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A detailed description of the events ruling ligand/protein interac-
tion and an accurate estimation of the drug affinity to its target is
of great help in speeding drug discovery strategies. We have de-
veloped a metadynamics-based approach, named funnel metady-
namics, that allows the ligand to enhance the sampling of the target
binding sites and its solvated states. This method leads to an effi-
cient characterization of the binding free-energy surface and an
accurate calculation of the absolute protein–ligand binding free
energy. We illustrate our protocol in two systems, benzamidine/
trypsin and SC-558/cyclooxygenase 2. In both cases, the X-ray con-
formation has been found as the lowest free-energy pose, and the
computed protein–ligand binding free energy in good agreement
with experiments. Furthermore, funnel metadynamics unveils im-
portant information about the binding process, such as the presence
of alternative binding modes and the role of waters. The results
achieved at an affordable computational cost make funnel meta-
dynamics a valuable method for drug discovery and for dealing with
a variety of problems in chemistry, physics, and material science.
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Studying the molecular interactions between a drug and its
target helps in understanding the target functional mechanism

and offers the possibility for exogenous control of its physiological
activity. In recent years, a vast experimental and computational
effort has revealed in ever-more-precise detail the ligand/target
recognition mechanism (1, 2). In this context, an accurate estima-
tion of the ligand-binding affinity is in great demand because it
would facilitate many steps of the drug discovery pipeline, such as
structure-based drug design and lead optimization; this is not,
however, a simple task. In fact, an accurate estimation of the
binding affinity or, equivalently, the absolute protein–ligand bind-
ing free energy, requires an accurate description of the ligand/
protein interactions, their flexibility, and the solvation process.
Many methods have been proposed to tackle this problem. For
instance, docking protocols are widely used to generate and rank
candidate poses based on empirical scoring functions, either
physically or statistically based (3–5). These techniques have been
proven to be highly efficient in screening a large number of com-
pounds in a short time (6); this, however, at the price of limited
accuracy in estimating affinities (7).
Alternatively, a variety of methods to describe ligand/protein

interactions in a more accurate way at higher computational cost
have been proposed. These techniques can be grouped in two
categories: (i) endpoint and (ii) pathway methods. The former
group is composed of those techniques that sample ligand and
protein in unbound and bound states and compute the protein–
ligand binding free energy by taking the difference between the
absolute free energy of these two states. Examples include mi-
croscopic linear response approximation (8), linear interaction
energy (9, 10), protein dipoles Langevin dipoles (11), as well as
molecular mechanics Poisson–Boltzmann surface area, and gen-
eralized Born surface area (12).
At variance with endpoint methods, in pathway methods, the

ligand is gradually separated from the protein. The binding free

energy is then obtained by summing different contributions
coming from a discretized path that connects the initial and final
state. This class includes methods in which the ligand/protein
interactions are gradually switched off, such as thermodynamic
integration (13), free-energy perturbation (14, 15), double-
decoupling method (16), and double-annihilation method (17).
Techniques such as steered molecular dynamics (SMD) (18) and
umbrella sampling (19), where the ligand and the protein are
physically separated from each other, also belong to this group.
While in SMD, the ligand is dragged out from the protein using a
moving restraining potential, in umbrella sampling, the path from
the bound to the unbound state is divided in a finite number of
windows, which are independently sampled.
Though these methods have been successfully used to compute

the ligand binding free energy in many cases (20–22), the re-
quirement of knowing in advance the bindingmode hampers amore
general applicability. The intensity of the efforts in developing these
methods reflects both the great potential of these calculations and
their difficulties. In particular, the difficulties arise mainly from the
fact that the ligand/protein binding process is a rare event, difficult
to sample with standard techniques such as molecular dynamics
(MD). Even the most ambitious efforts in this direction, though
revealing precious details of the binding process (23, 24), have not
been able to determine accurately the binding energy. To achieve
this result, the use of enhanced sampling methods is mandatory.
Among the emerging techniques, metadynamics (25) has proven

to be very useful in studying long-timescale processes (26, 27), par-
ticularly in complex ligand/protein binding cases (28–30). Metady-
namics works by adding an external history-dependent potential that
acts on few degrees of freedom, named collective variables (CVs). In
such a way, the sampling is accelerated, and the free-energy surface
(FES) of the process can be calculated from the added potential.
Unfortunately, only a qualitative estimation of the protein–ligand
binding free energy could be obtained for the binding processes
studied so far (28, 31). In fact, once the ligand leaves the binding
pocket, it has difficulty finding its way back, and starts exploring all of
the possible solvated states. These conformations represent a vast
part of the configuration space that cannot be sampled thoroughly in
a limited computation time. Therefore, once out, the ligand does not
again find the binding site, and multiple binding/unbinding events,
which are the key to an accurate determination of the binding free
energy in metadynamics, cannot be observed.
Here, we present a metadynamics-based approach, named

funnel metadynamics (FM), which overcomes all these limi-
tations and allows an accurate estimation of the absolute
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protein–ligand binding free energy. In particular, in FM, a fun-
nel-shaped restraint potential is applied to the system, reducing
the space to explore in the unbound state. In such a way, the
sampling of ligand-bound and -unbound states is highly en-
hanced, thus leading to an accurate estimation of the binding
FES within a reasonable simulation time. We have used FM to
study the binding process in two different systems: benzami-
dine/trypsin and SC-558/cyclooxygenase 2 (COX-2). The latter
system represents a particularly challenging case study with the
coexistence of protein motions, solvent effect, and complex
binding pathways. In both cases, the X-ray pose turned out to
have the lowest free-energy value, and the computed absolute
protein–ligand binding free energy was in good agreement with
experiments. Furthermore, from FM simulations, important in-
formation on the binding process has been disclosed, such as the
role of waters in the benzamidine/trypsin case and the presence
of an alternative ligand binding mode in COX-2.
Using FM, no a-priori information about the ligand binding

mode is required, and the exploration capability of the original
method remains unaltered. Thus, the exploration of buried
binding sites is possible, while taking into account slow protein
motion and solvent effects. The present protocol represents
a most valuable method to study ligand/protein interaction, and
its relatively low computational cost renders its use appealing
even in industrial applications where speed is valued.

Theoretical Background
Funnel Idea. Sampling ligand/protein binding with all-atoms MD
simulations in explicit solvent is extremely attractive because it can
provide molecular information at high resolution. Unfortunately,
these processes usually have a long timescale and therefore cannot
be sampled at reasonable computational costs. Nevertheless, the
advance in computer power and the advent of graphics processor
units have allowed the study of ligand/protein binding processes
using plain MD simulations, however still at great computational
cost and using dedicated hardware (23, 24). In fact, tens of
microseconds ofMD simulations were necessary to collect enough
statistics to describe the ligand binding process.
An alternative method is to use enhanced sampling techniques

to access long-timescale events within a reasonable computa-
tional time. One of these techniques is umbrella sampling, which
has largely been used to study ligand/protein interactions and to
compute the absolute protein–ligand binding free energy (20,
21). However, this technique fails in exploring thoroughly the
fully solvated state of the ligand. This limitation has been rem-
edied by using a cylindrical restraint potential to reduce the
sampling space (32, 33). The effect of the external potential can
be rigorously taken into account (34), and the binding constant
Kb in the presence of the restraint is given by

Kb = eβΔGsite

Z
site

dz e
−β½W ðzÞ−Wref �

Su: [1]

Here, ΔGsite is the change in the free energy of the bound state
caused by the presence of the restraint, β = (kB T)−1, kB is the
Boltzmann constant, T the temperature of the system, and Su is
the cross-section of the cylinder. The potentialW(z) and its value
in the unbound state, Wref, can be derived from the potential of
mean force (PMF). Eq. 1 provides an unbiased estimator of Kb,
independent of the choice of the restraint potential. If the radius
of the cylinder is chosen to be much larger than the lateral
fluctuations of the ligand in the binding site, the restraint poten-
tial is not felt by the ligand in the binding site, thus ΔGsite = 0.
Unfortunately, the choice of the radius is not simple. In fact,
though a small radius value limits the exploration in the unbound
state, it reduces also the exploration of the binding site. How-
ever, choosing a large radius is not advantageous because it

increases the space to be sampled in the unbound state and
hence the computational time. As a result, the PMF calculation
might be affected by this choice and, consequently, the estima-
tion of the protein–ligand binding free energy (21).
To overcome this limitation, we have developed a funnel-

shaped restraint potential that can be applied to the target
protein. This potential is a combination of a cone restraint, which
includes the binding site, and a cylindric part, which is directed
toward the solvent (Fig. 1). Using the funnel potential during the
simulation, the system does not feel any repulsive bias when the
ligand explores regions inside the funnel area. As the ligand
reaches the edge of the funnel, a repulsive bias is applied to the
system, disfavoring it from visiting regions outside the funnel. As
can be seen in Fig. 1, if the shape of the funnel is properly
chosen, the sampling at the binding site is not affected by the
external bias, whereas in the bulk water the repulsive potential
reduces the space to be explored to a cylindric region; this favors
the observation of multiple binding/unbinding events leading to
a faster convergence of the results.

Fig. 1. (A) Schematic representation of the ligand/protein binding process
and the funnel restraint potential used in FM calculations. The shape of the
funnel can be customized on the target by setting a few parameters. In
particular, given z, the axis defining the exit-binding path of the ligand, zcc is
the distance where the restraint potential switches from a cone shape into
a cylinder. The α-angle defines the amplitude of the cone, and Rcyl is the
radius of the cylindrical section. (B) The funnel restraint potential applied to
trypsin (Upper Left) and COX-2 (Upper Right) enzymes with the ligands
considered in the study, benzamidine (Lower Left) and SC-558 (Lower Right).
In the trypsin case, α is 0.55 rad and zcc is 18 Å (Table S1). In the COX case, α is
0.6 rad and zcc is 44 Å (Table S2). In both cases, Rcyl is set to 1 Å.
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Furthermore, if the funnel restraint potential is used in free-
energy calculations with techniques such as metadynamics, the
free-energy difference between bound and unbound states de-
pends exclusively on the free-energy value at the two states, in-
dependently from the path that connects one state to the other;
this is advantageous with respect to other methods, such as
umbrella sampling. In fact, in umbrella sampling, where the PMF
is calculated using the different contributions coming from the
simulation windows that connect the bound state to the unbound
one, all of the simulation windows in the bound states must not
feel the restraint potential to provide an easy estimate of the
PMF (ΔGsite = 0). If this condition is not fulfilled, the PMF
calculation and, consequently, the binding free-energy estimate,
is more complex (ΔGsite ≠ 0) and depends on the chosen path.

Absolute Protein–Ligand Binding Free Energy. In free-energy cal-
culations, the absolute protein–ligand binding free energy ΔGb

0

is typically computed using the following formula:

ΔG0
b = −

1
β
ln
�
C0 Kb

�
; [2]

where Kb is the equilibrium binding constant, and C0 = 1/1,660
Å−3 is the standard concentration. Using metadynamics calcula-
tions with the funnel restraint potential and using Eq. 1 with
some rearrangements, as reported in Methods, Eq. 2 becomes

ΔG0
b =ΔG−

1
β
ln
�
πR2

cylC
0
�
; [3]

where, ΔG is the free-energy difference between bound and un-
bound states, and πR2

cyl is the surface of the cylinder used as re-
straint potential. With β and C0 being constant, the absolute
protein–ligand binding free energy is equal to ΔG minus the an-
alytical correction in Eq. 3 (seeMethods for details). It is important
to stress that the funnel restraint potential ensures a number of
recrossing events between the different states visited by the system
during the simulation, leading to a quantitatively well-character-
ized free-energy profile and a converged estimation of ΔG.

Results
We have used the funnel restraint potential in combination with
well-tempered metadynamics (35), hereafter named FM, to
study two ligand/protein binding cases and compute the absolute
protein–ligand binding free energies. The first case is the trypsin/
benzamidine complex, mainly used as a reference model, and the
second is COX-2 in complex with the potent inhibitor SC-558.
The latter, which has been previously studied by us (28), repre-
sents a challenging ligand/protein binding case.

Benzamidine/Trypsin System. The benzamidine/trypsin system has
been studied using several different computational approaches (21,
23, 31, 36, 37). The fact that the binding pocket in trypsin is almost
solvent-exposed makes this system a good test model for new
docking methods. The funnel restraint potential has been chosen in
such a way that the cone section includes the whole binding site.
This condition can be fulfilled by properly setting two parameters,
the angle α and the distance zcc, to ensure that during the ligand
exploration of the binding site, z values < zcc, the sampling is not
affected by the external bias (Fig. 1; Methods). When the ligand is
completely in bulk water, z > zcc, a cylindric restraint potential is
applied to the system and the free energy of the ligand-unbound
state can be computed in a similar way as in Allen et al. (32).

Bound State. The whole sampling took ∼0.5 μs of FM simulations.
Looking at the FES computed as a function of the projection
on z axis, where z is the axis of the funnel restraint potential
and a torsion CV (Methods; Table S1), two main basins can be

detected (Fig. 2). The deepest one, basin A in Fig. 2, corresponds
to the benzamidine in its crystal pose, where a number of strong
interactions with the enzyme are formed (Fig. 2; SI Text). It is
interesting to note that in this pose, a water molecule is present
in the binding pocket and forms an H-bond network with the side
chains of Tyr228, Asp189, and Ser190. A water molecule is
present in a similar position in many X-ray structures (e.g., PDB
ID code 3atl) (38), thus suggesting a structural role for this
molecule in the trypsin binding site (Fig. S1). The second energy
minimum, basin B, is ∼1 kcal/mol (1 kcal = 4.18 kJ) higher than
basin A. Here, the ligand is slightly rotated in the binding site.
Overall, however, the interactions established in pose A are
conserved (Fig. 2). In particular, the diamino group of benza-
midine engages a direct H-bond with Ser190, and a water bridge
interaction is established with the Asp189 side chain. Further-
more, the aromatic ring of the ligand is involved in an interaction
with the sulfur atoms forming the disulfide bridge between
Cys191 and Cys220. It is interesting to note that in basin B the
diamino group of benzamidine engages H-bond interactions with
the carbonyl oxygens of Val227, Val213, and Ser214 via two
water molecules. Water molecules located at similar positions in
the binding site can be found in the X-ray structures of trypsin in
the apo and ligated form (PDB ID codes 1s0q and 3atl, re-
spectively; Fig. S1).
Our results show an important role played by waters during

ligand binding, and a similar functional role has been reported
also in other studies (29, 39). Therefore, the use of atomistic
simulations with explicit solvent is mandatory to take into ac-
count the solvation effect and have an accurate estimation of
ligand/protein interactions.
The stability of the basin B pose has been further assessed

through an over 100-ns-long unbiased MD simulation. During
the whole simulation, the ligand binding mode is stable con-
serving all of the interactions described above (SI Text; Fig. S2).
The depth of basin B and the good stability of the ligand/protein
interactions lead us to consider this pose the first binding event
of benzamidine in the active site before reaching its final position
in basin A. Alternatively, the basin B pose can be considered the
first unbinding event of the ligand from the catalytic site of the
enzyme. It is important to stress that both basin A and B are
within the cone region, and their exploration is not affected by
the funnel restraint potential (Fig. S3).
Finally, we note that in a recent study by Söderhjelm et al.

(37), a binding mode highly similar to pose B was found, and that
in our simulations the ligand often occupies, along its way to the
binding site, positions close to the states described in this study.
A movie showing the benzamidine binding/unbinding to trypsin

under the action of FM is provided (Movie S1).

Unbound State. In the unbound state, the ligand has no contact with
the protein and can assume a large number of conformations,
which are represented by states at z values higher than zcc. As
shown in Fig. 2, in the solvated state the free energy is completely
flat. Although this is to be expected, because when the ligand is
fully solvated and outside the interaction range of the protein its
free energy should be position- and orientation-independent, the
flatness of the FES gives a measure of the convergence of
our calculations.

Protein–Ligand Binding Free Energy. To have a quantitatively well-
characterized free-energy profile, a number of recrossing events
between the different states visited by the system should be ob-
served (26). As shown in Fig. S4, during the simulation, the
system visits several times the bound (z < 7 Å) and the unbound
states (z >30 Å). At the end of the simulation, ΔG is equal to
−12.3 kcal/mol. Considering the analytical correction of 3.8 kcal/
mol, calculated as reported in Eq. 3, the final binding free energy
of benzamidine to trypsin is −8.5 ± 0.7 kcal/mol (Fig. S3). This
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value falls in the range of the previous calculations of trypsin/
benzamidine binding free energy (−5.5 to −9.0 kcal/mol) (21)
and is in line with the experimental measurements (−6.4 to −7.3
kcal/mol) (40, 41).
To provide a picture of the convergence of the binding free-

energy estimation, the free-energy difference between bound
and unbound states has been computed as function of the sim-
ulation time (Fig. S3). Fig. S3 clearly shows that after 400 ns, the
free energy is converged. In fact, though the system continues to
go from bound to the unbound states (Fig. S4), the estimation of
the free-energy difference between these two states does not
change significantly.

SC-558/COX-2 System. Encouraged by the results obtained on the
benzamidine/trypsin system, we decided to use FM in a more
complex case study: the binding of SC-558 to COX-2. This study
is particularly challenging because the binding site is buried, and
substantial motion of the protein scaffold is needed to allow the
ligand in. Furthermore, the ligand needs to dispose of its sol-
vation water to access to the binding site. This system has already
been studied by us, and the existence of a second binding mode
different from the crystallographic one has been revealed (28).
In this work, we could not give an accurate estimation of the
binding energy due to the difficulty of exploring the solvated
state. However, the binding cavity and the free-energy difference
between the two poses were properly and fully described.
We used a CV setting similar to that of Limongelli et al. (28).

In particular, the projection on the z axis of the funnel of the
ligand center of mass and a torsion have been chosen as CVs to
describe the ligand motion with respect to the protein. Fur-
thermore, a path CV has been used to take into account the
motion of the helices that form the gate to access the active site
(Methods; Tables S2 and S3). As in the trypsin/benzamidine case,
the funnel parameters (zcc and α) were chosen so as not to alter
the potential seen by the ligand inside the binding site (Fig. 1;
Methods).
The FES was converged after ∼350 ns, and for the part inside,

the binding cavity was very similar to that described in ref. 28. In
fact, as in ref. 28, two binding poses were found, basin A, which
corresponds to the X-ray pose, and basin B, that was first de-
scribed in ref. 28 and corresponds to an alternative binding mode
of SC-558 in COX-2 (Fig. 3; SI Text). As can be seen in Fig. 3,
these two basins are within the cone region, and their exploration
is not affected by the funnel restraint potential. Contrary to

ref. 28, we can now thoroughly sample the unbound state, which
is reached at z > 44 Å from the binding site. Here, the ligand is
outside the interaction range of the protein and can assume
a large number of orientations. As seen in the trypsin case, in the
unbound state the FES is flat, corresponding to different states
of the system with similar free-energy values.
The free-energy difference between bound and unbound states,

ΔG, of SC-558 is equal to −14.9 kcal/mol, which, considering the
analytical correction of 3.8 kcal/mol, leads to an estimate of the
absolute binding free energy of−11.1± 1.5 kcal/mol (Fig. S5). This
value is in good agreement with the experimental one of ∼−12
kcal/mol, derived from the ligand IC50 value (42) via the Cheng–
Prusoff relation ΔGb

0 = −Kb T ln IC50/(1 + (S/Km)) (43) using the
substrate concentration (S) and the concentration of substrate at
which enzyme activity is at half maximal (Km), reported in ref. 44.
These results show that FM preserves the exploration capa-

bility of metadynamics in the binding cavity. At the same time,
sampling of bound and unbound states is considerably enhanced
(Fig. S6), and an accurate estimation of the absolute protein–
ligand binding free energy can finally be computed. One might
note that COXs are monotopic membrane proteins, and that in
our model we do not consider the membrane. This represents an
approximation that can be however tolerated, because COXs
binding site is hydrated with the waters playing a key role in the
cyclooxygenase site (45). Furthermore, most COX inhibitors
(e.g., aspirin, ibuprofen, flurbiprofen) are not lipophilic enough
to cross the membrane, suggesting that they can follow an ex-
tracellular binding pathway to reach the catalytic site. Therefore,
this approximation does not affect the estimate of the ligand/
protein binding free energy, and the agreement with the exper-
imental value supports the reliability of our model. In this dif-
ficult case, in which the binding site is buried and the use of
a larger number of CVs is necessary, FM has proven to be very
powerful in studying the binding process and accurately com-
puting the protein–ligand binding free energy.

Discussion
Here, we have developed a metadynamics-based approach, named
FM, which allows us to compute the absolute protein–ligand
binding free energy, leaving unaltered the exploration capability
of the method. Thanks to a funnel-shaped restraint potential,
the sampling of bound and unbound states is highly enhanced,
leading to a quantitatively well-characterized binding free-energy
surface within a reasonable simulation time. We have used FM

Fig. 2. The FES of the benzamidine/trypsin binding
is computed using a reweighting algorithm (50) as a
function of the projection on the z axis of the ligand
center of mass and a torsion CV, where z is the axis
of the funnel (Table S1). Isosurfaces are shown every
1 kcal/mol. (Insets A–C) Conformations representing
the bound poses, basin A (Inset A) and basin B (Inset
B). C shows one of the isoenergetic conformations
representing the unbound state. In the unbound
state, z > 20 Å, the ligand can assume a large number
of orientations, which are represented by states with
similar energy values, as shown in the FES.
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to sample the ligand binding process in two different systems:
benzamidine/trypsin and SC-558/COX-2. In both cases, the
X-ray pose was the lowest-energy pose, and the estimated
binding free energy was in good agreement with experiments. In
both systems, the whole simulation of the binding process took
less than 0.5 μs, which is definitely less demanding than other
MD-based approaches that take tens of microseconds of simu-
lations (23, 24). Furthermore, FM allows us to compute the
absolute protein–ligand binding free energy by overcoming some
of the difficulties related to other methods. For instance, with
respect to umbrella sampling, FM allows the use of a larger
number of collective variables, as in the COX case, still achieving
convergence of the results at an affordable computational cost;
this allows us to describe the slow degrees of freedom of the
system, which is often necessary in complex ligand/protein
interactions. Furthermore, using FM, information about the li-
gand binding mode is not required in advance, although the
approximate location of the binding pocket in the target struc-
ture should be known. However, if this information is not

available, FM can be combined with other methods, such as
virtual screening protocols, or more advanced techniques (37),
that are more efficient in finding candidate binding sites. Fur-
thermore, FM can also be combined with methods, such as free-
energy perturbation, which are able to estimate the ligand binding
affinity for a series of analogs (46); and whereas the former helps
in finding the correct ligand binding mode with an accurate energy
estimation of the binding event, the latter can be used to assess
changes in the ligand/protein binding affinity with respect to
different ligand substitutions.
We note that the application of FM can go beyond ligand/

protein binding studies. In fact, it can be exploited in many other
research fields where two-body interactions are important. For
instance, FM simulations can be used to study the interactions
between atoms in crystal growth (47). Furthermore, the funnel-
shaped restraint potential can be used in combination with other
enhanced sampling methods, such as bias exchange, parallel
tempering, or replica exchange (26), to achieve convergence in
even shorter computational time. Finally, one might customize
on the studied system the shape of the restraint potential,
changing the cone part and leaving unaltered the cylindrical
region of the potential for the unbound state.
The results achieved here at a reasonable computational cost

make FM a valuable method to tackle a wide variety of problems
in chemistry, physics, and material science.

Methods
FM Theory. The absolute protein–ligand binding free energy ΔGb

0 can be de-
fined in terms of the equilibrium binding constant Kb, as seen in Eq. 2. Following
the approach of Allen et al. (32), we can write Kb in terms of the PMF W(r) as

Kb =

Z
dr HsiteðrÞ e−βWðrÞ

e−βWðr′Þ ; [4]

where r’ is a reference ligand position in the bulk water, and Hsite(r) is equal
to 1 inside the binding site and 0 elsewhere. We want to express Kb in terms
of the 1D PMF W(z), which is obtained by integrating over the allowed
lateral displacement in the xy space. We assume that the binding site is
contained in the range zmin ≤ z ≤ zmax. The allowed displacement is de-
termined by a hybrid truncated conical and cylindrical restraint HR(x,y,z)
with axis aligned to the z axis, as follows:

HRðx; y; zÞ=
(
Hconeðx; y; zÞ; z≤ zcc

Hcylðx; yÞ; z> zcc
[5]

with the condition zcc > zmax. The truncated conical restraint is defined as

Hconeðx; y; zÞ=
�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
≤RðzÞ

0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
>RðzÞ

; [6]

with R(z) = Rcyl + tan (α) (zcc − z), and αmodulating the aperture of the cone.
The cylindrical restraint is defined as

Hcylðx; yÞ=
(
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
≤Rcyl

0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
>Rcyl

: [7]

The 1D PMF W(z) is given by

e−βWðzÞ =C
Z

dx dy HRðx; y; zÞ e−βWðx;y;zÞ: [8]

We define the 1D PMF to be zero in the bulk water at z = zbulk, with zbulk >
zcc. In this region, HR(x,y,z) = Hcyl(x,y), and the constant C in Eq. 8 can be
written as

C =
1Z

dx dy Hcylðx; yÞe−βWðx;y;zbulk Þ
: [9]

Because in the bulk water, W(x,y,z) is independent from x and y, we can write

Wðx; y; zbulkÞ=Wð0; 0; zbulkÞ; [10]

Fig. 3. The FES of the SC-558/COX-2 binding is computed using a re-
weighting algorithm (50) as a function of the projection on the z axis and
distance from z axis of the center of mass of the ligand, where z is the axis of
the funnel (Table S2). Isosurfaces are shown every 3 kcal/mol. (Insets A and B)
Binding modes corresponding to the two deepest energy basins, basin A
(X-ray) and basin B (alternative pose). (Upper) Ligand position relative to the
enzyme during FM simulations. The spheres represent the ligand center of
mass and are colored according to their corresponding free-energy values.
For clarity, only selected frames are shown.
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and the constant C can be written as

C =
e+βWð0;0;zbulk Þ

πR2
cyl

: [11]

By using the expression above, we can then rewrite Eq. 8 as

e−βWðzÞ =
1

πR2
cyl

Z
dx dy HRðx; y; zÞ e−βðWðx;y;zÞ−Wð0;0;zbulk ÞÞ: [12]

Let us assume that in the binding site, the (truncated conical) restraint does
not act on the ligand, i.e., the free-energy cost introduced by the restraint is
zero when the ligand is in the binding site. We can write

HsiteðrÞ=hsiteðzÞHRðx; y; zÞ; [13]

where

hsiteðzÞ=
8<
:

1; zmin ≤ z≤ zmax

0; z< zmin

0; z> zmax

: [14]

If we substitute Eqs. 13 and 12 in Eq. 4, we obtain an expression for the
binding constant in terms of the PMF W(z):

Kb =
Z

dx dy dz Hsiteðx; y; zÞ e−βðWðx;y;zÞ−Wð0;0;zbulk ÞÞ

=
Z

dz hsiteðzÞ
Z

dx dy HRðx; y; zÞ e−βðWðx;y;zÞ−Wð0;0;zbulk ÞÞ

= πR2
cyl

Z
dz hsiteðzÞ e−βWðzÞ

= πR2
cyl

Zzmax

zmin

dz e−βWðzÞ

: [15]

FM simulations have been carried out with NAMD code (48) using the
PLUMED plugin (49). Details on FM simulations are reported in SI Text.
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SI Text
Description of Energy-Basin Poses in Benzamidine/Trypsin Complex.
Looking at the free-energy surface (Fig. 2) computed as a function
of the projection on the z axis and torsion collective variable
(CV) using a reweighting algorithm, two main energy minima
can be detected. The deepest one, basin A in Fig. 2, shows the
trypsin in its crystal-binding conformation. At this site, the ligand
is bound to the binding pocket, forming a number of strong in-
teractions with the enzyme. In particular, the diamine group of
trypsin engages a salt bridge with Asp189, and H-bond inter-
actions with Ser190 and Gly219, while the aromatic ring of the
ligand is involved in hydrophobic contacts with the Val213 side
chain and the Cα atoms of Cys191 and Trp215. It is interesting to
note that a water molecule is present in the binding pocket, fa-
voring the formation of an H-bond network between the side
chains of Tyr228, Asp189, and Ser190. A water molecule at
similar position is present in many X-ray crystals, suggesting
a structural role for this molecule in the formation of the ligand
binding site. The second energy minimum, basin B, is ∼1 kcal/
mol higher than basin A. At variance with the basin A pose, here
the ligand is slightly rotated in the binding site. However, the
diamino group is able to interact with the same residues de-
scribed at basin A, although some of these interactions are
mediated by water molecules. In particular, benzamidine en-
gages directly with Ser190 through an H-bond, whereas its in-
teraction with the Asp189 side chain is mediated by a water
molecule. The aromatic ring of trypsin is instead involved in an
interaction with the sulfur atoms forming the disulfide bridge
between Cys191 and Cys220. At this basin the diamino group is
involved in H-bond interactions with the carbonyl oxygens of
Val227, Val213, and Ser214 via two water molecules. Waters at
similar positions are found in the apo and ligated form of the
enzyme (PDB ID codes 1s0q and 3atl, respectively), suggesting
a functional role of the solvent during the ligand binding. The
stability of the basin B pose has been further assessed through an
extensive molecular dynamics simulation, over 100-ns long.
During the whole simulation, the ligand binding mode is stable
with all of the above described interactions well conserved (Fig.
S2). This result, together with the low free-energy value of the
basin, suggests an important role for this pose during the ligand
binding and unbinding, as discussed in the main text.

Description of Energy-Basin Poses in SC-558/Cyclooxygenase 2 Complex.
Looking at the free-energy surface (FES) shown in Fig. 3, two
deepest-energy minima can be found, basin A and basin B. The
lowest-energy pose represents SC-558 in its X-ray conformation

(Fig. 3). Here, the bromophenyl ring is placed in a hydrophobic
cavity surrounded by Phe381, Leu384, Tyr385, Trp387, and
Phe518, whereas on the other branch, the trifluoromethyl moiety
resides in a pocket surrounded by Met113, Val116, Tyr355,
Leu359, and Leu531. Finally, the phenylsulphonamide moiety
engages H-bond interactions with Arg513 and with the backbone
ofPhe518 via twowatermolecules.All these favorable interactions
render this pose highly stable with a very low-energy value.
The second energy minimum, basin B, corresponds to the al-

ternative binding mode of SC-558 in cyclooxygenase 2 (COX-2),
first discovered and largely discussed by us in the original paper
(1). At this site, the trifluoromethylpyrazole occupies the cavity
formed by Leu352, Trp387, Phe518, Val523, Gly526, and
Ala527, and the bromophenyl moiety is placed in the hydro-
phobic pocked defined by Ile345, Val349, Leu531, Leu534, and
Met535. Finally, the sulphonamide group engages H-bond in-
teractions with Arg120 and Tyr355 (Fig. 3).

SI Methods
The starting conformation for the benzamidine/trypsin and SC-558/
COX-2 complexes was taken from the Protein Data Bank (PDB ID
codes 2oxs and 1cx2, respectively). All simulations were carried out
with the AMBER99SB-ILDN force field (2−4) for the protein, and
the TIP3P water model (5) for the explicit solvent. The Amber
charges were applied to protein and water atoms, and the re-
strained electrostatic potential charges were used for the ligands.
The systems were simulated using periodic boundary conditions.
Before well-temperedmetadynamics simulations, the benzamidine/
trypsin and SC-558/COX-2 complexes were equilibrated using 5-ns-
long molecular dynamics simulations in the isothermal–isobaric
ensemble NPT at 1 atm and 300 K. The PLUMED plugin (6) was
used to carry out metadynamics calculations in the isothermal–
isochoric ensemble NVT with the NAMD code (7).
In benzamidine/trypsin complex, the bias was added on a dis-

tance CV (Table S1). A Gaussian width of 0.05 Å was used, and
a Gaussian deposition rate of 0.5 kcal·mol·ps (1 kcal = 4.18 kJ)
was initially used and gradually decreased on the basis of the
adaptive bias with a ΔT of 3,300 K.
In SC-558/COX-2 complex, the bias was added on the pro-

jection on the z axis of the ligand center of mass, a torsion, and a
contact map CV (Tables S2 and S3) using a Gaussian width of
0.32 Å, 0.43 rad, and 0.12, respectively. The λ value for the
contact map CV was set to 8.51 (1). A Gaussian deposition rate
of 0.5 kcal·mol·ps was initially used and gradually decreased on
the basis of the adaptive bias with a ΔT of 2,700 K.

1. Limongelli V, et al. (2010) Molecular basis of cyclooxygenase enzymes (COXs) selective
inhibition. Proc Natl Acad Sci USA 107(12):5411–5416.

2. Cornell WD, et al. (1995) A second generation force field for the simulation of proteins,
nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197.

3. Hornak V, et al. (2006) Comparison of multiple Amber force fields and development of
improved protein backbone parameters. Proteins 65(3):712–725.

4. Lindorff-Larsen K, et al. (2010) Improved side-chain torsion potentials for the Amber
ff99SB protein force field. Proteins 78(8):1950–1958.

5. Jorgensen WL, Madura JD (1983) Solvation and conformation of methanol in water.
J Am Chem Soc 105(6):1407–1413.

6. Bonomi M, et al. (2009) PLUMED: A portable plugin for free-energy calculations with
molecular dynamics. Comput Phys Commun 180(10):1961–1972.

7. Phillips J-C, et al. (2005) Scalable molecular dynamics with NAMD. J Comput Chem
26(16):1781–1802.
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Fig. S1. (A) Overlay of the benzamidine/trypsin conformation corresponding to basin A found in the funnel metadynamics (FM) simulations (gray) with that of
the X-ray structure of trypsin in the ligated form (PDB ID code 3atl; color). (B) Overlay of the benzamidine/trypsin conformation corresponding to basin B found
in the FM simulations (gray) with that of the X-ray structure of trypsin in the apo form (PDB ID code 1s0q; color). The superimpositions show that water
molecules at similar positions in the binding site are found in the FM simulations and in the X-ray structures. This finding suggests the important role played by
waters during ligand binding, and the need to use explicit solvent simulations to take into account solvation effect and obtain an accurate estimation of
ligand/protein interactions.

Fig. S2. Plot of the rmsd of the heavy atoms of benzamidine during over 100 ns of molecular dynamics simulation with the ligand in the binding conformation
corresponding to basin B. The very low average rmsd of 0.75 Å reflects the good stability of this pose with all of the ligand/protein interactions conserved.
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Fig. S3. (A) (Left) Scatter plot of the projection on the z axis vs. distance from the z axis of the ligand center of mass, collecting all of the configurations
sampled during FM simulations in the benzamidine/trypsin system. The z is the axis of the funnel (Table S1). In the binding site region (3.0 ≤ z ≤ 7.0 Å), the
conical restraint is not acting on the ligand. (Right) Representation of the FES computed as a function of the projection on the z axis and distance from z-axis
CVs using a reweighting algorithm. Isosurfaces are shown every 1 kcal/mol. These CVs are not able to distinguish the two binding modes, basin A and B, which
are merged in one deep-energy basin. However, the FES shows that this basin is almost at the center of the conical section of the funnel where the simulation is
not affected by the funnel restraint potential. (B) (Left) Potential of mean force W(z) obtained by reweighting the metadynamics simulations. The binding site
region is defined at 3.0 ≤ z ≤ 7.0 Å, and the fully solvated at zbulk = 32.0 Å. (Right) Convergence of the absolute protein–ligand binding free-energy calculation.
ΔGb

0 is calculated using zmin = 3.0 Å, zmax = 7.0 Å, and zbulk = 32.0 Å, at different times along the simulation to assess the convergence. Considering Rcyl = 1 Å,
and applying the analytical correction (Methods), the estimate of ΔGb

0 is −8.5 ± 0.7 kcal/mol, in line with previous calculations and experiments. The un-
certainty is calculated as the SD from the asymptotic value of the absolute protein–ligand binding free energy obtained from the last part of the simulation.

Fig. S4. (Upper) Plot of the projection on the z axis CV, where z is the axis of the funnel restraint potential, along the FM simulations in the benzamidine/
trypsin system. (Lower) Plot of the Gaussian height added to the system along the FM simulations. Thanks to the funnel restraint potential, several recrossing
events between bound (IN) and unbound (OUT) states are possible, even when the added Gaussians have become very small. These events lead to the con-
vergence in the estimation of the protein–ligand binding free energy (Fig. S3).
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Fig. S5. Convergence of the absolute SC-558/COX-2 binding free energy. The ΔGb
0 is calculated every 50 ps along the simulation to assess the convergence.

The bound state is defined at 8.0 ≤ z ≤ 27.0 Å (zmin = 8.0 Å, zmax = 27.0 Å), and the unbound one at zbulk = 46.0 Å. Considering Rcyl = 1 Å and applying the
analytical correction (Methods), the estimate of ΔGb

0 is −11.1 ± 1.5 kcal/mol, in good agreement with the experimental value of ∼−12 kcal/mol. The un-
certainty is calculated as the SD from the asymptotic value of the absolute protein–ligand binding free energy obtained from the last part of the simulation.

Fig. S6. (Upper) Plot of the projection on the z axis CV, where z is the axis of the funnel restraint potential along the FM simulations in the SC-558/COX-2
system. (Lower) Plot of the Gaussian height added to the system along the FM simulations. As seen in the benzamidine/trypsin case, FM favors the recrossing
events between bound (IN) and unbound (OUT) states. These events lead to the convergence in the estimation of the protein–ligand binding free energy
within a reasonable computational time (Fig. S5).
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Table S1. List of atoms and parameters that define the different
CVs used in the FM simulations in the benzamidine/trypsin
system

CV type Parameters
Protein (P),
ligand (L)

Funnel* zcc = 18 Å
α = 0.55 rad
Rcyl = 1.0 Å

Atom
Distance† Cδ of Asp189 P
Distance† C7 (C endowing the diamine group) L
Torsion Gly226Cα P
Torsion Gly216Cα P
Torsion C1 L
Torsion C4 L

Note that the residue labels are taken from the Protein Data Bank using
the trypsin structure with PDB ID code 2oxs.
*The z axis of the funnel is defined in the space x,y,z by two points, one
corresponding approximately to the center of mass of Leu185C, Pro225Cα,
and Pro225N, and the other to the center of mass of Cys220Cα, Lys224C, and
Gly226N; the first one also defines the origin of the z axis.
†Distance CV is defined as the distance between the atoms.

Table S2. List of atoms and parameters that define the different
CVs used in the FM simulations in the SC-558/COX-2 system

CV type Parameters
Protein (P),
ligand (L)

Funnel* zcc = 44 Å
α = 0.6 rad
Rcyl = 1.0 Å

Atom
Torsion Ala527Cα P
Torsion Val523Cα P
Torsion C endowing CF3 L
Torsion C endowing S L

*The z axis of the funnel is defined in the space x,y,z by two points, one
corresponding to the center of mass of Phe201Cα, Tyr385Cα, and Pro389Cα,
and the other to the center of mass of His351Cα, Leu352Cα, and Ala527Cα;
the first one also defines the origin of the z axis.

Table S3. List of atoms whose contacts are included in the
contact map CV to sample the motion of the ligand exit
door in COX-2 (1)

Contact no. Atom i Atom j R0 p q

1 Val88Cα Ile112Cα 12 6 10
2 Val88Cα Val116Cα 12 6 10
3 Val88Cα Arg120Cα 12 6 10
4 Ile92Cα Ile112Cα 12 6 10
5 Ile92Cα Val116Cα 12 6 10
6 Ile92Cα Arg120Cα 12 6 10
7 Ile112Cα Tyr115Cζ 6 6 10
8 Ser119Cα Tyr115Cζ 10 6 10
9 Glu524Cδ Arg120Cζ 6 4 10

R0, p, and q are parameters of the switching function that defines the
contact between the atom i and j (please see ref. 1 for details).
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Movie S1. Binding/unbinding events of benzamidine to trypsin under the action of FM simulations. Using a funnel restraint potential (Right), several re-
crossing events are possible, leading to a well-converged free-energy surface and an accurate estimation of the absolute protein–ligand binding free energy.

Movie S1
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