
Aperiodic pseudorandom number generators based on infinite words

L’ubomíra Balkováa, Michelangelo Buccib, Alessandro De Lucac, Jiří Hladkýa, Svetlana Puzyninad,e

aDepartment of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Czech Republic
bDepartment of Mathematics, University of Liège, Grande traverse 12 (B37), B-4000 Liège, Belgium

cDIETI, Università degli Studi di Napoli Federico II, via Claudio 21, 80125 Napoli, Italy
dLIP, ENS Lyon, 46 Allée d’Italie, Lyon 69364, France

eSobolev Institute of Mathematics, Russia

Abstract

In this paper we study how certain families of aperiodic infinite words can be used to produce aperiodic
pseudorandom number generators (PRNGs) with good statistical behavior. We introduce the well distributed
occurrences (WELLDOC) combinatorial property for infinite words, which guarantees absence of the lattice
structure defect in related pseudorandom number generators. An infinite word u on a d-ary alphabet has the
WELLDOC property if, for each factor w of u, positive integer m, and vector v ∈ Zd

m, there is an occurrence
of w such that the Parikh vector of the prefix of u preceding such occurrence is congruent to v modulo
m. (The Parikh vector of a finite word v over an alphabet A has its i-th component equal to the number
of occurrences of the i-th letter of A in v.) We prove that Sturmian words, and more generally Arnoux-
Rauzy words and some morphic images of them, have the WELLDOC property. Using the TestU01 [11]
and PractRand [5] statistical tests, we moreover show that not only the lattice structure is absent, but also
other important properties of PRNGs are improved when linear congruential generators are combined using
infinite words having the WELLDOC property.

Keywords: Pseudorandom number generator, Well distributed occurrences, Sturmian word,
Arnoux-Rauzy word, Linear congruential generator
2010 MSC: 68R15, 65C10

Introduction

Pseudorandom number generators aim to produce random numbers using a deterministic process. No
wonder they suffer from many defects. The most usual ones – linear congruential generators – are known to
produce periodic sequences with a defect called the lattice structure. Guimond et al. [14] proved that when
two linear congruential generators are combined using infinite words coding certain classes of quasicrystals
or, equivalently, of cut-and-project sets, the resulting sequence is aperiodic and has no lattice structure. For
some other related results concerning aperiodic pseudorandom generators we refer to [12, 13]. We mention
that although the lattice structure is considered as a defect of a random number generator, it can be useful
in some applications for approximation of the uniform distribution [9].

We have found a combinatorial condition – well distributed occurrences, or WELLDOC for short –
that also guarantees absence of the lattice structure in related pseudorandom generators. The WELLDOC

Email addresses: lubomira.balkova@gmail.com (L’ubomíra Balková), michelangelo.bucci@gmail.com
(Michelangelo Bucci), alessandro.deluca@unina.it (Alessandro De Luca), hladky.jiri@gmail.com (Jiří Hladký),
s.puzynina@gmail.com (Svetlana Puzynina)

Preprint submitted to Elsevier July 26, 2016

property for an infinite word u over an alphabet A means that for any integer m and any factor w of u, the
set of Parikh vectors modulo m of prefixes of u preceding the occurrences of w coincides with Z|A|m (see Def-
inition 2.1). In other words, among Parikh vectors modulo m of such prefixes one has all possible vectors.
Besides giving generators without lattice structure, the WELLDOC property is an interesting combinatorial
property of infinite words itself. We prove that the WELLDOC property holds for the family of Sturmian
words, and more generally for Arnoux-Rauzy words.

Sturmian words constitute a well studied family of infinite aperiodic words. Let u be an infinite word,
i. e., an infinite sequence of elements from a finite set called an alphabet. The (factor) complexity function
counts the number of distinct factors of u of length n. A fundamental result of Morse and Hedlund [18]
states that a word u is eventually periodic if and only if for some n its complexity is less than or equal to n.
Infinite words of complexity n + 1 for all n are called Sturmian words, and hence they are aperiodic words
of the smallest complexity. The most studied Sturmian word is the so-called Fibonacci word

01001010010010100101001001010010 . . .

fixed by the morphism 0 7→ 01 and 1 7→ 0. (See Section 2 for formal definitions.) The first systematic
study of Sturmian words was given by Morse and Hedlund in [19]. Such sequences arise naturally in many
contexts, and admit various types of characterizations of geometric and combinatorial nature (see, e.g.,
[16]).

Arnoux-Rauzy words were introduced in [1] as natural extensions of Sturmian words to multiliteral
alphabets (see Definition 4.4). Despite the fact that they were introduced as generalizations of Sturmian
words, Arnoux-Rauzy words display a much more complex behavior. In particular, we have two different
proofs of the WELLDOC property for Sturmian words, and only one of them can be generalized to Arnoux-
Rauzy words. In the sequel we provide both of them.

An infinite word with the WELLDOC property is then used to combine two linear congruential gener-
ators and form an infinite aperiodic sequence with good statistical behavior. Using the TestU01 [11] and
PractRand [5] statistical tests, we have moreover shown that not only the lattice structure is absent, but also
other important properties of PRNGs are improved when linear congruential generators are combined using
infinite words having the WELLDOC property.

The paper is organized as follows. In the next section, we give some background on pseudorandom
number generation. Next, in Section 2, we give the basic combinatorial definitions needed for our main
results, including the WELLDOC property, and we prove that the WELLDOC property of u guarantees
absence of the lattice structure of the PRNG based on u. In Sections 3 and 4, we prove that the property
holds for Sturmian and Arnoux-Rauzy words. Finally, in Section 5, we present results of empirical tests of
PRNGs based on words having the WELLDOC property.

A preliminary version of this paper [2], using the acronym WDO instead of WELLDOC, was presented
at the WORDS 2013 conference.

1. Pseudorandom Number Generators and Lattice Structure

For the sake of our discussion, any infinite sequence of integers can be understood as a pseudorandom
number generator (PRNG); see also [14]. The generators the most widely used in the past – linear congru-
ential generators – are known to suffer from a defect called the lattice structure (they possess it already from
dimension 2 as shown in [17]).

Let Z = (Zn)n∈N be a PRNG whose output is a finite set M ⊂ N. We say that Z has the lattice structure
if there exists t ∈ N such that the set

{(Zi,Zi+1, . . . ,Zi+t−1)
∣∣∣ i ∈ N}

2

is covered by a family of parallel equidistant hyperplanes and at the same time, this family does not cover
the whole lattice

Mt = {(A1, A2, . . . , At)
∣∣∣ Ai ∈ M for all i ∈ {1, . . . , t}}.

Recall that a linear congruential generator (LCG) (Zn)n∈N is given by parameters a,m, c ∈ N and
defined by the recurrence relation Zn+1 = aZn + c mod m. Let us mention a famous example of a LCG
whose lattice structure is striking. For t = 3, the set of triples of RANDU, i.e., {(Zi,Zi+1,Zi+2)

∣∣∣ i ∈ N} is
covered by only 15 parallel equidistant hyperplanes, see Figure 1.

Figure 1: The triples of RANDU – the LCG with a = (216 + 3),m = 231, c = 0 – are covered by as few as 15 parallel
equidistant planes.

In the paper of Guimond et al. [14], a restricted version of the following sufficient condition for the
absence of the lattice structure is formulated.

Proposition 1.1. Let Z be a PRNG whose output is a finite set M ⊂ N containing at least two ele-
ments. Assume there exists for any A, B ∈ M and for any ` ∈ N an `-tuple (A1, A2, . . . , A`) such that
both (A1, A2, . . . , A`, A) and (A1, A2, . . . , A`, B) are (` + 1)-tuples of the generator Z. Then Z does not have
the lattice structure.

Remark 1.2. Proposition 1.1 can be reformulated in terms of combinatorics on words (see Section 2) as
follows: Let Z be a PRNG whose output is a finite set M ⊂ N containing at least two elements. If for any
A, B ∈ M and any length ` Z has a right special factor of length ` with right extensions A and B, then Z does
not have the lattice structure.

Since Proposition 1.1 is formulated for a restricted class of generators in [14] (see Lemma 2.3 ibidem),
we will provide its proof. However, we point out that all ideas of the proof are taken from [14]. We start
with an auxiliary lemma.

3

Let us set λ = gcd{A − B | A, B ∈ M}.

Lemma 1.3. Let Z be a PRNG satisfying all assumptions of Proposition 1.1. Let n̄ be the unit normal
vector of a family of parallel equidistant hyperplanes covering all t-tuples of Z. Assume ēi (the i-th vector
of the canonical basis of the Euclidean space Rt) is not orthogonal to n̄. Then the distance di of adjacent
hyperplanes in the family along ēi is of the form λ/k for some k ∈ N.

Remark 1.4. The distance di of adjacent hyperplanes W0,W1 along ēi means |xi − yi| for any x̄ ∈ W0 and
ȳ ∈ W1, where the j-th components of x̄ and ȳ satisfy x j = y j for all j ∈ {1, . . . , t}, j , i. This is a well
defined term because the hyperplanes in the family are of the form W j ≡ x̄ · n̄ = α + jd, j ∈ Z, where d is
the distance of adjacent hyperplanes in the family and · denotes the standard scalar product. Thus, without
loss of generality, consider the adjacent hyperplanes

W0 ≡ x̄ · n̄ = α and W1 ≡ x̄ · n̄ = α + d.

Then for any x̄ ∈ W0 and ȳ = x̄ + sēi from W1, we have

ȳ · n̄ = α + d = x̄ · n̄ + d,

ȳ · n̄ = x̄ · n̄ + sēi · n̄ = x̄ · n̄ + sni,

where ni is the i-th component of n̄. Consequently, di = |s| =
∣∣∣∣ d
ni

∣∣∣∣ and is the same for any choice of x̄ and ȳ
which differ only in their i-th component and belong to adjacent hyperplanes.

Proof of Lemma 1.3. Let us start with a useful observation. Let z̄ belong to a hyperplane W of the family in
question.

1. If ē j is orthogonal to n̄, then we may change the j-th component of z̄ in an arbitrary way and the
resulting vector will belong to the same hyperplane, i.e., if W ≡ x̄ · n̄ = α, then clearly (z̄ + βē j) · n̄ =

z̄ · n̄ = α for any β ∈ R, thus z̄ + βē j belongs to W.
2. If ē j is not orthogonal to n̄ and the distance d j of adjacent hyperplanes along ēi in the family is of

the form λ/k for some k ∈ N, then z̄ + rλē j belongs to the family for any r ∈ Z. This follows from
a repeated application of the fact that if z̄ belongs to a hyperplane W, then z̄ + λ

k ē j belongs to an
adjacent hyperplane of W.

Let us proceed by contradiction, i.e., we assume that there exists i ∈ {1, . . . , t} such that ēi is not orthogonal
to n̄ and the distance along ēi of adjacent hyperplanes of the family in question is not of the form λ/k, k ∈
N. Let ` denote the largest of such indices. Choose A, B ∈ M arbitrarily. According to assumptions,
there exists an (` − 1)-tuple (A1, A2, . . . , A`−1) such that both (A1, A2, . . . , A`−1, A) and (A1, A2, . . . , A`−1, B)
are `-tuples of Z. It is therefore possible to find two t-tuples of Z such that the first one is of the form
(A1, A2, . . . , A`−1, A, A`+1, . . . , At) and the second one of the form (A1, A2, . . . , A`−1, B, Â`+1, . . . , Ât). These
two t-tuples – considered as vectors in Rt – belong by the assumption of Lemma 1.3 to some hyperplanes
in the family. Since all vectors ē j, j ∈ {` + 1, . . . , t} are either orthogonal to n̄ or the distance of adjacent
hyperplanes along ē j is of the form λ/k for some k ∈ N, we can change the last t−` coordinates Â`+1, . . . , Ât

of the second vector to arbitrary values from M (we transform them into A`+1, . . . , At) and it will still
belong to a hyperplane in the family. This is a consequence of the observation at the beginning of this
proof. Hence, both vectors (A1, A2, . . . , A`−1, A, A`+1, . . . , At) and (A1, A2, . . . , A`−1, B, A`+1, . . . , At) belong
to some hyperplanes of the family. Their distance along ē` equals |A − B|, i.e., d` divides A − B. Since
A, B have been chosen arbitrarily, it follows that d` divides λ, i.e., λ = kd` for some k ∈ N, which is
a contradiction with the choice of ē`.

4

Proof of Proposition 1.1. Let n̄ be the unit normal vector of a family of parallel equidistant hyperplanes
covering all t-tuples of Z. Suppose without loss of generality that ē1, . . . , ē` are not orthogonal to n̄ and
ē`+1, . . . , ēt are orthogonal to n̄. Let z̄ = (Zn,Zn+1, . . . ,Zn+t−1) be a t-tuple of Z, thus z̄ belongs to one of the
hyperplanes. Take any vector ȳ ∈ Mt and let us show that it belongs to a hyperplane in the family.

1. Any vector from Mt which differs from z̄ only in the first ` components belongs to a hyperplane of the
family. This comes from Lemma 1.3 because when we change for i ∈ {1, . . . , `} the i-th component
of z̄ by di = λ

k , then we jump on the adjacent parallel hyperplane. So, any transformation of the i-th
component of z̄ into another value from M means a finite number of jumps from one hyperplane onto
another. Hence, we may transform z̄ so that it has the first ` components equal to ȳ and the obtained
vector x̄ belongs to a hyperplane in the family.

2. Any vector from Mt which differs from x̄ only in the last t − ` components belongs to the same
hyperplane as x̄. This comes from the orthogonality ēi ⊥ n̄ for i > ` (the argument is the same as
in the proof of Lemma 1.3). Since ȳ differs from x̄ only in the last t − ` components, ȳ belongs to
a hyperplane in the family.

2. Combinatorics on Words and the WELLDOC Property

2.1. Backgrounds on Combinatorics on Words

In the following,A denotes a finite set of symbols called letters; the setA is therefore called an alpha-
bet. A finite word is a finite string w = w1w2 . . .wn of letters from A; its length is denoted by |w| = n and
|w|a denotes the number of occurrences of a ∈ A in w. The empty word, a neutral element for concatenation
of finite words, is denoted ε and it is of zero length. The set of all finite words over the alphabet A is
denoted byA∗.

Under an infinite word we understand an infinite sequence u = u0u1u2 . . . of letters from A. A finite
word w is a factor of a word v (finite or infinite) if there exist words p and s such that v = pws. If p = ε,
then w is said to be a prefix of v; if s = ε, then w is a suffix of v. The set of factors and prefixes of v are
denoted by Fact(v) and Pref(v), respectively. If v = ps for finite words v, p, s, then we write p = vs−1 and
s = p−1v.

An infinite word u over the alphabetA is called eventually periodic if it is of the form u = vwω, where
v, w are finite words overA and ω denotes an infinite repetition. An infinite word is called aperiodic if it is
not eventually periodic.

For any factor w of an infinite word u, every index i such that w is a prefix of the infinite word
uiui+1ui+2 . . . is called an occurrence of w in u. An infinite word u is recurrent if each of its factors has
infinitely many occurrences in u.

The factor complexity of an infinite word u is a map Cu : N 7→ N such that Cu(n) is the number of factors
of length n contained in u. The factor complexity of eventually periodic words is bounded, while the factor
complexity of an aperiodic word u satisfies Cu(n) ≥ n + 1 for all n ∈ N. A right extension of a factor w of u
over the alphabet A is any letter a ∈ A such that wa is a factor of u. Of course, any factor of u has at least
one right extension. A factor w is called right special if w has at least two right extensions. Similarly, one
can define a left extension and a left special factor. A factor is bispecial if it is both right and left special.
An aperiodic word contains right special factors of any length.

The Parikh vector of a finite word w over an alphabet {0, 1, . . . , d−1} is defined as (|w|0, |w|1, . . . , |w|d−1).
For a finite or infinite word u = u0u1u2 . . . , Prefn u will denote the prefix of length n of u, i.e., Prefn u =

u0u1 . . . un−1.

5

In some of the examples we consider are morphic words. A morphism is a function ϕ : A∗ → B∗ such
that ϕ(ε) = ε and ϕ(wv) = ϕ(w)ϕ(v), for all w, v ∈ A∗. Clearly, a morphism is completely defined by the
images of the letters in the domain. A morphism is prolongable on a ∈ A, if |ϕ(a)| ≥ 2 and a is a prefix of
ϕ(a). If ϕ is prolongable on a, then ϕn(a) is a proper prefix of ϕn+1(a), for all n ∈ N. Therefore, the sequence
(ϕn(a))n≥0 of words defines an infinite word u that is a fixed point of ϕ. Such a word u is a (pure) morphic
word.

Let us introduce a combinatorial condition on infinite words that – as we will see later – guarantees no
lattice structure for the associated PRNGs.

Definition 2.1 (The WELLDOC property). We say that an aperiodic infinite word u over the alphabet
{0, 1, . . . , d − 1} has well distributed occurrences (or has the WELLDOC property) if for any m ∈ N and any
factor w of u the word u satisfies the following condition. If i0, i1, . . . denote the positions of the occurrences
of w in u, then {(

|Prefi j u|0, . . . , |Prefi j u|d−1
)

mod m | j ∈ N
}

= Zd
m ;

that is, the Parikh vectors of Prefi j u for j ∈ N, when reduced modulo m, give the whole set Zd
m.

We define the WELLDOC property for aperiodic words since it clearly never holds for periodic ones. It
is easy to see that if a recurrent infinite word u has the WELLDOC property, then for every vector v ∈ Zd

m
there are infinitely many values of j such that the Parikh vector of Prefi j u is congruent to v modulo m.

Example 2.2. The Thue-Morse word

u = 01101001100101101001011001101001 · · · ,

which is a fixed point of the morphism 0 7→ 01, 1 7→ 10, does not satisfy the WELLDOC property. Indeed,
take m = 2 and w = 00, then w occurs only in odd positions i j so that (|Prefi j u|0 + |Prefi j u|1) = i j is odd.
Thus, e.g.,

(|Prefi j u|0, |Prefi j u|1) mod 2 , (0, 0),

and hence
{(|Prefi j u|0, |Prefi j u|1) mod 2 | j ∈ N} , Z2

2.

Example 2.3. We say that an infinite word u over an alphabet A, |A| = d, is universal if it contains all
finite words overA as its factors. It is easy to see that any universal word satisfies the WELLDOC property.
Indeed, for any word w ∈ A∗ and any m there exists a finite word v such that if i0, i1, . . . , ik denote the
occurrences of w in v, then{(

|Prefi j v|0, . . . , |Prefi j v|d−1
)

mod m | j ∈ {0, 1, . . . , k}
}

= Zd
m .

Since u is universal, v is a factor of u. Denoting by i an occurrence of v in u, one gets that the positions i + i j

are occurrences of w in u. Hence{(
|Prefi+i j u|0, . . . , |Prefi+i j u|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
=

{
(|Prefi u|0, . . . , |Prefi u|d−1) +

(
|Prefi j v|0, . . . , |Prefi j v|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
= Zd

m .

Therefore, u satisfies the WELLDOC property.

6

2.2. Combination of PRNGs
In order to eliminate the lattice structure, it helps to combine PRNGs in a smart way. Such a method

was introduced in [13]. Let X = (Xn)n∈N and Y = (Yn)n∈N be two PRNGs with the same output M ⊂ N and
the same period m ∈ N, and let u = u0u1u2 . . . be a binary infinite word over the alphabet {0, 1}.

The PRNG Z = (Zn)n∈N based on u is obtained by the following algorithm:

1. Read step by step the letters of u.
2. When you read 0 for the i-th time, copy the i-th symbol from X to the end of the constructed sequence

Z.
3. When you read 1 for the i-th time, copy the i-th symbol from Y to the end of the constructed sequence

Z.

This construction can be generalized for non-binary alphabets: Using infinite words over a multiliteral
alphabet, one can combine more than two PRNGs. We remark that following terminology from [3], the
sequence Z is obtained as a shuffle of the sequences X and Y with the steering word u.

In order to distinguish between generators and infinite words used for their combination, we always
use capital letters X,Y,Z, . . . for generators and lower-case letters u, v,w for words (the same convention is
applied for their outputs: A, B, . . . for output values of generators (elements of M), a, b, . . . for letters of
words). Finite sequences of successive elements x̄ = (Xi, Xi+1, . . . , Xi+t−1) of a PRNG X are called t-tuples,
or vectors, while in the case of an infinite word u, we call uiui+1 . . . ui+t−1 a factor of length t.

2.3. The WELLDOC Property and Absence of the Lattice Structure
Guimond et al. in [14] have shown that PRNGs based on infinite words coding a certain class of cut-and-

project sets have no lattice structure. In the sequel, we will generalize their result and find larger classes of
words guaranteeing no lattice structure for associated generators. We focus on the binary alphabet, although
everything works for multiliteral words as well (and for combination of more generators therefore), since
the proofs become more technical in non-binary case.

Theorem 2.4. Let X = (Xn)n∈N and Y = (Yn)n∈N be PRNGs with output M ⊆ N and period m > 1. Let Z be
the PRNG obtained from X and Y, based on a binary infinite word u with the WELLDOC property. Then Z
has no lattice structure.

Proof. According to Proposition 1.1, it suffices to check that its assumptions are met. Let A, B ∈ M and
` ∈ N. Assume A = Xi and B = Y j for some i, j. Consider a right special factor w of u of length `, i.e.,
both words w0 and w1 are factors of u (such a factor w exists since u is an aperiodic word because of the
WELLDOC property). By Definition 2.1, it is possible to find an occurrence ik of w0 in u such that

|Prefik u|0 ≡ i − |w|0 − 1 (mod m), |Prefik u|1 ≡ j − |w|1 − 1 (mod m).

Reading the word w0 at the occurrence ik, the corresponding `-tuple (A1, A2, . . . , A`) of the generator Z
consists of symbols

X(i−|w|0) mod m, . . . , X(i−1) mod m and Y(j−|w|1) mod m, . . . ,Y(j−1) mod m.

When reading 0 after w, the symbol Xi = A from the first generator follows (A1, A2, . . . , A`).
Again, by Definition 2.1, there exists an occurrence is of w1 in u such that

|Prefis u|0 ≡ i − |w|0 − 1 (mod m), |Prefis u|1 ≡ j − |w|1 − 1 (mod m).

When reading the word w at the occurrence is, the same `-tuple (A1, A2, . . . , A`) of Z as previously occurs.
This time, however, (A1, A2, . . . , A`) is followed by B because we read w1 and Y j = B. Thus, we have found
an `-tuple (A1, A2, . . . , A`) of Z followed in Z by both A and B.

7

Remark 2.5. The WELLDOC property is sufficient, but not necessary for absence of the lattice structure.
For example, consider a modified Fibonacci word û where the letter 2 is inserted after each letter, i.e.,
û = 0212020212021202 It is easy to verify that û does not have well distributed occurrences. However,
we will show the following: Let Z be the PRNG combining three generators X = (Xn)n∈N,Y = (Yn)n∈N and
V = (Vn)n∈N with the same output M ⊂ N and the same period m ∈ N according to the modified Fibonacci
word û. Then Z has no lattice structure.

It suffices to verify assumptions of Proposition 1.1. Let A, B ∈ M and ` ∈ N, ` an even number (the
proof is analogous for odd `). Assume A = Xi and B = Y j. Consider a right special factor w of the Fibonacci
word u of length `/2. Since u has the WELLDOC property, there exists an occurrence ik of w0 in u such
that

|Prefik u|0 ≡ i − |w|0 − 1 (mod m), |Prefik u|1 ≡ j − |w|1 − 1 (mod m).

Then if we insert the letter 2 after each letter of w, we obtain a right special factor ŵ of the modified
Fibonacci word û of length `. It holds then that

|Pref2ik û|0 ≡ i − |w|0 − 1 ≡ i − |ŵ|0 − 1 (mod m),

|Pref2ik û|1 ≡ j − |w|1 − 1 ≡ j − |ŵ|1 − 1 (mod m),

|Pref2ik û|2 ≡ i − |w|0 − 1 + j − |w|1 − 1 ≡ i + j − |ŵ|2 − 2 (mod m).

When reading the word ŵ0 at the occurrence 2ik, the corresponding `-tuple (A1, A2, . . . , A`) of the
generator Z is followed by the symbol Xi = A from the first generator.

Again, by the WELLDOC property of u, there exists an occurrence is of w1 in u such that

|Prefis u|0 ≡ i − |w|0 − 1 (mod m), |Prefis u|1 ≡ j − |w|1 − 1 (mod m).

It holds then that

|Pref2is û|0 ≡ i − |w|0 − 1 ≡ i − |ŵ|0 − 1 (mod m),

|Pref2is û|1 ≡ j − |w|1 − 1 ≡ j − |ŵ|1 − 1 (mod m),

|Pref2is û|2 ≡ i − |w|0 − 1 + j − |w|1 − 1 ≡ i + j − |ŵ|2 − 2 (mod m).

When reading the word ŵ at the occurrence 2is, the same `-tuple (A1, A2, . . . , A`) of Z as previously
occurs. This time, however, (A1, A2, . . . , A`) is followed by B because we read ŵ1 and Y j = B. Thus,
we have found an `-tuple (A1, A2, . . . , A`) of Z followed in Z by both A and B. Therefore Z has no lattice
structure.

Remark 2.6. In the proof of Theorem 2.4, the modulus m from the WELLDOC property is set to be equal to
the period of the combined generators. Therefore, if we require absence of the lattice structure for a PRNG
obtained when combining PRNGs with a fixed period m̂, then it is sufficient to use an infinite word u that
satisfies the WELLDOC property for the modulus m = m̂. This means for instance that the Thue-Morse
word is not completely out of the game, but it cannot be used to combine periodic PRNGs with the period
being a power of 2.

We have formulated a combinatorial condition – well distributed occurrences – guaranteeing no lattice
structure of the associated generator. It is now important to find classes of words satisfying such a condition.

8

3. Sturmian Words

In this section we show that Sturmian words have well distributed occurrences.

Definition 3.1. An aperiodic infinite word u is called Sturmian if its factor complexity satisfies Cu(n) = n+1
for all n ∈ N.

So, Sturmian words are by definition binary and they have the lowest possible factor complexity among
aperiodic infinite words. Sturmian words admit various types of characterizations of geometric and combi-
natorial nature. One of such characterizations is via irrational rotations on the unit circle. In [19] Hedlund
and Morse showed that each Sturmian word may be realized measure-theoretically by an irrational rotation
on the circle. That is, every Sturmian word is obtained by coding the symbolic orbit of a point on the circle
of circumference one under a rotation Rα by an irrational angle1 α, 0 < α < 1, where the circle is parti-
tioned into two complementary intervals, one of length α and the other of length 1 − α. Conversely, each
such coding gives rise to a Sturmian word.

Definition 3.2. The rotation by angle α is the mapping Rα from [0, 1) (identified with the unit circle) to
itself defined by Rα(x) = {x + α}, where {x} = x − bxc is the fractional part of x. Considering a partition of
[0, 1) into I0 = [0, 1 − α), I1 = [1 − α, 1), define a word

sα,ρ(n) =

0 if Rn
α(ρ) = {ρ + nα} ∈ I0,

1 if Rn
α(ρ) = {ρ + nα} ∈ I1.

One can also define I′0 = (0, 1 − α], I′1 = (1 − α, 1], the corresponding word is denoted by s′α,ρ.

Remark that some but not all Sturmian words are morphic. In fact, it is known that a characteristic
Sturmian word (i.e., ρ = α) is morphic if and only if the continuous fraction expansion of α is periodic. For
more information on Sturmian words we refer to [16, Chapter 2].

Theorem 3.3. Let u be a Sturmian word. Then u has the WELLDOC property.

Proof. In the proof we use the definition of Sturmian word via rotation. The main idea is controlling the
number of 1’s modulo m by taking circle of length m, and controlling the length taking the rotation by mα.

For the proof we will use an equivalent reformulation of the theorem:

Let u be a Sturmian word on {0, 1}, for any natural number m and any factor w of u let us denote i0, i1, . . .
the occurrences of w in u. Then {(

i j, |Prefi j u|1
)

mod m | j ∈ N
}

= Z2
m.

That is, we control the number of 1’s and the length instead of the number of 0’s.
Since a Sturmian word can be defined via rotations by an irrational angle on a unit circle, without loss

of generality we may assume that u = sα,ρ for some 0 < α < 1, 0 ≤ ρ < 1, α irrational (see Definition 3.2).
Equivalently, we can consider m copies of the circle connected into one circle of length m with m intervals
Ii
1 of length α corresponding to 1. The Sturmian word is obtained by rotation by α on this circle of length

m (see Fig. 2).

1Measured by arc length (thus equivalent to 2πα radians).

9

0

41

32

5− α

4− α

1− α

3− α

2− α

I2
w

Figure 2: Illustration to the proof of Theorem 3.3: the example for m = 5.

Namely, we define the rotation Rα,m as the mapping from [0,m) (identified with the circle of length m)
to itself defined by Rα,m(x) = {x+α}m, where {x}m = x−bx/mcm and for m = 1 coincides with the fractional
part of x. A partition of [0,m) into 2m intervals Ii

0 = [i, i + 1 − α), Ii
1 = [i + 1 − α, i + 1), i = 0, . . . ,m − 1

defines the Sturmian word u = sα,ρ:

sα,ρ(n) =

0 if Rn
α,m(ρ) = {ρ + nα}m ∈ Ii

0 for some i = 0, . . . ,m − 1,
1 if Rn

α,m(ρ) = {ρ + nα}m ∈ Ii
1 for some i = 0, . . . ,m − 1.

It is well known that any factor w = w0 · · ·wk−1 of u corresponds to an interval Iw in [0, 1), so that
whenever you start rotating from the interval Iw, you obtain w. Namely, x ∈ Iw if and only if x ∈ Iw0 ,Rα(x) ∈
Iw1 , . . . ,R

|w|−1
α (x) ∈ Iw|w|−1 .

Similarly, we can define m intervals corresponding to w in [0,m) (circle of length m), so that if Iw =

[x1, x2), then Ii
w = [x1 + i, x2 + i), i = 0, . . . ,m − 1.

Fix a factor w of u, take arbitrary (j, i) ∈ Z2
m. Now let us organize (j, i) among the occurrences of w, i.e.,

find l such that ul . . . ul+|w|−1 = w, l mod m = j and |Prefl u|1 mod m = i:
Consider rotation Rmα,m(x) by mα instead of rotation by α, and start m-rotating from jα + ρ. Formally,

Rmα,m(x) = {x + mα}m, where, as above, {x}m = x − [x/m]m. This rotation will put us to positions mk + j,
k ∈ N, in the Sturmian word: for a ∈ {0, 1} one has sα,ρ(mk + j) = a if Rk

mα,m(jα+ ρ) = { jα+ ρ+ kmα}m ∈ Ii
a

for some i = 0, . . . ,m − 1.
Remark that the points in the orbit of an m-rotation of a point on the m-circle are dense, and hence the

rotation comes infinitely often to each interval. So pick k when jα + mkα + ρ ∈ Ii
w ⊂ [i, i + 1) (and actually

there exist infinitely many such k). Then the length l of the corresponding prefix is equal to km + j, and the
number of 1’s in it is i+mp, where p is the number of complete circles you made, i.e., p = [(jα+mkα+ρ)/m].

4. Arnoux-Rauzy Words

In this section we show that Arnoux-Rauzy words [1], which are natural extensions of Sturmian words
to larger alphabets, also satisfy the WELLDOC property. Note that the proof for Sturmian words cannot be
generalized to Arnoux-Rauzy words, because it is based on the geometric interpretation of Sturmian words
via rotations, while this interpretation does not extend to Arnoux-Rauzy words.

10

4.1. Basic Definitions

The definitions and results we remind in this subsection are well-known and mostly taken from [1, 8]
and generalize the ones given for binary words in [4].

Definition 4.1. Let A be a finite alphabet. The reversal operator is the operator ∼: A∗ 7→ A∗ defined by
recurrence in the following way:

ε̃ = ε, ṽa = aṽ

for all v ∈ A∗ and a ∈ A. The fixed points of the reversal operator are called palindromes.

Definition 4.2. Let v ∈ A∗ be a finite word over the alphabet A. The right palindromic closure of v,
denoted by v(+), is the shortest palindrome that has v as a prefix. It is readily verified that if p is the longest
palindromic suffix of v = wp, then v(+) = wpw̃.

Definition 4.3. We call the iterated (right) palindromic closure operator the operator ψ recurrently defined
by the following rules:

ψ(ε) = ε, ψ(va) = (ψ(v)a)(+)

for all v ∈ A∗ and a ∈ A. The definition of ψ may be extended to infinite words u over A as ψ(u) =

limn ψ(Prefn u), i.e., ψ(u) is the infinite word having ψ(Prefn u) as its prefix for every n ∈ N.

Definition 4.4. Let ∆ be an infinite word on the alphabet A such that every letter occurs infinitely often in
∆. The word c = ψ(∆) is then called a characteristic (or standard) Arnoux-Rauzy word and ∆ is called the
directive sequence of c. An infinite word u is called an Arnoux-Rauzy word if it has the same set of factors
as a (unique) characteristic Arnoux-Rauzy word, which is called the characteristic word of u. The directive
sequence of an Arnoux-Rauzy word is the directive sequence of its characteristic word.

Let us also recall the following well-known characterization (see e.g. [8]):

Theorem 4.5. Let u be an aperiodic infinite word over the alphabetA. Then u is a standard Arnoux-Rauzy
word if and only if the following hold:

1. Fact(u) is closed under reversal (that is, if v is a factor of u so is ṽ).
2. Every left special factor of u is also a prefix.
3. If v is a right special factor of u then va is a factor of u for every a ∈ A.

From the preceding theorem, it can be easily verified that the bispecial factors of a standard Arnoux-
Rauzy correspond to its palindromic prefixes (including the empty word), and hence to the iterated palin-
dromic closure of the prefixes of its directive sequence. That is, if

ε = b0, b1, b2, . . .

is the sequence, ordered by length, of bispecial factors of the standard Arnoux-Rauzy word u, ∆ = ∆0∆1 · · ·

its directive sequence (with ∆i ∈ A for every i), we have bi+1 = (bi∆i)(+).
A direct consequence of this, together with the preceding definitions, is the following statement, which

will be used in the sequel.

Lemma 4.6. Let u be a characteristic Arnoux-Rauzy word and let ∆ and (bi)i≥0 be defined as above. If ∆i

does not occur in bi, then bi+1 = bi∆ibi. Otherwise let j < i be the largest integer such that ∆ j = ∆i. Then
bi+1 = bib−1

j bi.

11

4.2. Parikh Vectors and Arnoux-Rauzy Factors
Where no confusion arises, given an Arnoux-Rauzy word u, we will let

ε = b0, b1, . . . , bn, . . .

denote the sequence of bispecial factors of u ordered by length, and for any i ∈ N we will let b̄i denote the
Parikh vector of bi.

Remark 4.7. By the pigeonhole principle, it is clear that for every m ∈ N there exists an integer N ∈ N such
that, for every i ≥ N, the set { j > i | b̄ j ≡m b̄i} is infinite. Where no confusion arises and with a slight abuse
of notation, fixed m, we will always write N for the smallest of such integers.

Lemma 4.8. Let u be a characteristic Arnoux-Rauzy word and let m ∈ N. Let

α1b̄ j1 + · · · + αkb̄ jk ≡m v̄ ∈ Zd
m

be a linear combination of Parikh vectors such that
∑k

i=1 αi = 0, with ji ≥ N and αi ∈ Z for all i ∈ {1, . . . k}.
Then, for any ` ∈ N, there exists a prefix v of u such that the Parikh vector of v is congruent to v̄ modulo m
and vb` is also a prefix of u.

Proof. Without loss of generality, we can assume α1 ≥ α2 ≥ · · · ≥ αk, hence there exists k′ such that

α1 ≥ αk′ ≥ 0 ≥ αk′+1 ≥ αk.

We will prove the result by induction on β =
∑k′

j=1 α j. If β = 0, trivially, we can take v = ε and the statement
is clearly verified. Let us assume the statement true for all 0 ≤ β < n and let us prove it for β = n. By the
remark preceding this lemma, for every ` we can choose i′ > j′ > ` such that b̄ j1 ≡m b̄i′ and b̄ jk ≡m b̄ j′ .
Since every bispecial factor is a prefix and suffix of all the bigger ones, in particular we have that b j′ is a
suffix of bi′ , and b` is a prefix of b j′ ; this implies that bi′b−1

j′ b` is actually a prefix of bi′ . By assumption, the
Parikh vector of bi′b−1

j′ is clearly b̄i′ − b̄ j′ ≡m b̄ j1 − b̄ jk . Since α1 ≥ 1 implies αk ≤ −1, we have, by induction
hypothesis, that there exists a prefix w of u such that the Parikh vector of w is congruent modulo m to

(α1 − 1)b̄ j1 + · · · + (αk + 1)b̄ jk

and wbi′ is a prefix of u. Hence wbi′b−1
j′ b` is also a prefix of u and, by simple computation, the Parikh vector

of v = wbi′b−1
j′ is congruent modulo m to v̄ = α1b̄ j1 + · · · + αkb̄ jk .

Definition 4.9. Let n ∈ Z. We will say that an integer linear combination of integer vectors is a n-
combination if the sum of all the coefficients equals n.

Lemma 4.10. Let u be a characteristic Arnoux-Rauzy word and let n ∈ N. Every n-combination of Parikh
vectors of bispecial factors can be expressed as an n-combination of Parikh vectors of arbitrarily large
bispecials. In particular, for every K, L ∈ N, it is possible to find a finite number of integers α1, . . . , αk such
that b̄K = α1b̄ j1 + · · · + αkb̄ jk with ji > L for every i and α1 + · · · + αk = 1.

Proof. A direct consequence of Lemma 4.6 is that for every i such that ∆i appears in bi, we have b̄i+1 =

2b̄i − b̄ j, where j < i is the largest such that ∆ j = ∆i. This in turn (since every letter in ∆ appears infinitely
many times from the definition of Arnoux-Rauzy word) implies that for every non-negative integer j, there
exists a positive k such that b̄ j = 2b̄ j+k − b̄ j+k+1, that is, we can substitute each Parikh vector of a bispecial
with a 1-combination of Parikh vectors of strictly larger bispecials. Simply iterating the process, we obtain
the statement.

12

In the following we will assume the setA to be a finite alphabet of cardinality d. For every set X ⊆ A∗

of finite words, we will let PV(X) ⊆ Zd denote the set of Parikh vectors of elements of X and for every
m ∈ N we will let PVm(X) ⊆ Zd

m denote the set of elements of PV(X) reduced modulo m.
For an infinite word u over A, and a factor v of u, let S v(u) denote the set of all prefixes of u followed

by an occurrence of v. In other words,

S v(u) = {p ∈ Pref(u) | pv ∈ Pref(u)}.

Definition 4.11. For any set of finite words X ⊆ A∗, we will say that u has the property PX (or, for short,
that u has PX) if, for every m ∈ N and for every v ∈ X we have that

PVm(S v(u)) = Zd
m.

That is to say, for every vector w̄ ∈ Zd
m there exists a word w ∈ S v(u) such that the Parikh vector of w is

congruent to w̄ modulo m.

With this notation, an infinite word u has the WELLDOC property if and only if it has the property
PFact(u).

Proposition 4.12. Let u be a characteristic Arnoux-Rauzy word over the d-letter alphabet A. Then u has
the property PPref(u).

Proof. Let us fix an arbitrary m ∈ N. We want to show that, for every v ∈ Pref(u), PVm(S v(u)) = Zd
m. Let

then v̄ ∈ Zd and ` be the smallest number such that v is a prefix of b`. Let i1 < i2 < · · · < id be such that ∆i j

does not appear in bi j , where ∆ is the directive word of u. Without loss of generality, we can rearrange the
letters so that each ∆i j is lexicographically smaller than ∆i j+1 . With this assumption if, for every j, we set
v̄ j = b̄i j+1, i.e., equal to the Parikh vector of bi j+1, which, by the first part of Lemma 4.6, equals bi j∆i jbi j , we
can find j − 1 positive integers µ1, . . . , µ j−1 such that v̄ j = (µ1, µ2, . . . , µ j−1, 1, 0, . . . , 0). It is easy to show,
then, that the set V = {v̄1, . . . , v̄d} generates Zd, hence there exists an integer n such that v̄ can be expressed
as an n-combination of elements of V (which are Parikh vectors of bispecial factors of u). Trivially, then,
v̄ = v̄ − n0̄ = v̄ − nb̄0; thus, it is possible to express v̄ as a 0-combination of Parikh vectors of (by the
previous Lemma 4.10) arbitrarily large bispecial factors of u. By Lemma 4.8, then there exists a prefix p of
u whose Parikh vector p̄ satisfies p̄ ≡m v̄ and pb` is a prefix of u. Since we picked ` such that v is a prefix
of b`, we have that p ∈ S v(u). From the arbitrariness of v, v̄ and m, we obtain the statement.

As a corollary of Proposition 4.12, we obtain the main result of this section.

Theorem 4.13. Let u be an Arnoux-Rauzy word over the d-letter alphabet A. Then u has the property
PFact(u), or equivalently, u has the WELLDOC property.

Proof. Let m be a positive integer and let c be the characteristic word of u. Let v be a factor of u and xvy be
the shortest bispecial containing v. By Proposition 4.12, we have that PVm(S xv(c)) = Zd

m and, since the set
is finite, we can find a prefix p of c such that PVm(S xv(p)) = Zd

m. Let w be a prefix of u such that wp is a
prefix of u. If x̄ and w̄ are the Parikh vectors of, respectively, x and w, it is easy to see that

w̄ + x̄ + PV(S xv(p)) ⊆ w̄ + PV(S v(p)) ⊆ PV(S v(u))

Since we have chosen p such that PVm(S xv(p)) = Zd
m, we clearly obtain that PVm(S v(u)) = Zd

m and hence,
by the arbitrariness of v and m, the statement.

13

Remark 4.14. Now we introduce a simple method of obtaining words satisfying the WELLDOC property.
Take a word u with the WELLDOC property over an alphabet {0, 1, . . . , d − 1}, d > 2, apply a morphism
ϕ : d − 1 7→ 0, i 7→ i for i = 0, . . . , d − 2, i.e., ϕ joins two letters into one. It is straightforward that ϕ(u) has
the WELLDOC property. So, taking Arnoux-Rauzy words and joining some letters, we obtain other words
than Sturmian and Arnoux-Rauzy satisfying the WELLDOC property.

Remark 4.15. Now we introduce another class of morphisms preserving the WELLDOC property. Recall
that the adjacency matrix Φ of a morphism ϕ : A → A, with A = {0, 1, . . . , d − 1}, is defined by Φi, j =

|ϕ(j − 1)|i−1 for 1 ≤ i, j ≤ d. By definition, it follows that if v̄ is the Parikh vector of v ∈ A∗, then Φv̄ is the
Parikh vector of ϕ(v).

Let us show that if det Φ = ±1 and u has the WELLDOC property, then so does ϕ(u). Indeed, let
w be any factor of ϕ(u), and suppose xwy = ϕ(v) for some v ∈ Fact(u) and x, y ∈ A∗. We then have
S w(ϕ(u)) ⊇ ϕ(S v(u))x, so that, writing x̄ for the Parikh vector of x, we have for any m > 0

PVm(S w(ϕ(u))) ⊇ Φ · PVm(S v(u)) + x̄ mod m .

Since u has the WELLDOC property, PVm(S v(u)) = Zd
m. As det Φ = ±1, Φ is invertible (even modulo

m), so that Φ · Zd
m + x̄ mod m = Zd

m. Hence PVm(S w(ϕ(u))) = Zd
m, showing that ϕ(u) has the WELLDOC

property by the arbitrariness of w and m.

5. Statistical Tests of PRNGs

In the previous part, we showed that PRNGs based on infinite words with well distributed occurrences
have no lattice structure. In this section we perform empirical statistical tests. We will show how mixing
based on aperiodic infinite words will cope with known weaknesses of LCGs: the statistical test we perform
show significant improvements.

5.1. Computer Generation of Morphic Words

From practical point of view it is important to find algorithms for generating infinite words (more
precisely, their prefixes) that are efficient both in memory footprint and CPU time. In [20] an efficient
algorithm for generating the Fibonacci word was introduced: The prefix of length n is generated in O(log(n))
space and O(n) time. We generalize this method for any Sturmian and Arnoux-Rauzy word being a fixed
point of a morphism ϕ. The main ingredient is that we consider ϕn instead of ϕ; we precompute and store
in the memory ϕn(a) for any a ∈ A. The runtime qnd memory consumption to generate 1010 letters of
the Fibonacci and the Tribonacci word is summarized in Table 1. There are the following observations we
would like to point out:

1. There is no need to store the first n letters in memory to generate the (n + 1)-th letter. Letters are
generated on the fly and only nodes of the traversal tree are kept in the memory. The algorithm also
supports leap frogging, generation can be started at any position in the word. The consequence is that
the algorithm can be easily parallelized to produce multiple streams [10].

2. Using the method from [20] together with our improvement for generation of Sturmian and Arnoux-
Rauzy words, the speed of generation of their prefixes is much higher than the speed of generation of
LCGs output values. For example, generation of 1010 32-bit values using a LCG modulo 264 takes
14.3 seconds on our machine. Compare it to 0.5 seconds for generation of 1010 letters of a fixed
point of a morphism with the same hardware. Thus, using a fixed point to combine LCGs causes only
a negligible runtime penalty.

14

3. The speed of generation can be further improved by using a higher initial memory footprint and CPU
that can effectively copy such larger chunks of memory (size of L1 data cache is a limiting factor).
Thus the new method scales nicely and can benefit form the future CPUs with higher L1 caches. The
only requirement is to precompute ϕn(a), a ∈ A, for larger n. Our program does this automatically
based on the limit on the initial memory consumption provided by the user.

Word Fibonacci Tribonacci
ϕ morphism rule 115s / 336 Bytes 107s / 256 Bytes
ϕn morphism rule 0.41s / 32 Bytes 0.36s / 32 Bytes

Table 1: The comparison of time in seconds and memory consumption to hold the traversal tree state needed to
generate the first 1010 letters of the Fibonacci and the Tribonacci word using the original [20] (1st line) and the new
algorithm (2nd line). The iteration n in the ϕn rule was chosen so that the length of ϕn(a) does not exceed 4096 bytes
for any a ∈ A. The measurement was done on Intel Core i7-3520M CPU running at 2.90GHz.

5.2. Testing PRNGs Based on Sturmian and Arnoux-Rauzy words

We will present results for PRNGs based on:

• the Fibonacci word (as an example of a Sturmian word), i.e., the fixed point of the morphism 0 7→
01, 1 7→ 0,

• the modified Fibonacci word – Fibonacci2 – with the letter 2 inserted after each letter (see Re-
mark 2.5),

• the Tribonacci word (as the simplest example of a ternary Arnoux-Rauzy word), i.e., the fixed point
of 0 7→ 01, 1 7→ 02, 2 7→ 0.

• the class of pure morphic Arnoux-Rauzy words where the morphism is a combination of morphisms
σ0 = {0 7→ 0, 1 7→ 10, 2 7→ 20}, σ1 = {0 7→ 01, 1 7→ 1, 2 7→ 21}, σ2 = {0 7→ 02, 1 7→ 12, 2 7→ 2}
and each morphism σ0..2 is used at least once. We developed an algorithm to generate any word from
this class. We tested several different generators based on Arnoux-Rauzy words from this class but
since the results were very similar we will present here only results for the word AR(σ0, σ1, σ2, σ1).
The resulting morphism is {0 7→ 0102010102010, 1 7→ 102010, 2 7→ 2010102010}. We chose this
particular word because its definition is still relatively simple (it is a combination of only 4 σ rules)
but at the same time it differs significantly from Tribonacci word (for example, the frequencies of
letters are different).

All programs are available online, together with a description [15]. We included the modified Fibonacci
word that does not have the WELLDOC property, but guarantees no lattice structure for the arising gener-
ator. However, this word gives worse results in testing than the Fibonacci word (which is expectable since
the resulting PRNG has an LCG on even positions).

5.2.1. Combining LCGs
Instead of combining plain LCGs, we will apply some modifications before their combination. Those

modifications turn out to be useful according to the known weaknesses of LCGs.

15

We chose LCGs with the period m in range from 247 − 115 to 264, but we use only their upper 32 bits
as the output since the statistical tests require 32-bit sequences as the input. Their output is thus in all cases
M = {0, 1, . . . , 232 − 1}.

We use two batteries of random tests – TestU01 BigCrush and PractRand. They operate differently.
The first one includes 160 statistical tests, many of them tailored to the specific classes of PRNGs. It is
a reputable test, however its drawback is that it works with a fixed amount of data and discards the least
significant bit (for some tests even two bits) of the 32-bit numbers being tested. The second battery consists
of three different tests where one is adapted on short range correlations, one reveals long range violations,
and the last one is a variation on the classical Gap test. Details can be found in [6, 7]. Moreover, the
PractRand battery applies automatically various filters on the input data. For our purpose the lowbit filter
is interesting – it is passing various number of the least significant bits to the statistical tests. Lower bits
of LCGs output with power-of-2 modulo have a much shorter period than the LCG itself. Therefore, the
lowbit filter is useful to check how proposed mixing scheme can cope with this weakness. The PractRand
tests are also able to treat very long input sequences, up to a few exabytes. To control the runtime we have
limited the length of input sequences to 16TB.

The first column of Table 2 shows the list of tested LCGs. The BigCrush column shows how many
tests of the TestU01 BigCrush battery failed. The PractRand column gives the log2 of sample datasize in
Bytes for which the results of the PractRand tests started to be “very suspicious” (p-values smaller than
10−5). One LCG did not show any failures in the PractRand tests which is denoted as > 44 – the meaning
is that the PractRand test has passed successfully 16TB of input data and the test was stopped there. The
last column provides time in seconds to generate the first 1010 32-bit sequences of output on Intel i7-3520M
CPU running at 2.90GHz.

Generator Legend BigCrush PractRand Time 1010

LCG(247 − 115, 71971110957370, 0) L47-115 14 40 281
LCG(263 − 25, 2307085864, 0) L63-25 2 >44 277
LCG(259, 1313, 0) L59 19 27 14.1
LCG(263, 519, 1) L63 19 33 14.4
LCG(264, 2862933555777941757, 1) L64_28 18 35 14.0
LCG(264, 3202034522624059733, 1) L64_32 14 34 14.1
LCG(264, 3935559000370003845, 1) L64_39 13 33 14.0

Table 2: List of the used LCGs with parameters LCG(m, a, c). Results in the BigCrush (number of failed tests) and
in the PractRand (log2 of sample size for which the test started to fail) battery of statistical tests. Time in seconds to
generate the first 1010 32-bit words of output on Intel i7-3520M CPU running at 2.90GHz.

From Table 2 it can be seen that the LCGs with m ∈ {247 − 115, 263 − 25} have the best statistical
properties from the chosen LCGs. At the same time, these LCGs are 20 times slower than the other LCGs
used. This is because we have used 128-bit integer arithmetic to compute their internal state and because
explicit modulo operation cannot be avoided. As the CPU used does not have the 128-bit integer arithmetic,
it has to be implemented in software (in this case via GCC’s __int128 type) which is much slower than the
64-bit arithmetic wired on CPU.

16

5.2.2. Results in Statistical Tests
We will present results for the PRNGs based on the Fibonacci, Fibonacci2, Tribonacci and AR(σ0, σ1, σ2, σ1)

words using the different combinations of LCGs from Table 2. It includes also the situations where the in-
stances of the same LCG are used. Each instance has its own state. The LCGs were seeded with the value
1. The PRNGs were warmed up by generating 109 values before statistical tests started. Since the relative
frequency of the letters in the aperiodic words differ a lot (for example for the Fibonacci word the ratio of
zeroes to ones is given by τ = 1+

√
5

2), the warming procedure will guarantee that the state of instances of
LCGs will differ even when the same LCGs are used. Even more importantly, the distance between the
LCGs is growing as the new output of PRNGs is generated.

Summary of results is in Table 3. The BigCrush column is using the following notation: the first number
indicates how many tests from the BigCrush battery have clearly failed and the optional second number in
parenthesis denotes how many tests have suspiciously low p-value in the range from 10−6 to 10−4. The
PractRand column gives the log2 of sample datasize in Bytes for which the results of the PractRand tests
started to be “very suspicious” (p-values smaller than 10−5). The maximum sample data size used was
16TB .

= 244B. The Time column gives runtime in seconds to generate the first 1010 32-bit words of output
on Intel i7-3520M CPU running at 2.90GHz. The source code of the testing programs is in [15].

Word Group 0 1 2 BigCrush PractRand Time 1010

Fib A L64_28 L64_28 0 41 30.2
L64_32 L64_28 0(1) 41 29.3
L64_39 L64_28 0 (2) 41 31
L64_28 L64_32 0 41 30.2
L64_32 L64_32 0 41 30.1
L64_39 L64_32 0 41 30.1
L64_28 L64_39 0 42 30.2
L64_32 L64_39 0 40 30.5
L64_39 L64_39 0 42 30.1

B L47-115 L47-115 1(1) >44 302
L63-25 L63-25 0(1) >44 299
L59 L59 0(1) 34 28.7
L63 L63 0 40 29.8

C L63-25 L59 0 38 198
L59 L63-25 0(1) 35 134
L63-25 L64_39 0 >44 199
L64_39 L63-25 0 41 135
L59 L64_39 0 35 30.4
L64_39 L59 0 37 31.3

Fib2 A L64_28 L64_28 L64_28 0 40 28.4
L64_39 L64_28 L64_28 0(2) 40 27.9
L64_39 L64_32 L64_28 0 39 27.5
L64_28 L64_39 L64_28 0 40 27.3
L64_32 L64_39 L64_28 0 40 27.5
L64_39 L64_39 L64_28 0 40 27.4
L64_39 L64_28 L64_32 0 40 27.3
L64_28 L64_39 L64_32 0 40 27.9

Continued on the next page
17

Table 3 – Continued from the previous page
Word Group 0 1 2 BigCrush PractRand Time 1010

L64_28 L64_28 L64_39 0(1) 40 27.4
L64_32 L64_28 L64_39 0 39 27.7
L64_39 L64_28 L64_39 0 40 27.3
L64_28 L64_32 L64_39 0 40 27.3
L64_28 L64_39 L64_39 0 40 27.3
L64_39 L64_39 L64_39 0 40 27.4

B L47-115 L47-115 L47-115 0(2) >44 297.0
L63-25 L63-25 L63-25 0(2) >44 293.0
L59 L59 L59 0(1) 32 27.4
L63 L63 L63 0 38 27.3

C L63-25 L59 L64_39 0(1) 39 113.0
L63-25 L64_39 L59 0 32 113.0
L59 L63-25 L64_39 0 38 81.1
L59 L64_39 L63-25 0 39 158.3
L64_39 L63-25 L59 0 31 81.0
L64_39 L59 L63-25 0 42 159.0

Trib A L64_28 L64_28 L64_28 0(2) 42 27.2
L64_39 L64_28 L64_28 0 43 27.1
L64_39 L64_32 L64_28 0(1) 42 28.0
L64_28 L64_39 L64_28 0(1) 42 28.1
L64_32 L64_39 L64_28 0 42 27.1
L64_39 L64_39 L64_28 0(1) 42 27.2
L64_39 L64_28 L64_32 0 43 27.1
L64_28 L64_39 L64_32 0(1) 42 27.1
L64_28 L64_28 L64_39 0 42 28.0
L64_32 L64_28 L64_39 0 42 27.2
L64_39 L64_28 L64_39 0(1) 43 27.1
L64_28 L64_32 L64_39 0 43 27.1
L64_28 L64_39 L64_39 0(2) 42 27.3
L64_39 L64_39 L64_39 0 43 27.1

B L47-115 L47-115 L47-115 1 >44 299.0
L63-25 L63-25 L63-25 0(1) >44 298.0
L59 L59 L59 0 35 27.2
L63 L63 L63 0(1) 41 27.2

C L63-25 L59 L64_39 0(1) 39 172.0
L63-25 L64_39 L59 0(1) 41 173.0
L59 L63-25 L64_39 0 35 106.0
L59 L64_39 L63-25 0 34 70.5
L64_39 L63-25 L59 0 41 107.0
L64_39 L59 L63-25 0(1) 40 74.3

AR A L64_28 L64_28 L64_28 0 43 27.3
L64_39 L64_28 L64_28 0 43 27.0

Continued on the next page

18

Table 3 – Continued from the previous page
Word Group 0 1 2 BigCrush PractRand Time 1010

L64_39 L64_32 L64_28 0 43 27.4
L64_28 L64_39 L64_28 0(1) 43 27.8
L64_32 L64_39 L64_28 0 42 27.1
L64_39 L64_39 L64_28 0 43 27.5
L64_39 L64_28 L64_32 0(1) 43 27.2
L64_28 L64_39 L64_32 0 43 27.1
L64_28 L64_28 L64_39 0 43 27.3
L64_32 L64_28 L64_39 0 42 27.1
L64_39 L64_28 L64_39 0(1) 43 27.4
L64_28 L64_32 L64_39 0 42 27.9
L64_28 L64_39 L64_39 0 43 27.8
L64_39 L64_39 L64_39 0(1) 43 27.4

B L47-115 L47-115 L47-115 1 >44 299
L63-25 L63-25 L63-25 0 >44 297
L59 L59 L59 0 36 27.3
L63 L63 L63 0 42 27.2

C L63-25 L59 L64_39 0 39 173
L63-25 L64_39 L59 0 43 174
L59 L63-25 L64_39 0 36 104
L59 L64_39 L63-25 0 36 70.1
L64_39 L63-25 L59 0 42 107
L64_39 L59 L63-25 0 39 74.7

Table 3: Summary of results of statistical tests for PRNGs based on the Fibonacci, Fibonacci2, Tribonacci and
AR(σ0, σ1, σ2, σ1) words and different combinations of LCGs from Table 2.

We can make the following observations based on the results in statistical tests:

1. The quality of LCGs mproved substantially when we combined them according to infinite words with
the WELLDOC property. This can be seen in the TestU01 BigCrush results. While for the plain LCGs
13 to 19 tests have clearly failed (the only exception is the generator L63-25 with two failures – see
Table 2), almost all of the BigCrush tests passed for the combined generators. The worst result was
to have one BigCrush test failed for the combination of two (respective three) instances of L47-115
based on Fibonacci, Tribonacci and AR(σ0, σ1, σ2, σ1) words. The likely reason is that the generator
L47-115 has the shortest period of all tested LCGs.

2. The results of the PractRand battery confirm the above findings. For instance, in the case of LCGs
with modulo 264, the test started to find irregularities in the distribution of the least significant bit of
tested PRNGs output at around 2TB sample size. Compare it with the sample size of 8GB to 32GB
when fast plain LCGs started to fail the test. The PractRand battery applies different filters on the
input stream and all failures appeared for Low1/32 filter where only the least significant bit of the
PRNG output is used. It corresponds to a known weakness of power-of-2 modulo LCGs: lower bits
of the output have significantly smaller period than the LCG itself. The quality of the PRNGs can be
therefore further improved by combining LCGs that do not show flaws for the least significant bits or
by using for example just 16 upper bits of the LCGs output.

19

3. The quality of the PRNG is linked to the quality of the underlying LCG. When looking at the group
B in Table 3, we observe that the PractRand results of the arising PRNGs are closely related to the
succes of LCGs from Table 2 in the PractRand tests. We also tested LCGs with m = 231 − 1. It has
revealed that if the underlying generators have poor statistical properties, then the PRNG will not be
able to mask it. In particular, you cannot expect that PRNGs – despite their infinite aperiodic nature
– will fix the short period problem. Once the period of the underlying LCG is exhausted, statistical
tests will find irregularities in the output of the PRNG.

4. Using the instances of the same LCG (with only sufficiently distinct seeds) produces as good results
as combination of different LCGs (multipliers and shifts are different, but the modulus is the same).
It is just important to make sure that starting states of the LCGs are far apart enough. Refer to the
group A in Table 3.

5. The lower quality LCG dictates the quality of resulting PRNG. When mixing LCGs with different
quality, use better ones as replacement for more frequent letters in the aperiodic word. We refer to
the group C in Table 3. For example for the Fibonacci word compare first two rows in the group C:
the order of LCGs is merely swapped but the difference in the sample size for which PractRand starts
to fail is 8×. This is even more significant for the Tribonacci based generators where the difference
between the worst and best PractRand results when reordering the underlying LCGs is given by factor
128×.

6. On the other hand, results from the group A in Table 3 demonstrate that when using generators
of similar quality (same modulus, similar deficiencies), the order in which generators are used to
substitute the letters of the infinite word does not influence the quality of the resulting generator.

7. We can also see that the modified Fibonacci word (see Remark 2.5) does not produce better results
than the Fibonacci word. Clearly, a regular structure of 2’s on every other position does not help to
produce a better random sequence even if we mix now three LCGs instead of two as in the case of the
Fibonacci word.

8. Results for the Tribonacci and AR(σ0, σ1, σ2, σ1) words are better than for the Fibonacci word. (We
observed this fact for all ternary Arnoux-Rauzy words in comparison to Sturmian words.) It seems
therefore that mixing three LCGs is better than using just two LCGs, assuming that an infinite word
with the WELLDOC property is used for mixing. We expect naturally that the better chosen LCGs
(or even some other modern fast linear PRNGs, e.g. mt19937 or nonlinear PRNGs based on the
AES cipher) we combine according to an infinite word with the WELLDOC property, the better their
results in statistical tests will be.

9. The results for all the tested Arnoux-Rauzy words from the class described in Section 5.2 were very
similar. This class enables to define an infinite number of different aperiodic words. For example,
one can define following scheme to generate aperiodic word based on user supplied seed. The seed
can be converted to ternary numeral system where each ternary digit will represent one σ rule. To
satisfy the condition that each of σ0, σ1, σ2 rules has to used at least once we can prepend the seed
with prefix, for example σ0, σ1, σ2. The resulting Arnoux-Rauzy word will be defined according to
rule σ0, σ1, σ2, σs1, ..., σsn where s1, ..., sn are ternary digits of the seed.

10. Clearly, not all Sturmian and Arnoux-Rauzy words are equally good from a statistical point of view.
For instance, an undesirable property for the steering word is the occurrence of long powers with a
short root, that would lead to long stretches where few LCGs alternate periodically. This is easily
avoidable, for example, by choosing a Sturmian word having a slope whose continued fraction ex-
pansion does not contain large partial quotients. Please note that this condition also guarantees that
the dominating letter frequency is not too close to 1.

20

In conclusion, we summarize the main results from the user point of view:

• Using different instances of the same LCG to form a new generator based on the infinite word with
the WELLDOC property gives a generator with improved statistical properties.

• The introduced method of generation of morphic words is very fast and supports parallel processing.

• The period of underlying generators has to be large enough – much larger than the number of needed
values.

• When using different types of the underlying LCGs to form a PRNG, the generator with the worst
properties should be used to replace the least frequent letter of the aperiodic word. Moreover, statis-
tical properties of the resulting PRNG are ruled by the deficiencies of the worst used generator.

• In the construction of PRNGs based on aperiodic infinite words, one can use other random number
generators instead of LCGs. We have done testing with two instances (respectively three for the
Tribonacci and Arnoux-Rauzy words) of Mersenne twister 19937 as the underlying generator. The
newly constructed generator has passed all the empirical tests on randomness we have executed (in
contrary to Mersenne twister 19937 itself which is failing two tests from TestU01’s BigCrush battery).

6. Open problems and future research

Concerning the combinatorial part of our paper, one of the interesting open questions there is finding
large families of infinite words satisfying the WELLDOC property. For example, which morphic words
have the WELLDOC property? Also, from a practical point of view it seems to be meaningful to study a
weaker WELLDOC property where in Definition 2.1 instead of every m ∈ N we consider only a particular
m. For instance, one can search for words satisfying such a modified WELLDOC condition for m = 2,
m = 2` etc. Another question to be asked is how to construct words with the WELLDOC property over
larger alphabets using words with such a property over smaller alphabets.

Acknowledgements

The first author was supported by the Czech Science Foundation grant GAČR 13-03538S, and thanks
L’Oréal Czech Republic for the Fellowship Women in Science. The third author was partially supported by
the Italian Ministry of Education (MIUR), under the PRIN 2010–11 project “Automi e Linguaggi Formali:
Aspetti Matematici e Applicativi”. The fifth author was supported by the LABEX MILYON (ANR-10-
LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR).

References

[1] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n + 1, Bulletin de la Société Mathématique de
France 119 (1991) 199–215.

[2] v. Balková, M. Bucci, A. De Luca, S. Puzynina, Infinite words with well distributed occurrences, in: J. Karhumäki,
A. Lepistö, L. Zamboni (Eds.), Combinatorics on Words, volume 8079 of Lecture Notes in Computer Science, Springer,
2013, pp. 46–57.

[3] É. Charlier, T. Kamae, S. Puzynina, L. Q. Zamboni, Infinite self-shuffling words, J. Combin. Theory Ser. A 128 (2014) 1–40.
[4] A. de Luca, Sturmian words: structure, combinatorics, and their arithmetics, Theoret. Comput. Sci. 183 (1997) 45–82.

21

[5] C. Doty-Humphrey, 2010, Practically Random: C++ library of statistical tests for RNGs, URL:
https://sourceforge.net/projects/pracrand.

[6] C. Doty-Humphrey, 2014, Specific tests in PractRand, URL: http://pracrand.sourceforge.net/Tests_engines.txt.
[7] C. Doty-Humphrey, J. Hladký, 2013, Practically Random: Discussion of testing results, URL:

http://sourceforge.net/p/pracrand/discussion/366935/thread/a2eaad12.
[8] X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci.

255 (2001) 539–553.
[9] P. L’Ecuyer, Random number generation, in: Handbook of computational statistics, Springer, Heidelberg, 2012, pp. 35–71.

doi:10.1007/978-3-642-21551-3_3.
[10] P. L’Ecuyer, D. Munger, B. Oreshkin, R. Simard, Random numbers for parallel computers: Requirements and methods, with

emphasis on GPUs, 2015. http://www.iro.umontreal.ca/ lecuyer/myftp/papers/parallel-rng-imacs.pdf,
preprint.

[11] P. L’Ecuyer, R. Simard, TestU01: a C library for empirical testing of random number generators, ACM Trans. Math. Software
33 (2007) Art. 22, 40.

[12] L.-S. Guimond, J. Patera, Proving the deterministic period breaking of linear congruential generators using two tile qua-
sicrystals, Math. Comp. 71(237) (2002) 319–332.

[13] L.-S. Guimond, J. Patera, J. Patera, Combining random number generators using cut and project sequences, Czechoslovak J.
Phys. 51 (2001) 305–311. DI-CRM Workshop on Mathematical Physics (Prague, 2000).

[14] L.-S. Guimond, J. Patera, J. Patera, Statistical properties and implementation of aperiodic pseudorandom number generators,
Appl. Numer. Math. 46(3–4) (2003) 295–318. Applied numerical computing: grid generation and solution methods for
advanced simulations.

[15] J. Hladký, 2013, Random number generators based on the aperiodic infinite words, source programs for statistical tests. URL:
https://github.com/jirka-h/aprng.

[16] M. Lothaire, Algebraic Combinatorics on Words, volume 90 of Encyclopedia of Mathematics and its Applications, Cam-
bridge University Press, 2002.

[17] G. Marsaglia, Random numbers fall mainly in the planes, Proc. Nat. Acad. Sci. U.S.A. 61(1) (1968) 25–28.
[18] M. Morse, G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938) 815–866.
[19] M. Morse, G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62(1) (1940) 1–42.
[20] J. Patera, Generating the Fibonacci chain in O(log n) space and O(n) time, Phys. Particles Nuclei 33(7) (2002) 225–234.

22

