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ABSTRACT: An algorithm based on kriging statistical intelgtion for computing the surrogate re-
sponse of a Finite Element model is presented. The intdipolanodel is calibrated via computation
of Finite Element responses at a set of random occurrencasnaiterial parameter. Such random gen-
eration concentrates at locations where the numerical htredaires a higher amount of data to get the
desired accuracy. As a model problem a standard fractuggagedion test is analyzed. The proposed
procedure is shown to be robust and accurate since respolois@sed via a direct computation and use
of the surrogate model turn out to be undistinguishable.

estimation, see e.gCressie(1993 for a complete
overview on the subject. The basic idea of the
1. INTRODUCTION method consists in predicting the value of a func-
We discuss a kriging-based surrogate model ajm at a given point as a weighted average of ob-
plied to the inverse identification of mode-I fracturgeryed data, whose weights are defined by means of
parameters on a bonded Double Cantilever Begngtochastic model related to the observations cross-
(DCB) specimen. covariance. The main appeal of kriging interpola-
Finite Element(FE) based inverse identificatiqfyn consists in its capability to compute fast esti-
of fracture parameters from a DCB test has begtions of the function values at unknown place-
recently assessed baloroso et al(2013; the ba- ments regardless of the complexity of the observed

sic idea developed therein amounts to simulatifgta providing at the same time the estimation of a
the test via a numerical model depending on a $@hfidence interval.

of (unknown) material parameters whose value is
computed via minimization of a least-squares resid-The surrogate model discussed in this paper uses
ual between the computed response and the expiie-responses of a set of FE simulations asoiire
mental one. Objective of the present work is to deerved data setf the kriging interpolation. Specif-
velop a kriging-based surrogate model able to corally, a set of random points is generated in a suit-
pute the response of a finite element model for thble admissibility range of the material parameters
DCB depending on varying material parameters.parameters to be identified and, at each point, a
The theoretical basis of kriging interpolation, dfE analysis is performed in order to get the cor-
Gaussian process regression, has been set upespondingbservedesponse. The kriging model
Matheron(1973 based on the research Kfige based on thesebservationsallows evaluating es-
(195). The theory has acquired increasing popmations of the surrogate response and a corre-
ularity due to many successful applications deveponding confidence interval. A peculiar feature
oped mainly in spatial analysis and geostatistia#l the presented algorithm consists in the gener-
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ation procedure of the random occurrences whit —
is governed by the confidence interval amplitud: |
whereby newobservationsill cluster at those lo-

cations where the surrogate model is less precise \

It is worth emphasizing that the phase of dat hi” N
generation remains computationally costly sinc
each point of the data set requires a full dire
FE analysis. Nevertheless, in case of experimen....
test campaigns, the proposed procedure provide,sib%re 1: DCB specimen geometry.
expected to provide improved performances com-
pared to the procedure presented/aloroso et al. F
(2013 since specimens and protocols are usua
fixed. Hence, the surrogate model should be ge
erated only once and its redundant employme
amounts to a set of linear computations, wherel
it is faster than direct computations.

The outline of the paper is as follows. The tes
protocol and the relevant FE analysis is summ
rized in section2. Section3 describes the krig-
ing interpolation procedure. The random gene%..
ation algorithm and the calibration of the kriging®
model are presented in sectidin herein practi-
cal applications and numerical results are present
j[hat show the capabllltles of the procedure. Sp?q—{@ure 2: DCB delamination test configuration.
ically, the model is employed for the computation
of the response surrogate of cohesive bonding i~
terface models presentediedele et al(2012 and :
Valoroso et al(2013 belonging to a Mode-—I frac- 20l
ture test campaign. Finally, secti®summarizes ~ HHHH
advantages and drawbacks of the proposed al¢ "
rithm and future research directions. |- R RS e
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2. MODE-I FRACTURE TEST AND FI- !
NITE ELEMENT ANALYSIS

The symmetric DCB test depicted in Figuteis o s
the standard test employed for obtaining the mod -
| fracture energyG,c of bonded assemblies. The
specimen analyzed byaloroso et al. (2013 con-
sists of two adherends made of alumlnum aII%’gure 3: DCB specimen. Geometry and FE mesh used
Al 2024-T351 with IengtH = 200mm width b = for identification.
20mm and thicknes$h = 8mm each adherend is
connected to stainless steel load block.

Tests were carried out on an electromechanicallhe FE mesh used in computations is shown in
material testing system shown in figure Fig@te Figureg3; it consists of 3580 4-node Enhanced As-
following the guidelines of standart50 25217 sumed Strain elements for the bulk material and
(2009; load and displacements data were recorde®s 2-node interface elements. The left end of the
during the test. model is free while the right part presents two sim-

110 mm ! 60 mm

200 mm
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ple supports at the centroids of the load blocks with computing the expected value of the posterior

an increasing vertical displacement prescribed Gaussian process at the point of interest.

the upper block, see e.yaloroso et al(2013 for Letr = [rl...rn]T a vector containing tha ob-

a full detail. served values of the function of interd®(x), x =
[X1...X)]" the vector containing their spatial loca-

180

— tion andx'the point of interest in the domain of the
160 o functionR(x). The weighted average consists in the
140 : ] following:
120 1 R(X) ~F = w'r (1)
2 100 ] wherew is the weight vector and the estimated
& oot ] value ofR.
°f ' T 3.1. Computation of the average weights
40 ] Average weights are obtained via Bayesian updat-
20, 1 ing of the prior Gaussian process by inference of
0 : : : : ‘ : : the cross-correlation of the observed data. From an
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 . . . . - .
5 (mm) operational point of view, it is more convenient to

employ a function derived by the cross-correlation
Figure 4: DCB specimen. Experimental VS computednamed thevariogram which is defined as the vari-
load-deflection curves. ance of the difference between process values at
two locations X andXx;) across realizations of a
Measured and computed load-deflection curve®chastic process or a random field:
are given in Figured. Here on the x-axis is re-
portgd the disp?acemem‘i[mrﬂ of the upper con- i = V(I =x|) =Var[R(xj) =R(x)]  (2)
straint and on the y-axis the corresponding log@gke computation of the variogram at thebserved

P[N]. The experimental load—deflection is plottegbints defines tha+ 1 x n+ 1 matrixSy as:
in blue; the green and the red curves are two nu-

merical responses computed using different values vir 0 v 1
of Gi¢, which is the target parameter of the present Sy = Pt b 3)
identification exercise. Vi -+ Vn 1

1 - 1 0

3. KRIGING INTERPOLATION ) _ ) _ .
Kriging interpolation performs a weighted averad’éh'le the variogram at the point of interestiéfines
of the known values of a function in the neighbot1€n+1 vectors, as:

hood of the point of interest; itis a form of Bayesian ¢ _ [y(R=xa]) - y(%—x]) 1 (4)
inference of observed, or measured, data since av-

erage weights are obtained from a Gaussian regi¥¢erage weights are obtained by the combination
sion of data. The function of interest is modele?df Sy andso:

as a Gaussian process which is defined Ipyiar [W} —slg, (5)
normal distribution; then, a set of values associated A d

with a spatial location is observed and the covavitherew is the weight vector to be used in EQ) (
ance of these evidences is computed. This defir@sdA is an error parameter. Finally, the estimation
for each of the observations, a Gaussian likelihoofiR(X) and its confidence interval amplitudeare:
function which is combined with the prior one in
order to get an updateghosterior Gaussian pro-
cess. The recondite action of the weighted average, (6)
concealed in the definition of the weights, consists T= \/WTS'%

]T
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wheren is the number of observations ands the be any of the input variables of the FEM model. It
vector containing the observed values. is worth to emphasize that, for simplicity purposes,
The computation of Eq.3) and Eq. 4) requires the presented formulation considers a single, scalar
a proper definition of the variogram function. Aparameter only; though, an extension to multiple—
long as the theoretical variogram can be comput@drameters cases can be easily implemented but it
the described procedure is quite straightforwamghes beyond the aims of this work.
nonetheless, it is frequent that the observed funcin order to define the set of observed data, the al-
tion is not available in mathematical form. Imgorithm randomly generates occurrences of the pa-
such circumstances approximated or empirical veametex following a Cumulative Probability Func-
iograms can be used, see e@Qressie(1993. In tion (CDF). At the stage of the initialization of the
the present work the Gaussian variogram has bg@eacedure, the uniform CDF (X) = X — X /Xy — X
used; it is defined as: is considered so that a set af occurrences of
the parameter is generated and, for each one of
0; X = Xthem, the finite element analysis computes the cor-

y (%, %)) = Co-+ (Co— o) (1_63|X;2x"|> . Xjresponding observed valiREE:

7) FE=RE(x);i=1--m (8)

where ¢y is the nugget parameter, i.e. the jum . rE . .
of the variogram function at — x; = 0; cs is the Such a set of observatiom§E and its location in

sill parameter, i.e. the limit of the variogram fol'he ptarameter spsoqls(are cap?ble tlotdeflne ? sur
\X| —x,] s o anda s the range parameter, i.e. thipgate response by kriging interpolation as long as

value of\x. XJ‘ where the difference between th& variogram is defined. For this purpose, the Gaus-
variogram and its sill becomes negligible. Herg!d" variogram of Eq.7) is considered; however,
after, the nugget parameter will be sgt= 0 since its parametersy, ¢s anda need to be conveniently

the FEM responses are not affected by any Iofr%l_'brated taklng Into account the_ot_)ser_vathFn%.
randomness. Is can be easily done by a minimization symplex

algorithm applied to the optimization problem:

4. MODEL CALIBRATION ALGORITHM .
The kriging interpolation procedure summarized G & &=
in the previous section requires a set of observed

m 2
data in order to completely define its mathemati= g mln[co Cs.a Z( (FE — W (Co, Cs, Q)T Héi) ]
cal model. While in traditional applications exper- i=
imental evidences are used, in this work the ob- 9)
served data are defined as the responses of finiterdlerer [ is theith observation and (co, ¢s, a) rf%;
ement analysis. This section presents an algoritisrthe kriging estimate of® provided by the re-
which aims to calibrate a kriging model for the estmaining observations. In this sense, the minimizing
mation of the surrogate response of a finite elemangument is the mean square of the residual com-
DCB test simulation. puted at each one of the observation points.

Let thenR™E (x) be a response of interest com- Once that the variogram is calibrated, a first—
puted via a finite element analysis. Such a respomsetative surrogate model is easily defined by com-
depends on a generic parametewith x andx, putingS], s§ andw® by Eq. @), Eq. @) and Eq. §)
as lower and upper bound respectively. Please naspectively, while the surrogate response at the
that the procedure described in this section is ggrointX comes from Eq.§).
eralized and it can be used to describe any of thel'he accuracy of the surrogate model depends on
responses which are usually computed by finite #ke number of observatiomsand on their distribu-

ement analysis (such as displacements, stressedjom-in the parameter domain: a larger valuenof
ternal forces etc). Analogously, the parametean would provide better results, however, the random
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generation above does not consider any infornvehile convergence is not reached, then the proce-
tion about the features of the actual response. Itigre is iterated updating= k+ 1 and returning to
convenient to perform the generation of the randastepl.
locationsx; by the following recursive procedure:
after the firstm generations, Eq.6] provides, for 4.1. Numerical Application
any point of the domain of, the surrogate responsén order to provide a clearer idea about the proposed
and its confidence interval(x) which is obviously algorithm, a numerical application is presented in
larger where the surrogate response is less accurtig. section. It concerns the finite element simu-
The functionT (x) can be used as the probabilit}ation of a DCB test whose specifications are pro-
density function of the random generation, if conv&ided in Section2, with maximum displacement
niently normalized. Specifically, an updated CD®f the upper load blockd = 2.4mm The critical
can be defined as: fracture energy release ra@®. has been used as
X _0 varying parametex while the total energy release
1 X T (E) dE ; ; . ;

Rl (x) = - (10) (i.e. the integral of the constraint reaction among

5 T0(&) d& the whole test) is the response of interest.

so that the random generation will provide out- Considering the experimental results presented

comes with higher probability where the surrog e Ve:;oro?g ethal. (2813, thtet ugger :n7d5 Ir(:]\éver
model lacks of precision. Note that the denomi;?égun S 0l Nave been set 1o an prre.

tor of Eq. (L0) is a measure of the accuracy of the'na"y’ the nllmee.r of generated 'random observa-
whole surrogate model since it is its cumulative gions at each iteration of the algorithm has been set

ror. This allows one to iterate such procedure wi m=8. This is in order to take advantage of paral-

subsequent generations mfobservation points aseI computing: the algorlthm' has been |mplement§d
%%that several FEM analysis run separately on dif-

long as the overall error is greater than a toleranf : : :
value erent cores and a commitment of eight cores is the

The iterative procedure for generating the SLﬂ”ptlmaI choice for the employed hardware.
rogate model can be summarized in the followin~
steps: 45
1. generatiom new values ok; with CDF F>'<“1;
2. computation of "€ by Finite Element analy-
sis; I

3. calibration of the variograrg and identifica- 20l
tion of the parameter& ¢ & throughthe  «
optimization problem:

40

251

Al Al A . 20
& & & - arg minlco,ceal

15

(k+1)m )
Z (riF £ —w(co,Cs, a>r?ii) (11) W e e @0 o ew o w0
i= G, /]
4. computation ofSf, s§ and w® by Eq. @), Figure 5: Surrogate response (solid line) and observa-
Eqg. @) and Eq. §); tions (diamonds) at the 1st iteration.
5. evaluation of the overall errorek =
f;,(” r° (5) d¢ and convergence check; Figure5 shows the surrogate response at the first
6. updating of the CDF: iterations with the parameté®. reported on the
XK (&) dE x—axis and the surrogate respo§&¢) on the y—
R (X) = e (12) axis. The blue diamonds represent the responses
fXI T¢(&) d¢ computed by the FEM algorithm at each one of the
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_ Once that the observation set corresponding to
. the total energy release is defined, the calibration
S of a kriging model can be performed for any other
L output of the FEM analysis.

The peculiar surrogate model has been also com-
puted for the load—displacement response of the
considered DCB specimen; specifically, each time—
step of the DCB test simulation can be treated as
a single, scalar response so that a kriging surrogate
model can be defined. The whole set of surrogate
models corresponding to each one of the responses—
in—time leads to the definition of a complete load—
displacement curve surrogate.

Figure 6: Normalized amplitude of the confidence in-  Figure 8 shows a comparison between the out-
terval after the 1st iteration (solid curve) and random put of the FEM analysis (black curves) and the cor-
values of the parameter generated at the 2nd iteratiorresponding surrogate response (colored diamonds)
(blue dashed lines). for three values of the parame®y.. A good fit of

the surrogate model can easily be appreciated since

first eight randomly generated values of the parai€ corresponding plots are not distinguishable; the

eter. The surrogate response has been subsequgﬁﬁ’ﬁ(/mum error of the surrogate model, for this spe-

computed by the kriging procedure described aboq}gc case, results aboutTb.
and it is plotted as the red solid line. The corre
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sponging amplitude of the confidence intervak 300 : : : :
plotted as a black line in Figur@ where the blue —o—G,;=0-1 Krig
vertical lines correspond to the eight values of tF 54! LY _G'cfo'l Fe"_1
parameter generated at iteration 2. It is worth 1 v AN $2'°Z3'2 E”g
emphasize how the new random observations clt .| i ~"x,~ T s K::
ter where the error results higher. After five iter : el G:Z=O.75 Fem

ations (40 FEM analysis) the algorithm provides = 150
sufficiently accurate surrogate model shown in Fi¢ o
ure7.
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5. DISCUSSION AND CONCLUSIONS

A surrogate model of finite element simulations
based on a kriging interpolation procedure is pre-
Figure 7: Surrogate response (solid line) and observasented in this work. kriging interpolates observed
tions (diamonds) at the 5th iteration. data of a function of interest in order to predict the
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function’s value at an assigned point in the paramirect Differentiation routine in order to get the sur-
eter domain. The presented procedure uses asrogate response derivatives. This is a further ap-
servations the outcomes of finite element analypisaling benefit since several application cases re-
performed at randomly generated values of the masre finite differences for the computation of their
rameter. The peculiar capability of kriging interderivatives as in the case of the parameter identifi-
polation to provide a confidence interval leads tation presented iWaloroso et al(2013 and con-

an efficient random generation of the observatioosrning the same structural model employed in this
so that the generated points cluster where the sumork. The availability of a surrogate model provid-
gate model lacks of precision. The numerical appiiRg the response derivative would permit the em-
cation shown in Sectiod.1 shows the consistencyployment of gradient algorithm which are faster and
of the presented algorithm: the maximum error afore reliable than gradient—free algorithms. An
the surrogate model results about® of the cor- exhaustive focus on direct differentiation would be
responding finite element response. beyond the purposes of this work but are one of the

The presented algorithm is not strictly limited t§/ture research direction. .
applications similar to the one shown in Sectibh Further |mprovemen'ts concern the case of multi-
Since the procedure processes numerical respor§sParameters analysis. The procedure can be eas-
it is possible to perform it for any kind of numerly extended in order to be performed in a multi—
ical analysis or structural models. Even the lidimensional parameter space; nevertheless, in this
itation about the parameter domain can be eai§se the peculiar relationship between the parame-
overtaken: from a mathematical point of view, %'S strongly influences the definition of the auto-
convenient definition of the CDFEs could generagé)rrelation functions, thus, specific investigations
unbounded random values of the parameter. UB€ required. This further extension will also be a
per and lower bounds introduced in Sectiprare LOPIC Of the upcoming research.
aimed at obtaining an easy implementation of the
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