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We study wave scattering from a gently curved surface. We show that the recursive relations, implied 
by shift invariance, among the coefficients of the perturbative series for the scattering amplitude allow 
to perform an infinite resummation of the perturbative series to all orders in the amplitude of the 
corrugation. The resummed series provides a derivative expansion of the scattering amplitude in powers 
of derivatives of the height profile, which is expected to become exact in the limit of quasi-specular 
scattering. We discuss the relation of our results with the so-called small-slope approximation introduced 
some time ago by Voronovich.
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1. Introduction

The problem of wave scattering at rough interfaces has always 
attracted much attention, due to its importance in diverse areas 
of physics ranging from optics, to acoustics, communications, geo-
physics, etc. Its difficulty is universally acknowledged, and even 
with presently available computers it represents a formidable chal-
lenge in realistic situations. Despite impressive progress made in 
numerical methods, approximate analytical approaches are still 
much valuable as the only ones capable of providing an insight 
into general physical features of wave scattering. It is not surpris-
ing then that a number of diverse approximation schemes, with 
different ranges of validity, have been developed over the years. 
For a review, we address the reader to the monograph [1] or to the 
recent review [2]. Historically, the first and perhaps most widely 
known approximate theory of scattering by rough surfaces is the 
small perturbation method (SPM) originally developed by Rayleigh 
to study scattering of sound waves by sinusoidally corrugated sur-
faces of small amplitude, and later generalized by several other 
authors to electromagnetic scattering. Another classic approximate 
scheme is the Kirchhoff approximation (KA), also known as the tan-
gent plane approximation (TPA), which represents a valid approx-
imation for locally smooth surfaces with large radii of curvature. 
A scheme aiming at reconciling SPM and KA was proposed twenty 
years ago by Voronovich [1,3], i.e. the small-slope approximation
(SSA). It consists of an ingenious ansatz for the scattering ampli-
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tude (SA), that manages to capture the leading curvature correction 
to the KA. The ansatz involves unknown coefficients that are de-
termined a posteriori by matching the SSA with the SPM in their 
common region of validity. Numerical investigations revealed that 
within its domain of validity the SSA is indeed remarkably accurate 
[2]. Several authors have attempted to provide rigorous mathemat-
ical derivations of the SSA, utilizing the extinction theorem [4,5] or 
the Meecham–Lysanov method [6].

In recent years it has been shown [7–9] that curvature correc-
tions to the Casimir interaction between two gently curved sur-
faces can be estimated using a derivative expansion (DE) of the 
Casimir-energy functional, in powers of derivatives of the height 
profiles of the surfaces. The DE has been later used to study cur-
vature effects in the Casimir–Polder interaction of a particle with 
a gently curved surface [10,11]. The same method has been used 
very recently to estimate the shifts of the rotational levels of a di-
atomic molecule due to its van der Waals interaction with a curved 
dielectric surface [12]. An important insight into the nature of the 
DE was achieved in [13] (see also [10]) where it was shown that 
the derivative expansion amounts to an infinite resummation of 
the perturbative series for the Casimir energy to all orders in the 
amplitude of the corrugation, for small in-plane momenta of the 
electromagnetic field. These methods can indeed be adapted to the 
problem of wave scattering by a rough surface. In this letter we 
demonstrate that the infinite recursive relations among the coeffi-
cients of the perturbative series for the SA, engendered by its exact 
invariance under vertical and horizontal shifts of the surface, allow 
to perform an infinite resummation of the perturbative series, to all 
orders in the amplitude of the corrugation. The resummation pro-
cedure results into a DE of the SA in powers of derivatives of the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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height profile, which is expected to become exact in the limit of 
quasi-specular scattering. We show that our DE of the SA is indeed 
equivalent to Voronovich’s SSA ansatz, thus providing a formal jus-
tification for it.

2. Perturbative expansion of the SA

We consider a surface � separating two media of different 
(optical or acoustical) properties. A cartesian coordinate system 
(x, y, z) is chosen such that the z-axis is directed upwards in 
the direction going from medium 2 towards medium 1, while 
(x, y) span a reference plane orthogonal to the z-axis. It is as-
sumed that the surface � can be represented by a (single-valued) 
smooth height profile of equation z = h(x) = h(x, y). A down-
ward propagating (electromagnetic or acoustic) wave E(in)

α0 (x, z) =
E(0)
α0 /

√
q0 exp[i(k0 · x − q0z)] with wave vector K0 = (k0, −q0), 

wavenumber K0 = 2π/λ0
1 is incident on the surface. The index 

α0 takes values in a discrete set consisting of one or two elements, 
depending on whether an acoustic or electromagnetic wave is con-
sidered. The scattered field E(sc)(r, z) at points above and far from 
� can be expressed through the SA Sαα0 (k, k0) as a superpositions 
of upwards propagating waves with wave vector K = (k, q) as:

E(sc)
α (x, z) =

∫
d2k

4π2

1√
q

ei(k·x+qz) Sαα0(k,k0) E(0)
α0 . (1)

The SA satisfies two general properties. The first one is reciprocity:

Sαα0(k,k0) = Sα0α(−k0,−k) , (2)

which follows from microscopic reversibility [14]. The second gen-
eral property satisfied by the SA is shift invariance, which amounts 
to the following transformation property of the SA under a hori-
zontal and vertical displacement of the surface �:

Sαα0(k,k0)|h(x−a)−b = ei[(k0−k)·a−(q0+q)b]Sαα0(k,k0)|h(x) . (3)

According to the SPM, we postulate that for sufficiently small 
height profiles h the SA can be expanded as a power series in the 
height profile:

Sαα0(k,k0) =
∑
n≥0

1

n!
∫

d2x1 · · ·
∫

d2xn

× G(n)
αα0(x1, . . . ,xn;k,k0) h(x1) . . .h(xn) , (4)

where the kernels G(n)
μν(x1, . . . , xn; k, k0) are symmetric functions 

of (x1 . . . xn). In momentum space, the perturbative expansion of 
the SA reads:

Sαα0(k,k0) =
∑
n≥0

1

n!
∫

d2k1

(2π)2
· · ·

∫
d2kn

(2π)2

× Ḡ(n)
αα0(k1, . . . ,kn;k,k0) h̃(k1) . . . h̃(kn) . (5)

Shift invariance under a horizontal translation of the profile h(x)

implies that the kernels G̃(n)
αα0 (k1, . . . , kn; k, k0) must be of the 

form:

Ḡ(n)
αα0(k1, . . . ,kn;k,k0) = (2π)2δ(2)(k1 + . . . kn + k0 − k)

× G̃(n)
αα0(k1, . . . ,kn;k,k0) , (6)

where G̃(n)
αα0(k1, · · · , kn; k, k0) are symmetric functions of the in-

plane momenta k1, . . . , k2, which are defined only on the hyper-
plane P(n) ≡ {k1 + . . . kn + k0 − k = 0}. Of course

1 We follow the normalization of waves adopted by Voronovich [3].
Ḡ(0)
αα0(k,k0) = (2π)2δ(2)(k0 − k)Rαα0(k0) , (7)

where Rαα0 (k0) are the familiar reflection coefficients for a planar 
surface. By inserting Eq. (6) into Eq. (5), the perturbative series can 
be rewritten as:

Sαα0(k,k0) =
∑
n≥0

1

n!
∫

d2k1

(2π)2
· · ·

∫
d2kn

(2π)2
h̃(k1) . . . h̃(kn)

× (2π)2δ(2)(k1 + . . . kn + k0 − k)G̃(n)
αα0(k1, . . . ,kn;k,k0) . (8)

Next we show that the perturbative kernels have to satisfy an in-
finite set of relations, as a result of the shift invariance under a 
vertical shift of the profile. To derive these relations we note the 
identity that follows from Eq. (3):

ei(q0+q)b Sαα0(k,k0)|h(x)−b = Sαα0(k,k0)|h(x) . (9)

Upon taking p derivatives of both sides of the above relation with 
respect to the shift b, we obtain the identities:

dp

d bp

(
ei(q0+q)b Sαα0(k,k0)|h(x)−b

)∣∣∣∣
b=0

≡ A(p)
αα0(k,k0)|h(x) = 0 (10)

that have to be satisfied for any profile h. By making use of the 
perturbative expansion of the SA Eq. (4) into the l.h.s. of the 
above identities, one obtains the following expansion for the ker-
nels A(p)

αα0 (k, k0)|h(x):

A(p)
αα0(k,k0)|h(x) =

∑
n≥0

1

n!
∫

d2x1 · · ·
∫

d2xn

× A(p,n)
αα0 (x1, . . . ,xn;k,k0) h(x1) . . .h(xn) = 0 , (11)

with:

A(p,n)
αα0 (x1, . . . ,xn;k,k0) =

p∑
k=0

(−1)k p!
k!(p − k)! [i (q0 + q)]p−k

×
∫

d2xn+1 . . .

∫
d2xn+k G(n+k)

αα0 (x1, . . . ,xn+k;k,k0) . (12)

Since the identities in Eq. (10) must be satisfied for arbitrary pro-
files h, it follows that all the kernels A(p,n)

αα0 (x1, . . . , xn; k, k0) must 
vanish identically:

A(p,n)
αα0 (x1, . . . ,xn;k,k0) = 0 , ∀ n ≥ 0 , p > 0 . (13)

When expressed in momentum space, these conditions read:

(2π)2δ(2)(k1 + . . . kn + k0 − k)

p∑
k=0

(−1)k p!
k!(p − k)!

× [i(q0 + q)]p−k G̃(n+k)
αα0 (k1, . . . ,kn,0, . . . ,0) = 0 . (14)

For any fixed n, the above relations can be solved iteratively lead-
ing to:

G̃(n+m)
αα0 (k1, . . . ,kn,0, . . . ,0;k,k0)

= [i(q0 + q)]m G̃(n)
αα0(k1, . . . ,kn;k,k0) . (15)

We recall that these identities hold on P(n) . Equation (15) consti-
tutes a very important result, and in next Section we show that 
with their help it is possible to perform an infinite re-summation
of the perturbative series, order by order in a small k expansion.
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3. Resummation of the perturbative series

Now we consider a surface � whose local radius of curvature 
is everywhere large compared to the wavelength of the incom-
ing wave. For such a gently curved profile, the Fourier transform 
h̃(k) of the height profile is significantly different from zero only 
for small in-plane wave vectors k. For quasi specular-scattering, 
i.e. for k � k0, it is therefore legitimate to Taylor-expand the 
kernels G̃(n)

αα0 (k1, . . . , kn; k, k0) around k1 = · · · = kn = 0. Exis-
tence of this Taylor expansion is not guaranteed a priori, but 
has to be checked case by case. With respect to this question, it 
is important to observe that by virtue of the iterative relations 
Eq. (15) existence of the Taylor expansion of order n for the ker-
nel G̃(n)

αα0(k1, . . . , kn; k, k0) automatically implies existence of the 
Taylor expansion to the same order n for all higher order kernels 
G̃(n+m)

αα0 (k1, . . . , kn+m; k, k0), m = 1, 2, . . . . Let us assume that the 
perturbative kernels can be Taylor-expanded to second order in the 
wave vectors2:

G̃(n)(k1, . . . ,kn;k,k0)

= A(n)(k,k0) + B(n)
μ (k,k0)(k1 + · · · + kn)

μ

+ C (n)
μν(k,k0)

n∑
i=1

kμ
i kν

i − D(n)
μν(k,k0)

∑
i< j

kμ
i kν

j + o(k2) ,

(16)

where Greek indices take values (1, 2), and for brevity we sup-
pressed all polarization indices. Since the n-point Green function 
is defined only on the hyperplanes P(n) , we are free to add to 
G̃(n)(k1, · · · , kn; k, k0) any function f (n)(k1, · · · , kn; k, k0) vanish-
ing on P(n) of the form

f (n)(k1, . . . ,kn;k,k0) = (k1 + . . . kn + k0 − k)μ

× g(n)
μ (k1, . . . ,kn;k,k0) (17)

where g(n)
μ (k1, · · · , kn; k, k0) are arbitrary smooth symmetric func-

tions of k1, · · · , kn . Let us take

g(n)
μ = Â(n)

μ (k,k0) + B̂(n)
μν(k,k0)(k1 + · · · + kn)

ν . (18)

It is easy to verify that the coefficients Â(n)
μ , B̂(n)

μν can always be 
chosen such that addition of f (n)(k1, · · · , kn; k, k0) to G̃(n)(k1, · · · ,

kn; k, k0) removes from Eq. (16) the terms proportional to B(n)
μ

and C (n)
μν . Without loss of generality, the second order Taylor ex-

pansion of the kernels G̃(n)(k1, · · · , kn; k, k0) around k1 = · · · =
kn = 0 can thus be assumed to be of the form:

G̃(n)(k1, · · · ,kn;k,k0)

= A(n)(k,k0) − D(n)
μν(k,k0)

∑
i< j

kμ
i kν

j + o(k2) . (19)

After the above small-k expansion is substituted into the pertur-
bative series Eq. (8), one finds:

2 By an explicit perturbative computation to second order in the height pro-

file, it is possible to verify that the perturbative kernels G̃(1)
αα0 (k1; k, k0) and 

G̃(2)
αα0 (k1, k2; k, k0) do admit a second-order Taylor-expansion as per Eq. (16), for 

both a scalar wave satisfying Dirichlet or Neumann boundary conditions on the sur-
face � , as well as for the scattering of an electromagnetic wave by a dielectric 
surface. Explicit formulae for the relevant perturbative kernels in the electromag-
netic case are provided in [3].
S(k,k0) =
∑
n≥0

1

n!
∫

d2k1

(2π)2
· · ·

∫
d2kn

(2π)2
h̃(k1) . . . h̃(kn)

× (2π)2δ(2)(k1 + . . . kn + k0 − k)

× [A(n)(k,k0) − D(n)
μν(k,k0)

∑
i< j

kμ
i kν

j ]

= (2π)2δ(2)(k0 − k)R(k0) + A(1)(k,k0)h̃(k − k0)

+
∑
n≥2

∫
d2x ei(k0−k)·x

[
1

n! A(n)(k,k0)hn(x)

+ hn−2(x)

2(n − 2)! D(n)
μν(k,k0)∂μh(x)∂νh(x)

]
. (20)

However, the identities Eq. (15) satisfied by the perturbative ker-
nels for n = 0, 1, 2 imply at once:

A(m)(k0,k0) = (2 i q0)
m R(k0) , (21)

A(m+1)(k,k0) = [i(q0 + q)]m A(1)(k,k0) , (22)

A(m+2)(k,k0) = [i(q0 + q)]m A(2)(k,k0) , (23)

D(m+2)
μν (k,k0) = [i(q0 + q)]m D(2)

μν(k,k0) . (24)

By making use into Eq. (20) of the above identities, it is easy to 
perform the infinite sums in the r.h.s. of Eq. (20):

S(k,k0) = (2π)2δ(2)(k0 − k)

[
R(k0) − A(1)(k0,k0)

2iq0

]

+
∫

d2x ei(k0−k)·x
{[

A(1)(k,k0)

i(q0 + q)

+ 1

2
D(2)

μν(k,k0)∂μh(x)∂νh(x)

] ∑
n≥0

1

n! [i(q + q0)h(x)]n

⎫⎬
⎭

=
∫

d2x ei[(k0−k)·x+(q+q0)h(x)]
[

A(1)(k,k0)

i(q0 + q)

+ 1

2
D(2)

μν(k,k0) ∂μh(x)∂νh(x)

]
. (25)

The above formula for the SA represents our main result. As we 
see, the contribution proportional to A(1)(k, k0) reproduces the KA, 
while the second term of order (∇h)2 provides the leading curva-
ture correction to the KA. Bearing in mind Eq. (19), we see that 
the coefficients A(1)(k, k0) and D(2)

μν(k, k0) occurring in this for-
mula can be extracted from the second order Taylor expansion 
of the perturbative kernels G̃(1)

αα0 (k1; k, k0) and G̃(2)
αα0 (k1, k2; k, k0), 

respectively. We now prove that our Eq. (25) is indeed equivalent 
(to order (∇h)2) to the SSA ansatz made by Voronovich [3] twenty 
years ago.

4. Comparison with Voronovich’s small-slope approximation

In Ref. [3] Voronovich postulated the following ansatz for the 
SSA valid to order (∇h)2:

S(k,k0) = 2
√

qq0

q + q0

∫
d2x ei[(k0−k)·x+(q+q0)h(x)]

×
[

B11(k,k0) − i

4

∫
d2k1 M11(k,k0;k1)h̃(k1) eik1·x

]
, (26)

where
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M11(k,k0;k1) = B11
2 (k,k0;k − k1) + B11

2 (k,k0;k0 + k1)

+ 2(q + q0) B11(k,k0) , (27)

and for brevity we suppressed all polarization indices. The pertur-
bative kernels occurring in the above Equations are related to ours 
by the following relations:

G̃(1)(k − k0;k,k0) = A(1)(k,k0) = 2i
√

qq0 B11(k,k0) , (28)

and

G̃(n+1)(k − k1,k2, . . . ,kn,kn − k0;k,k0)

= (n + 1)! √qq0 (Bn+1)
11(k,k0;k1, . . . ,kn) , n = 1,2, . . . (29)

In view of Eq. (28), it is clear that the first term between the 
square brackets in Eq. (26) reproduces the first term between the 
square brackets of Eq. (25). By an explicit computation, it is pos-
sible to verify that the second terms between the square brackets 
of Eqs. (26) and (25) coincide as well. In view of Eq. (29), and us-
ing the second order Taylor expansion of G̃(2)(k1, k2; k, k0) given 
in Eq. (19), we find:

√
qq0 (B11

2 (k,k0;k − k1) + B11
2 (k,k0;k0 + k1))

= 1

2
[G̃(2)(k1,k − k0 − k1;k,k0) + G̃(2)(k − k0 − k1,k1;k,k0)]

= G̃(2)(k1,k − k0 − k1;k,k0) = A(2)(k,k0)

−D(2)
μν(k,k0) kμ

1 (k − k0 − k1)
ν . (30)

Therefore

√
qq0 M11(k,k0;k1) = A(2)(k,k0) − i(q + q0)A(1)(k,k0)

− D(2)
μν(k,k0)kμ

1 (k − k0 − k1)
ν

= −D(2)
μν(k,k0)kμ

1 (k − k0 − k1)
ν , (31)

where in the last passage we used the recursive relation Eq. (22)
to cancel the first two terms in the intermediate expression. Then:

√
qq0

∫
d2k1 M11(k,k0;k1)h̃(k1) eik1·x

= −D(2)
μν(k,k0)

∫
d2k1 eik1·x kμ

1 (k − k0 − k1)
ν h̃(k1) eik1·x

= i D(2)
μν(k,k0)(k − k0 + i ∂)ν∂μh(x) . (32)

Using the above formula, we see that the term of Eq. (26) involving 
the k1 integral can be recast as:

− i
√

qq0

2(q + q0)

∫
d2x ei[(k0−k)·x+(q+q0)h(x)]

×
∫

d2k1 M11(k,k0;k1)h̃(k1) eik1·x

= D(2)
μν(k,k0)

2(q + q0)

∫
d2x ei[(k0−k)·x+(q+q0)h(x)]
× (k − k0 + i ∂)ν∂μh(x)

= 1

2
D(2)

μν(k,k0)

∫
d2x ei[(k0−k)·x+(q+q0)h(x)]∂μh(x)∂νh(x) , (33)

where in the last passage we performed an integration by parts 
on the term involving second derivatives of h. Comparison with 
Eq. (25) shows that the above term coincides with the second term 
on the r.h.s. of Eq. (25).

5. Conclusions

We have shown that the SA describing scattering of a wave by 
a gently curved surface admits a derivative expansion in powers of 
derivatives of the height profile. This derivative expansion of the 
SA has been derived here by performing an infinite resummation 
of the perturbative series for the SA, to all orders in the ampli-
tude of the corrugation. Based on this formal derivation it can 
be expected that the derivative expansion is asymptotically exact 
in the limit of quasi-specular scattering. In the leading order the 
derivative expansion coincides with the classic KA, while in the 
next order it provides the leading curvature correction to the KA. 
We have also shown that the derivative expansion is equivalent 
to the order (∇h)2 to the SSA ansatz, proposed some time ago by 
Voronovich to describe wave scattering by a rough surface. The 
resummation of the perturbative series performed here to order 
(∇h)2, can be easily generalized to higher orders in ∇h, provided 
only that the perturbative kernels for the scattering amplitude ad-
mit a Taylor expansion of sufficiently high order for small in-plane 
wave vectors.
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