j) = y j,
then it follows

F(x j + δ j) = F(x j) + F ′(x j)δ j + O(δ2
j )︸ ︷︷ ︸

ε j

= y j + ε j = y j

(
1 + ε j

F(x j)

)
(F(x j) �= 0),

i.e. a perturbation δ j on x j-values reflects upon a perturbation ε j on y j-values and vice
versa. Hence, for simplicity of notations, the sensitivity analysis only analyzes how the error
introduced on y j propagates, assuming that there is no perturbation on x j-values.

We assume that

yθ
j = y j(1 + θ j), where |θ j| � θ,

are noisy Lt values and sθ (x) is the generalized complete smoothing spline obtained from
(x j, yθ

j ). We denote by (α
f
2 )θ and (α

f
n )θ the values of α

f
2 and α

f
n corresponding to yθ

i ,
respectively, by (S1

L)θ and (S1
R)θ the values of S1

L and S1
R corresponding to yθ

i and by zθ

and cθ the vectors defined in (55) and in (56) corresponding to yθ
i .

The following theorem summarizes the propagation error analysis of P1.

Theorem 5.1. Let c be the solution of system (55); it holds

‖c − cθ‖∞
‖c‖∞

� μ∞(B + ρE )
θ

hmin
kθ,y,�n , (57)

where hmin is as in (22), kθ,y,�n is as in (67) and

μ∞(B + ρE ) = ‖B + ρE‖∞‖(B + ρE )−1‖∞. (58)

To prove this result we first demonstrate the following three lemmas.

Lemma 5.2. For j = 2, . . . , n, it holds

|(α f
j )

θ − α
f
j | � 2θ

h j
x
ζ f ,r

j−1

(
1 + O

(
θ2
))

(1 + ζ f ,rO(h j)). (59)

Proof. From the definition of α
f
j in (16) and from that of (α

f
j )

θ , if f ≡ r, it holds

|(αr
j )

θ − αr
j| =

∣∣∣∣ ln((1 + θ j−1)/(1 + θ j))

ln(x j/x j−1)

∣∣∣∣ = ∣∣∣∣ ln(1 + θ j−1) − ln(1 + θ j))

ln(x j/x j−1)

∣∣∣∣
16
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and from (33)

=

∣∣∣∣∣∣∣
θ j−1 + O(θ2

j−1) − θ j + O(θ2
j )

h j

x j−1
− h2

j

x2
j−1

+ o
(
h2

j

)
∣∣∣∣∣∣∣ �

2θ + 2O(θ2)

h j

x j−1
− h2

j

x2
j−1

+ o
(
h2

j

) .
Finally, by using the Taylor series of the power function

φ(z) = (1 + z)−1 = (1 − z + O(z2)) (z → 0),

we obtain

|(αr
j )

θ − αr
j| � (2θ + 2O(θ2))

x j−1

h j

[
1 − 1

2

h j

x j−1
+ o(h j)

]
� (2θ + 2O(θ2))

x j−1

h j

[
1 + O(h j)

]
.

If f ≡ e, then it follows

|(αe
j )

θ − αe
j | =

∣∣∣∣∣ ln(yθ
j−1/yθ

j )

h j
− ln(y j−1/y j)

h j

∣∣∣∣∣ � 2θ + 2O(θ2)

h j
.

�

Lemma 5.3. It holds

|(S1
L)θ − S1

L| � 2θ
|y1|
h2

{(
1 + O(θ2)

)
(1 + ζ f ,rO(h j)) + | ln(y1/y2)|

}
, (60)

|(S1
R)θ − S1

R| � 2θ
|yn|
hn

{(
1 + O(θ2)

)
(1 + ζ f ,rO(h j)) + | ln(yn−1/yn)|

}
. (61)

Proof. Let us consider (S1
L)θ − S1

L. From (19) we have(
S1

L

)θ − S1
L = −(α f

2

)θ
yθ

1γ f
(
x1,−ζ f ,r

)+ α
f
2 y1γ f

(
x1,−ζ f ,r

)
= γ f

(
x1,−ζ f ,r

)(
α

f
2 y1 − (α

f
2 )θyθ

1

)
. (62)

By adding and subtracting γ f (x1,−ζ f ,r)α
f
2 yθ

1 and using (59) and (16), we obtain

|(S1
L)θ − S1

L| � γ f (x1,−ζ f ,r)
(|(α f

2 )θ − α
f
2 ||yθ

1| + |α f
2 ||y1 − yθ

1|
)

� 2θ

h2
(1 + O(θ2))(1 + ζ f ,rO(h j))|y1|(1 + θ ) + γ f (x1,−ζ f ,r)α

f
2 ||y1|θ

� 2θ
|y1|
h2

{(1 + O(θ2))(1 + ζ f ,rO(h j)) + | ln(y1/y2)|}. (63)

In the same way, if we consider (S1
R)θ − S1

R, from (19) we have

(S1
R)θ − S1

R = −(α f
n )θyθ

nγ f (xn,−ζ f ,r) + α f
n ynγ f (xn,−ζ f ,r) (64)

= γ f (xn,−ζ f ,r)(α
f
n yn − (α f

n )θyθ
n )

by adding and subtracting γ f (xn,−ζ f ,r)α
f
n yθ

n , and using (59) and (16), it follows

|(S1
R)θ − S1

R| � γ f (xn,−ζ f ,r)
(|(α f

n )θ − α f
n ||yθ

n| + |α f
n ||yn − yθ

n|
)

� 2θ

hn
(1 + O(θ2))(1 + ζ f ,rO(h j)) + |yn|(1 + θ ) + γ f (xn,−ζ f ,r)α

f
n ||yn|θ

� 2θ
|yn|
hn

{(1 + O(θ2))(1 + ζ f ,rO(h j)) + | ln(yn−1/yn)|}. (65)

�
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Lemma 5.4. Let z be as in (55) and (56); it holds
‖z − zθ‖∞

‖z‖∞
� θ

hmin
kθ,y,�n , (66)

where hmin is as in (22) and

kθ,y,�n = max

{
(2
(
1 + O(θ2)

)
(1 + ζ f ,rO(h j)) + | ln(y1/y2)|),

(2
(
1 + O(θ2)

)
(1 + ζ f ,rO(h j)) + | ln(yn−1/yn)|)

}
. (67)

Proof. From (60) it follows

‖z − zθ‖∞ = max(|(S1
L)θ − S1

L|, |y1|θ, . . . , |yn|θ, . . . , |(S1
R)θ − S1

R|)
� max(θ‖y‖∞, |(S1

L)θ − S1
L|, |(S1

R)θ − S1
R|) � θ‖y‖∞

kθ,y,�n

min(h2, hn)
. (68)

Combining (68) with ‖z‖−1
∞ � ‖y‖−1

∞ , we obtain the thesis. �
Concerning problem P2, if K2m,p is the condition number of the 2mth-order B-splines,

computed with respect to the Lp norm (1 � p � ∞), then in [21] it is proved that

K2m,p < 2m22m, (69)

where
‖∑ cθ

j N̂
2m
j −∑ c jN̂2m

j ‖Lp

‖∑ c jN̂2m
j ‖Lp

� K2m,p
‖cθ − c‖lp

‖c‖lp

∀N̂2m
j , c, cθ (70)

and

N̂2m
j = (2m/(τ j+2m − τ j))

1/pN2m
j

denote the 2mth-order B-splines normalized with respect to the Lp-norm (1 � p � ∞). In
particular, if p = ∞ and m = 2 we obtain the following.

Theorem 5.5. It holds
maxx∈[x1,xn] |sθ (x) − s(x)|

maxx∈[x1,xn] |s(x)| < 64μ∞(B + ρE )
θ

hmin
kθ,y,�n , (71)

where hmin is as in (22) and kθ,y,�n is as in (67).

Proof. The thesis follows from (57), (69) and (70). �
Remark. If ρ = 0, then μ∞(B + ρE ) = μ∞(B). Numerical simulations show that
μ∞(B) depends on ‖�n‖ and that it exponentially grows as m. The best case occurs if
∀k xk − xk−1 = ‖�n‖ ≡ δ and m = 2. Then

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/δ 3/δ 0
1 0 0
0 1/4 7/12 1/6

1/6 2/3 1/6
. . .

. . .
. . .

1/6 2/3 1/6
1/6 7/12 1/4

0 0 1
0 3/δ −3/δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(72)

and a straightforward computation shows that if δ � 3, ‖B−1‖∞ < 4, ‖B‖∞ < 6/δ, and
μ∞(B) < 24/δ.

If ρ �= 0, μ∞(B + ρE ) worsens since matrix E is ill-conditioned.
The last result concerns the propagation error analysis on [xn,∞).
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Theorem 5.6. If x � xn, it holds

ψ̃ (x) = |sθ (x) − s(x)| � |yn|θ max

{
1,

2 (1 + O (θ ))

| ln(yn−1/yn)|
}

. (73)

In order to demonstrate this result we need the following.

Lemma 5.7. If θn−1 = θn the function ψ̃ (x) has a global maximum at x = xn. If θn−1 �= θn the

function ψ̃ (x) has a local maximum at x̄ =
(

α
f
n β

f
n

(α
f
n )θ (β

f
n )θ

1

α
f
n −(α

f
n )θ

)
.

Proof. Let us assume that θn−1 = θn; then from (16) and (17), (α
f
n )θ = α

f
n and (β

f
n )θ = β

f
n .

It holds

sθ (x) = s
(α

f
n )θ

≡ s
α

f
n
.

On [xn,∞), it is

s
α

f
n

≡ β f
n · γ f (x,−α f

n ).

Then, it follows that

ψ̃ (x) = |sθ (x) − s(x)| = |yθ
n · γ f (x,−α f

n ) − yn · γ f (x,−α f
n )| = |(yθ

n − yn) · γ f (x,−α f
n )|

which is a decreasing function on [xn,∞), because γ f is a decreasing function. Hence ψ̃ (xn)

is its global maximum on [xn,∞).
Otherwise, if θn−1 �= θn, we have

ψ̃ (x) = |sθ (x) − s(x)| = |(β f
n )θ · γ f (x,−(α f

n )θ ) − β f
n · γ f (x,−α f

n )|
and a unique local maximum of ψ can be found at x̄ =

(
α

f
n β

f
n

(α
f
n )θ (β

f
n )θ

1

α
f
n −(α

f
n )θ

)
if f = r or at

x̄ = ln
(

α
f
n β

f
n

(α
f
n )θ (β

f
n )θ

) 1

α
f
n −(α

f
n )θ if f = e. �

Now we demonstrate theorem 5.7.

Proof. We consider two cases.

(i) If θn−1 = θn, by lemma 5.7, ψ̃ (xn) is a global maximum of ψ̃ (x); hence,

ψ̃ (x) � ψ̃ (xn) = |yθ
n − yn| � |yn|θ. (74)

(ii) If θn−1 �= θn, by lemma 5.7,

ψ̃ (x) � ψ̃ (x̄).

From (16) and (17)

ψ̃ (x̄) =
∣∣∣∣∣β f

n γ f (x̄, (α
f
n )θ − α

f
n ) − (β

f
n )θ

γ f (x̄, (α
f
n )θ )

∣∣∣∣∣ =
∣∣∣∣∣∣
β

f
n

(α
f
n )θ (β

f
n )θ

α
f
n β

f
n

− (β
f

n )θ

γ f (x̄, (α
f
n )θ )

∣∣∣∣∣∣
� |(β f

n )θ |
γ f (xn, (α

f
n )θ )

∣∣∣∣∣ (α f
n )θ − α

f
n

α
f
n

∣∣∣∣∣
= |yθ

n|
∣∣∣∣∣ (α f

n )θ − α
f
n

α
f
n

∣∣∣∣∣ = |yθ
n|
∣∣∣∣ | ln ((1 + θn−1|)/(1 + θn))

| ln(yn−1/yn)|
∣∣∣∣

� |yn|(1 + θ )
2θ + O

(
θ2
)

| ln(yn−1/yn)| = |yn|θ 2 (1 + O (θ ))

| ln(yn−1/yn)| .
Hence, in this case

ψ̃ (x̄) � |yn|(1 + θ )
2θ + O

(
θ2
)

| ln(yn−1/yn)| = |yn|θ 2 (1 + O (θ ))

| ln(yn−1/yn)| . (75)
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Finally, collecting (74) and (75) we obtain

ψ(x) � max

{
|yn|θ, |yn|θ 2 (1 + O (θ ))

| ln(yn−1/yn)|
}

.

�

6. Experimental results

In this section, we report some experiments aimed to show the usefulness of the fitting model.
In particular, we analyze

(i) how a Lt function is approximated by the generalized smoothing spline (section 6.1),
(ii) how much the inverse function of the generalized smoothing spline differs from the Lt

inverse function (section 6.2),
(iii) how the generalized smoothing spline compares with another fitting spline (section 6.3).

We fix d = 3 and increase both the number of nodes needed to construct the spline and the
variance σ 2 of the data error distribution.

6.1. Experimental results on the Laplace transform approximation

Results show that the distance between the smoothing spline and the Lt function is bounded
below and, in particular, the following.

(i) Given a fixed number of data samples n, the approximation error decreases as the variance
decreases. Furthermore, results obtained for the interpolating model (ρ = 0) agree with
the ones obtained in experiments 1 and 2;.

(ii) Given a fixed σ �= 0, the approximation error decreases as the number of samples grows.

We describe results obtained in [x1,∞), both for approximating a Lt function with rational
decay (test 6.1.1) and for approximating a Lt function with exponential decay (test 6.1.2). All
experiments are carried out using the MATLAB package. As already said (see experiments
1 and 2 of section 4), following [1], we consider two data point distributions: uniform and
geometric. As is known, in both cases the Lt is uniquely specified when its values are given at
points forming such distributions [1]. The approximation error is computed using the maximum
error E∞:

E∞ = ‖sρ − F‖l∞ = max
i=1,...,101

|sρ (pi) − F(pi)|
computed on 101 points geometrically or uniformly distributed on a prescribed interval.

Test 6.1.1. Laplace transform with a rational decay. Nodes uniformly distributed. Let

(xi, ỹi), i = 1, ..., n,

be a set of noisy values of

F(x) = 2x/(1 + x2)2,

where noise is normally distributed with zero mean and variance σ 2:

yi = F(xi), ỹi = yi(1 + ei), < ei >= 0, σ (ei) = σ .

By using

n ∈ {5, 20, 30, 40, 60, 80, 100},
we construct the generalized smoothing spline using the rational end behavior model on

�n = {x1, . . . , xn}, where x1 = a = 0.1, xn = b = 14.6
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Figure 3. Left: plot of the Lt (x, F(x)) and of the generalized smoothing spline for n =
[5, 10, 20, 30, 40], σ = 1.0 × 10−1. x ∈ [0, 15]. Right: plot of the Lt (x, F(x)) and of the
generalized smoothing spline for n = 20 and σ = 1.0×10−1, 1.0×10−2, 1.0×10−3. x ∈ [0.1, 4].

Table 1. E∞ on [a, b] = [0.1, 14.6], generalized polynomial smoothing spline.

σ\n 5 10 20 30 40

10−1 9.9923e–001 4.2219e–001 1.4253e–001 4.2149e–002 7.2332e–002
10−2 8.8428e–001 4.2040e–001 1.5624e–001 5.4008e–002 2.8534e–002
10−3 8.7414e–001 4.2023e–001 1.5763e–001 5.7915e–002 3.0993e–002
10−4 8.7314e–001 4.2021e–001 1.5777e–001 5.8306e–002 3.1239e–002
10−5 8.7304e–001 4.2021e–001 1.5778e–001 5.8345e–002 3.1264e–002
0 8.7303e–001 4.2021e–001 1.5779e–001 5.8349e–002 3.1266e–002
σ\n 60 80 100 120
10−1 1.0529e–001 9.5005e–002 8.0289e–002 1.0270e–001
10−2 1.0561e–002 9.4072e–003 8.0311e–003 1.0271e–002
10−3 9.2272e–003 2.4809e–003 8.1221e–004 1.0284e–003
10−4 9.4492e–003 2.4110e–003 1.0409e–004 4.8525e–004
10−5 9.4714e–003 2.4040e–003 4.9164e–005 4.5311e–004
0 9.4738e–003 2.4032e–003 5.4099e–005 4.4954e–004

and x j are uniformly distributed between x1 and xn. Moreover, we set

wL = 1; wR = 1; ρ = σ 2/n.

Table 1 shows E∞ computed on 101 points uniformly distributed on [0.1, 14.6] for different
values of n and σ . Figures 3 and 4 show results.

Observe that for σ = 0 and n = 30, it results that E∞ is just the maximum of the
Ej, j = 1, . . . , n − 1, computed in experiment 1.

Table 2 and figures 5 and 6 are concerned with the generalized smoothing spline
approximation in [xn,+∞). In particular, E∞ on [14.6, 20] is shown.

Observe that for σ = 0 and n = 30, E∞ is comparable with En computed in the
experiment 1.

Test 6.1.2. Laplace transform with exponential decay. Nodes geometrically distributed. Let us
consider the set

(xi, ỹi), i = 1, . . . , n,
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Figure 4. Plot of the Lt (x, F(x)) and of the generalized smoothing spline: n = 10, σ =
1.0 × 10−1, 1.0 × 10−2, 1.0 × 10−3, y-log scale. Left: x ∈ [0, 15]. Right: x ∈ [0.1, 4].
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Figure 5. Plot of the Lt (x, F(x)) and of the generalized smoothing spline, x ∈ [15, 20],
n = [5, 10, 20, 30, 40] and σ = 1.0 × 10−1.

Table 2. E∞ on [14.6, 20].

σ\n 5 20 30 40 60 80 100

10−1 1.63e–04 5.18e–04 9.35e–05 3.71e–05 1.58e–03 2.38e–04 4.14e–04
10−2 1.31e–05 3.12e–05 8.65e–06 3.83e–06 5.60e–05 3.75e–05 9.43e–05
10−3 1.29e–06 3.38e–06 1.24e–06 3.50e–07 5.47e–06 3.68e–06 1.08e–05
10−4 7.75e–07 7.48e–07 5.09e–07 3.78e–07 9.04e–07 1.67e–07 8.09e–07
10−5 8.73e–07 4.86e–07 4.36e–07 4.11e–07 4.51e–07 3.54e–07 2.77e–07
0 8.83e–07 4.57e–07 4.28e–07 4.14e–07 4.01e–07 3.95e–07 3.91e–07

of the noisy values of

F(x) = e−x/(1 + x),

where noise is normally distributed with zero mean and variance σ 2.
We construct the generalized smoothing spline using the exponential end behavior model

on the data set

�n = {x1, . . . , xn}, where x1 = a = 5, xn = b = 20
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Figure 6. Plot of the Lt (x, F(x)) and of the generalized smoothing spline, x ∈ [15, 20], n = 20,
σ = 1.0 × 10−1, 1.0 × 10−2, 1.0 × 10−3.

Table 3. E∞ on [5, 20].

σ\n 5 20 30 40 60 80 100

10−1 1.03e–04 7.44e–05 2.86e–04 2.85e–04 8.10e–04 1.69e–03 8.41e–03
10−2 4.37e–05 8.83e–06 1.66e–05 1.65e–05 1.94e–05 1.50e–05 1.81e–05
10−3 3.90e–05 2.75e–07 1.37e–07 7.97e–08 3.58e–08 2.02e–08 1.29e–008
10−4 3.91e–05 2.54e–07 2.93e–07 1.63e–07 1.5895e–07 1.16e–07 1.41e–07
10−5 3.90e–05 2.73e–07 1.53e–07 7.10e–08 4.46e–08 2.47e–08 1.42e–08
0 3.90e–05 2.75e–07 1.37e–07 7.97e–08 3.58e–08 2.02e–08 1.29e–08

Table 4. E∞ on [20, 30].

σ\n 5 20 30 40 60 80 100

10−1 2.54e+00 1.26e−11 4.97e−12 5.05e−12 1.19e−11 7.81e−12 2.70e−11
10−2 1.14e−11 1.26e−12 4.77e−13 5.31e−13 1.02e−12 8.26e−13 2.86e−12
10−3 5.01e−13 1.26e−13 6.50e−14 8.99e−14 7.71e−14 1.29e−13 3.15e−13
10−4 3.28e−13 9.43e−14 8.10e−14 7.59e−14 5.91e−14 6.86e−14 7.97e−14
10−5 3.20e−13 1.00e−13 8.28e−14 7.47e−14 6.58e−14 6.32e−14 6.22e−14
0 3.20e−13 1.01e−13 8.30e−14 7.46e−14 6.65e−14 6.27e−14 6.04e−14

by choosing the nodes distributed between x1 and xn as follows:

xi+1 = xi · (b/a)1/(n−1) i = 1, ..., n − 1.

Moreover, we set

wL = 1; wR = 1; ρ = σ 2/n.

In table 3, we report E∞ for different n and σ . Figures 7 and 8 show the results.
Observe that for σ = 0 and n = 30, it results that E∞ is just the maximum of the

Ej, j = 1, . . . , n − 1, computed in experiment 2.
Table 4 and figures 9 and 10 are concerned with the generalized smoothing spline

approximation in [xn,+∞). In particular, E∞ computed on 101 points geometrically
distributed on [20, 30] is shown.
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Figure 7. Plot of the Lt (x, F(x)) and of the generalized smoothing spline: n = [5, 10, 20, 30],
σ = 1.0 × 10−1. Left: x ∈ [5, 20]. Right: x ∈ [5, 10].
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Figure 8. Plot of the Lt (x, F(x)) and of the generalized smoothing spline: n = 10, σ =
1.0 × 10−1, 1.0 × 10−2, 1.0 × 10−3, y-log scale. Left: x ∈ [5, 20]. Right: x ∈ [5, 10].

Observe that for σ = 0 and n = 30, E∞ is just En computed in experiment 2. As expected,
the approximation provided by the generalized smoothing spline is ever more accurate as the
number of samples grows and agrees with the error variance σ on data samples. Of course,
the approximation error is much smaller on [xn,+∞) due to the asymptotic decay of the Lt
function.

6.2. Numerical inversion

In this section we discuss experimental results obtained by inverting the generalized smoothing
spline. We construct the generalized interpolating spline (ρ = 0) because we assume that data
(xi, yi), i = 1, . . . , n belong to a known Lt function. By this way, to investigate how much the
inverse function of the spline, fs(t), differs from that obtained inverting the Lt function, i.e.
fF (t), is straightforward. We consider the Stehfest algorithm [23], available in the MATLAB
package, and the Pike’s algorithm [29].

We analyze how much the inverse function of the generalized smoothing spline, fs, differs
from the inverse function of the Lt, fF . To this aim, to measure the difference between the
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Figure 9. Plot of the Lt (x, F(x)) and of the generalized smoothing spline for n = [10, 20, 30],
and σ = 1.0 × 10−1. Left: x ∈ [20, 30]. Right: x ∈ [20, 22].
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Figure 10. Plot of the Lt (x, F(x)) and of the generalized smoothing spline for n = 10,
σ = 1.0 × 10−1, 1.0 × 10−2, 1.0 × 10−3. Left: x ∈ [20, 30]. Right: x ∈ [20, 22].

inverse functions, fs and fF , we use the relative error:

| fF (t) − fs(t)|/| fF (t)|
computed at t ≡ ti where ti = 1, 2, 3, . . . , 10. Instead, taking into account that the Lt is an
integral operator, to measure the overall difference between the Lt function and the generalized
smoothing spline, in this case it is more suitable to use the root mean square error of prediction
(RMSEP), which is computed as follows:

RMSEP =

√√√√∑i=1,...,P

(
sF (pi )−F(pi )

F(pi )

)2

P
, P = 101.

The P points pi, i = 1, . . . , P, are uniformly distributed on an interval [c, d], which is
chosen such that it contains the evaluation points of the input function (the Lt function or the
generalized smoothing spline) needed by the inversion algorithm for computing the inverse
function at ti.
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Table 5. RMSEP on [c, d] = [0.06 931, 2.7724].

σ\n 10 20 40 60 80

0 1.1628e–002 4.0902e–003 3.3309e–003 3.2127e–003 3.1602e–003
σ\n 100 120
0 3.1304e–003 3.1108e–003

Table 6. fF (t) versus fs(t), n = 20, M = 4.

t fF fs | fF − fs| | fF − fs|/| fF |
1 3.3878e–001 3.9361e–001 5.4824e–002 1.6183e–001
2 1.3709e–001 1.3718e–001 8.2675e–005 6.0305e–004
3 6.4971e–002 6.4293e–002 6.7776e–004 1.0432e–002
4 3.4067e–002 3.2805e–002 1.2611e–003 3.7017e–002
5 1.9060e–002 1.6001e–002 3.0588e–003 1.6049e–001
6 1.1097e–002 1.8527e–002 7.4298e–003 6.6952e–001
7 6.5884e–003 2.1541e–002 1.4952e–002 2.2695e+000
8 3.9080e–003 1.2306e–002 8.3983e–003 2.1490e+000
9 2.2550e–003 −2.5265e–003 4.7815e–003 2.1204e+000

10 1.2072e–003 −1.3609e–002 1.4816e–002 1.2273e+001

We construct the generalized smoothing spline assuming a uniform data distribution on
the interval:

x1 = 0.05, xn = 2 (n = 10, 20, 40, ...., 120).

Test 6.2.1 [23].

F(x) = 1/(1 + x), f (t) = e−t

taking into account that at M = 4 the Stehfest algorithm evaluates the smoothing spline and
the Lt function on

[c, d], where c = 0.069 31, d = 4 × 0.6931 = 2.7724

we compute the RMSEP on [c, d]. Tables 5 and 6 report results obtained by using the Stehfest
algorithm (using M = 4 terms) to compute the inverse functions ( fF and fs) of the Laplace
function F and the inverse function of the generalized smoothing spline sF , respectively. We
note that if n � 40 RMSEP does not change significantly, then we only show inversion results
at n = 20, 40.

In figures 11 and 12, we compare fF and fs at t = 1, . . . , 10.

Test 6.2.2 [29].

F(x) = 1/(1 + x)2, f (t) = te−t,

taking into account that we use M = 4, in this case the interval [c, d] is [0.069 31, 2.7724].
From table 7, we note that if n � 40 RMSEP does not change significantly. Therefore, for
numerical inversion we only show results obtained using n = 20, 40.

Tables 8 and 9 report results obtained by using the Stehfest algorithm to compute the
inverse functions ( fF and fs) of the Laplace function F and of smoothing spline sF , respectively.

In figures 13 and 14, we compare fF and fs at t = 1, . . . , 10.

Test 6.2.3 [23].

F(x) = 1/x4, f (t) = t3/6;
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Figure 11. Test 1. M = 4, t = 1, . . . , 10. n = 20.
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Figure 12. Test 1. M = 4, t = 1, . . . , 10. n = 40.

Table 7. fF (t) versus fs(t), n = 40, M = 4.

t fF fs | fF (t) − fs| | fF − fs|/| fF

1 3.3878e–001 3.9042e–001 5.1636e–002 1.5242e–001
2 1.3709e–001 1.3709e–001 3.6471e–007 2.6603e–006
3 6.4971e–002 6.4949e–002 2.1745e–005 3.3469e–004
4 3.4067e–002 3.4145e–002 7.8268e–005 2.2975e–003
5 1.9060e–002 1.8901e–002 1.5880e–004 8.3317e–003
6 1.1097e–002 1.1041e–002 5.5902e–005 5.0375e–003
7 6.5884e–003 6.5774e–003 1.0939e–005 1.6603e–003
8 3.9080e–003 3.7626e–003 1.4548e–004 3.7226e–002
9 2.2550e–003 2.3348e–003 7.9713e–005 3.5349e–002

10 1.2072e–003 2.1649e–003 9.5767e–004 7.9328e–001

taking into account that we use M = 4, in this case the interval [c, d] is [0.069 31, 6 · 0.6931
(= 4.1589)]. From table 10 we observe that if n � 100 RMSEP does not change significantly,
thus we choose to only show inversion results obtained using n = 100, 120 to construct sF .
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Figure 13. Test 2. M = 4: fF (t) versus fs(t), t = 1, . . . , 10. n = 20.
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Figure 14. Test 2. M = 4: fF (t) versus fs(t), t = 1, . . . , 10. n = 40.

Table 8. RMSEP on [c, d] = [0.06931, 2.7724].

σ\n 10 20 40 60 80

0 2.5633e–002 8.3017e–003 6.6939e–003 6.4545e–003 6.3485e–003
σ\n 100 120
0 6.2883e–003 6.2488e–003

Table 9. fF (t) versus fs(t), n = 20, M = 4.

t fF fs | fF (t) − fs(t)| | fF (t) − fs(t)|/| fF (t)|
1 3.4159e–001 3.7036e–001 2.8770e–002 8.4225e–002
2 2.2320e–001 2.2335e–001 1.5756e–004 7.0592e–004
3 1.3425e–001 1.3296e–001 1.2879e–003 9.5932e–003
4 8.2896e–002 8.0500e–002 2.3966e–003 2.8911e–002
5 5.3101e–002 4.7283e–002 5.8181e–003 1.0957e–001
6 3.5149e–002 4.9299e–002 1.4150e–002 4.0257e–001
7 2.3897e–002 5.2380e–002 2.8483e–002 1.1919e+000
8 1.6590e–002 3.2585e–002 1.5995e–002 9.6416e–001
9 1.1698e–002 2.5963e–003 9.1014e–003 7.7805e–001

10 8.3367e–003 −1.9877e–002 2.8214e–002 3.3843e+000
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Table 10. fF (t) versus fs(t), n = 40, M = 4.

t fF fs | fF (t) − fs(t)| | fF (t) − fs(t)|/| fF (t)|
1 3.4159e–001 3.6879e–001 2.7195e–002 7.9613e–002
2 2.2320e–001 2.2320e–001 7.1356e–007 3.1970e–006
3 1.3425e–001 1.3421e–001 4.1499e–005 3.0911e–004
4 8.2896e–002 8.3046e–002 1.4959e–004 1.8046e–003
5 5.3101e–002 5.2798e–002 3.0274e–004 5.7012e–003
6 3.5149e–002 3.5042e–002 1.0725e–004 3.0512e–003
7 2.3897e–002 2.3876e–002 2.0832e–005 8.7174e–004
8 1.6590e–002 1.6312e–002 2.7761e–004 1.6734e–002
9 1.1698e–002 1.1851e–002 1.5285e–004 1.3067e–002

10 8.3367e–003 1.0160e–002 1.8236e–003 2.1874e–001

Table 11. RMSEP on [c, d] = [0.06 931, 4.1589].

σ\n 10 20 40 60 80

0 8.8529e+002 1.5921e+001 2.7908e–001 3.6301e–002 1.0477e–002
σ\n 100 120 140 150 160
0 4.4485e–004 9.0253e–004 4.8961e–004 2.8390e–004 1.2562e–004

Table 12. fF (t) versus fs(t), n = 100, M = 6.

t fF fs | fF (t) − fs(t)| | fF (t) − fs(t)|/| fF (t)|
1 5.7690e–001 5.7690e–001 3.4615e–006 6.0001e–006
2 4.6152e+000 4.6153e+000 8.1841e–005 1.7733e–005
3 1.5576e+001 1.5579e+001 2.5002e–003 1.6051e–004
4 3.6922e+001 3.6720e+001 2.0202e–001 5.4715e–003
5 7.2113e+001 6.9815e+001 2.2980e+000 3.1867e–002
6 1.2461e+002 1.3121e+002 6.5953e+000 5.2927e–002
7 1.9788e+002 1.7411e+002 2.3769e+001 1.2012e–001
8 2.9537e+002 3.1536e+002 1.9987e+001 6.7667e–002
9 4.2056e+002 4.7075e+002 5.0192e+001 1.1935e–001

10 5.7690e+002 6.2533e+002 4.8430e+001 8.3949e–002

Tables 11 and 12 report results obtained by using the Stehfest algorithm (using M = 6) to
compute the original function ( fF and fs) by using as input function the Laplace function F
and the smoothing spline sF .

Test 6.2.4 [29]. We invert the Laplace function of test 6.2.2:

F(s) = 1

(1 + x)2
, f (t) = te−t

by using Pike’s algorithm [29]. We construct the generalized smoothing spline assuming
uniform data distribution in

x1 = 10−15, xn = 3 (n = 10, 20, 40, ...., 120).

Following [29], the interval [c, d] is [10−15, 105]. To measure the difference between the Lt
function and the generalized smoothing spline, taking into account the length of the interval
[c, d], in this case it is more reliable to use root-mean-square error (RMSE)

RMSE =
√∑

i=1,...,N (sF (pi) − F(pi))
2

N
, N = 101.
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Table 13. fF (t) versus fs(t), n = 120, M = 6.

t fF fs | fF (t) − fs(t)| | fF (t) − fs(t)|/| fF (t)|
1 5.7690e–001 5.7690e–001 6.2585e–007 1.0848e–006
2 4.6152e+000 4.6152e+000 1.2732e–006 2.7588e–007
3 1.5576e+001 1.5577e+001 2.1861e–004 1.4035e–005
4 3.6922e+001 3.6917e+001 5.1386e–003 1.3917e–004
5 7.2113e+001 7.2333e+001 2.1993e–001 3.0498e–003
6 1.2461e+002 1.2461e+002 1.7068e–003 1.3697e–005
7 1.9788e+002 1.9767e+002 2.0865e–001 1.0544e–003
8 2.9537e+002 2.8658e+002 8.7962e+000 2.9780e–002
9 4.2056e+002 4.4135e+002 2.0786e+001 4.9423e–002

10 5.7690e+002 5.9718e+002 2.0277e+001 3.5148e–002

Table 14. RMSE on [c, d] = [10−15, 105].

σ\n 10 20 40 60

0 1.1858e–006 1.0945e–006 1.0569e–006 1.0453e–006
σ\n 80 100 120
0 1.0397e–006 1.0364e–006 1.0342e–006

Table 15. fF (t) versus fs(t), n = 10.

t fF fs | fF (t) − fs(t)| | fF (t) − fs(t)|/| fF (t)|
0.5 2.9759e–001 2.3422e–001 6.3368e–002 2.1294e–001
1 3.7399e–001 4.7184e–001 9.7856e–002 2.6166e–001
1.5 3.3430e–001 3.4077e–001 6.4792e–003 1.9382e–002
2 2.6561e–001 2.0443e–001 6.1188e–002 2.3037e–001
2.5 2.0082e–001 1.2417e–001 7.6651e–002 3.8170e–001
3 1.4800e–001 8.6508e–002 6.1490e–002 4.1548e–001
3.5 1.0730e–001 7.2896e–002 3.4399e–002 3.2060e–001
4 7.6736e–002 7.0721e–002 6.0151e–003 7.8386e–002
4.5 5.4111e–002 7.2777e–002 1.8666e–002 3.4496e–001

Table 16. fF (t) versus fs(t), n = 20.

t fF fs | fF (t) − fs(t)| | fF (t) − fs(t)|/| fF (t)|
0.5 2.9759e–001 2.7151e–001 2.6078e–002 8.7631e–002
1 3.7399e–001 3.9151e–001 1.7519e–002 4.6845e–002
1.5 3.3430e–001 3.5162e–001 1.7328e–002 5.1835e–002
2 2.6561e–001 2.7235e–001 6.7410e–003 2.5379e–002
2.5 2.0082e–001 1.9835e–001 2.4622e–003 1.2261e–002
3 1.4800e–001 1.3982e–001 8.1818e–003 5.5283e–002
3.5 1.0730e–001 9.6430e–002 1.0866e–002 1.0127e–001
4 7.6736e–002 6.5334e–002 1.1403e–002 1.4859e–001
4.5 5.4111e–002 4.3535e–002 1.0576e–002 1.9545e–001

In table 13, we see that the RMSE does not change significantly if n � 40. Hence, we only
show inversion results when the generalized smoothing spline is constructed at n = 10, 20, 40.
In tables 14–17, we compare results obtained running the Pike algorithm on F and on the
generalized smoothing spline sF constructed using n = 10, 20, 40 knots. Following [29], t-
values are t ≡ ti where ti = 0.5 + 0.5 · i, i = 0, . . . , 8. In figures 15–16 we compare f f and fs

at t = 1, . . . , 10. In figures 17–19, we compare numerical values of the inverse functions fF

and fS.
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Figure 15. Test 3. M = 6, fF (t) versus fs(t), t = 1, . . . , 10. n = 100.
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Figure 16. Test 3. M = 6, fF (t) versus fs(t), t = 1, . . . , 10. n = 120.

Table 17. fF (t) versus fs(t), n = 40.

t fF fs | fF (t) − fs(t)| | fF (t) − fs(t)|/| fF (t)|
0.5 2.9759e–001 2.7764e–001 1.9950e–002 6.7040e–002
1. 3.7399e–001 3.9738e–001 2.3399e–002 6.2565e–002
1.5 3.3430e–001 3.4180e–001 7.4996e–003 2.2434e–002
2. 2.6561e–001 2.6091e–001 4.7045e–003 1.7712e–002
2.5 2.0082e–001 1.9219e–001 8.6267e–003 4.2958e–002
3. 1.4800e–001 1.4004e–001 7.9582e–003 5.3773e–002
3.5 1.0730e–001 1.0176e–001 5.5321e–003 5.1559e–002
4. 7.6736e–002 7.3908e–002 2.8280e–003 3.6853e–002
4.5 5.4111e–002 5.3624e–002 4.8676e–004 8.9956e–003

Table 18. E∞ on [0.1, 14.6], generalized exponential spline.

σ\n 5 10 20 30 40

0 8.1085e–001 4.2138e–001 1.5903e–001 5.8707e–002 3.1363e–002
σ\n 60 80 100 120
0 9.4880e–003 2.4034e–003 5.3993e–005 4.4775e–004
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Figure 17. Test 4. fF (t) versus fs(t). n = 10.
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Figure 18. Test 4. fF (t) versus fs(t). n = 20.
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Figure 19. Test 4. fF (t) versus fs(t). n = 40.
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Table 19. E∞ on [0.1, 14.6], generalized polynomial spline.

σ\n 5 10 20 30 40

0 8.7303e–001 4.2021e–001 1.5779e–001 5.8349e–002 3.1266e–002
σ\n 60 80 100 120
0 9.4738e–003 2.4032e–003 5.4099e–005 4.4954e–004

Table 20. E∞ on [c, d] = [14.6, 20], generalized exponential spline.

σ\n 5 10 20 30 40

0 8.8340e–007 5.6063e–007 4.5730e–007 4.2817e–007 4.1443e–007
σ\n 60 80 100 120
0 4.0121e–007 3.9478e–007 3.9098e–007 3.8847e–007

Table 21. E∞ on [14.6, 20], generalized polynomial spline.

σ\n 5 10 20 30 40

0 8.8340e–007 5.6063e–007 4.5730e–007 4.2817e–007 4.1443e–007
σ\n 60 80 100 120
0 4.0121e–007 3.9478e–007 3.9098e–007 3.8847e–007

Table 22. E∞ on [5, 20], generalized exponential spline.

σ\n 5 10 20 30 40

0 5.2553e–006 1.1168e–006 3.3229e–007 1.4231e–007 8.3323e–008
σ\n 60 80 100 120
0 2.9758e–008 8.5057e–009 2.1234e–010 1.9249e–009

Table 23. E∞ on [5, 20], generalized polynomial spline.

σ\n 5 10 20 30 40

0 3.8994e–005 1.3205e–006 2.7079e–007 1.3367e–007 7.9751e–008
σ\n 60 80 100 120
0 2.9041e–008 8.3990e–009 2.1211e–010 1.9418e–009

Table 24. E∞ on [c, d] = [20, 30], generalized exponential spline.

σ\n 5 10 20 30 40

0 3.2000e–013 1.6304e–013 1.0109e–013 8.3061e–014 7.4583e–014
σ\n 60 80 100 120
0 6.6540e–014 6.2712e–014 6.0433e–014 5.8974e–014

Table 25. E∞ on [c, d] = [20, 30], generalized polynomial spline.

σ\n 5 10 20 30 40

0 3.2000e–013 1.6304e–013 1.0109e–013 8.3061e–014 7.4583e–014
σ\n 60 80 100 120
0 6.6540e–014 6.2712e–014 6.0433e–014 5.8974e–014
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Table 26. E∞ on [0.05, 2], generalized exponential spline.

σ\n 5 10 20 30 40

0 1.7794e–001 4.5138e–002 1.1950e–002 5.2385e–003 3.1560e–003
σ\n 60 80 100 120
0 1.1642e–003 3.3852e–004 8.5249e–006 7.7673e–005

Table 27. E∞ on [0.05, 2], generalized polynomial spline.

σ\n 5 10 20 30 40

0 1.7927e–001 4.5200e–002 1.1954e–002 5.2391e–003 3.1562e–003
σ\n 60 80 100 120
0 1.1642e–003 3.3853e–004 8.5251e–006 7.7674e–005

Table 28. E∞ on [c, d] = [2, 20], generalized exponential spline.

σ\n 5 10 20 30 40

0 3.0281e–002 2.6789e–002 2.5542e–002 2.5177e–002 2.5003e–002
σ\n 60 80 100 120
0 2.4835e–002 2.4752e–002 2.4703e–002 2.4671e–002

Table 29. E∞ on [c, d] = [2, 20], generalized polynomial spline.

σ\n 5 10 20 30 40

0 3.0281e–002 2.6789e–002 2.5542e–002 2.5177e–002 2.5003e–002
σ\n 60 80 100 120
0 2.4835e–002 2.4752e–002 2.4703e–002 2.4671e–002

Table 30. E∞ on [0.05, 2], generalized exponential spline.

σ\n 5 10 20 30 40

0 3.4153e–001 8.6146e–002 2.2774e–002 9.9798e–003 6.0121e–003
σ\n 60 80 100 120
0 2.2176e–003 6.4481e–004 1.6238e–005 1.4794e–004

Table 31. E∞ on [0.05, 2], generalized polynomial spline.

σ\n 5 10 20 30 40

0 3.4418e–001 8.6269e–002 2.2781e–002 9.9810e–003 6.0126e–003
σ\n 60 80 100 120
0 2.2177e–003 6.4483e–004 1.6238e–005 1.4795e–004

From these results we can say that the generalized smoothing spline mimics well the Lt
function. Indeed, the inverse function approximates the original inverse function and also the
generalized smoothing spline provides a better approximation of the Lt function.

6.3. Comparisons between the generalized polynomial smoothing spline and the generalized
exponential smoothing spline

In this section, we compare the approximation errors on the Lt function provided by the
generalized polynomial smoothing spline and by the generalized exponential smoothing
spline. The generalized exponential smoothing spline was developed using exponential splines
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Table 32. E∞ on [c, d] = [2, 10], generalized exponential spline.

σ\n 5 10 20 30 40

0 7.1384e–003 6.0201e–003 5.6261e–003 5.5114e–003 5.4568e–003
σ\n 60 80 100 120
0 5.4039e–003 5.3780e–003 5.3627e–003 5.3525e–003

Table 33. E∞ on [c, d] = [2, 10], generalized polynomial spline.

σ\n 5 10 20 30 40

0 7.1384e–003 6.0201e–003 5.6261e–003 5.5114e–003 5.4568e–003
σ\n 60 80 100 120
0 5.4039e–003 5.3780e–003 5.3627e–003 5.3525e–003

(as described in [22]), inside the knot intervals, and the end behavior models (rational or
exponential) outside. To construct the exponential splines we set all tension parameters equal
to 1.

Approximation errors are computed on [x1, xn], the interval containing the knots used
to construct the generalized smoothing splines, and on the interval [c, d] ⊃ [x1, xn]. The
approximation errors are computed evaluating the maximum error E∞,

E∞ = max
i=1,...,P

|sρ (pi) − F(pi)|,
on 101 points uniformly distributed at the prescribed intervals. For test cases 1 and 2, intervals
[x1, xn] and [c, d] are chosen as in the previous approximations tests (see sections 6.1); for
test cases 3 and 4, [x1, xn] is the same as in the inversion tests (see section 6.2), while [c, d] is
slightly greater than that used in the inversion tests because here we are interested in analyzing
the overall approximation error.

Furthermore, to construct the generalized (polynomial/exponential) smoothing spline
we employ the rational end behavior model in all test cases except in test 2, where we use
the exponential end behavior model. Finally, we assume that the knots xi, i = 1, . . . , n,
are uniformly distributed in all test cases except in test 2, where we use a geometric data
distribution.

Test 6.3.1.

F(x) = 2x/(1 + x2)2.

Test 6.3.2.

F(x) = e−x/(1 + x).

Test 6.3.3.

F(x) = 1/(1 + x).

Test 6.3.4.

F(x) = 1/(1 + x)2.

In tables 18–21 we report the approximation error for test 6.3.1, in tables 22–25 we
consider the test function 6.3.2. Finally, tables 26–29 refer to test 6.3.3 and tables 30–33
to test 6.3.4. We note that in [x1, xn] the approximation errors are quite the same. In [c, d],
the generalized smoothing spline provides a better approximation of the Lt function than the
exponential spline.
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7. Conclusions and future work

We address the real inversion problem of a Laplace transform function which is only known
on a finite set of measurements. More precisely, the paper focuses on the construction of a
generalized polynomial smoothing spline for approximating Laplace transform functions only
known at a finite set of measurements along the real axis. Starting from the data set, we construct
a generalized polynomial spline defined on the whole real line, which is a complete polynomial
smoothing spline inside the data interval while it enjoys Laplace transform properties outside
the data interval. We address both the rational decay end behavior and the exponential decay end
behavior. The selection of the end decay model may be done according to a priori information
on data or on the behavior of the inverse function at zero. We show results concerning existence
and uniqueness, and we give approximation error bounds.

Furthermore, in order to investigate how much the inverse function of the spline differs
from the original function, we report experimental results obtained by running two real
inversion algorithms (the Stehfest algorithm and the Pike algorithm). We compare results
obtained by employing the smoothing spline as an input function to the inversion algorithms
with the numerical values of the original function obtained by using the Laplace transform
function. We observe that the generalized smoothing spline mimics well the Laplace transform
function: the approximation of the inverse function improves and also the generalized
smoothing spline provides a better approximation of the Laplace transform.

Finally, we compare the approximation provided by the generalized polynomial smoothing
spline with the same obtained by using exponential splines inside the knot intervals. Numerical
results confirm that approximation errors are quite the same. The authors plan to implement the
related numerical algorithm that takes into account both polynomial and exponential splines
inside and outside the knot intervals. The selection of the fitting model may be done according
to a priori information on data.
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