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ABSTRACT: A new multiobjective linearization method for nonlinear random vibration analysis is presented.
The strategy employs the Tail–Equivalent Linearization Method (TELM) which is a non–parametric lineariza-
tion algorithm for multi–DOFs nonlinear systems. Due to the definition of conditioned probability, the joint tail
probability of a multi–response structural system can be written as the product of a first marginal probability and
some lower order conditioned tail probabilities. The algorithm decomposes the joint probability into a conveient
form so that the conditioned probabilities are arranged consequently. In this case, each probability but the first
is conditioned to previously computed responses. Then, TELM is recursively applied in order to define a set of
interconnected linearized systems, each one defined in terms of its impulse response function. The definition of
the base excitation by its cross–covariance or its power spectral density leads to the first marginal tail probabil-
ity and to the power spectral density of the corresponding response. Afterwards, the interconnected linearized
system is used to compute the tail probability and the power spectral density of each response in function of the
previously analyzed responses’ statistics. The computed joint probability can be used in random vibration anal-
ysis in order to get various statistics of the nonlinear response, such as the mean level–crossing rate and the joint
first–passage probability. This work analyzes a series system, however, the procedure can be easily extended to
the general case. Also, numerical applications illustrate the features of the method and comparison with results
obtained by Monte Carlo simulations demonstrate its accuracy, in particular for high response thresholds.

1 INTRODUCTION

In performance–based earthquake engineering, it is important to properly consider non–linearities since fail-
ure usually occurs in the non–linear range of structural behavior. Equivalent linearization is one of the most
powerful techniques in Random Vibrations because of its versatility in application to MDOF Finite Element
Models. Several criteria have been proposed in years, in particular, one efficient non–parametric algorithm is
the Tail–Equivalent Linearization Method (TELM) (Fujimura and Der Kiureghian 2007). It is able to predict
non–Gaussian response distributions; also, non–stationary analysis can be performed (Der Kiureghian and Fu-
jimura 2009), and it can even account for asymmetries providing non–symmetric response PDFs (Sessa and Der
Kiureghian 2009).

However, dependence on a specific response affetcs equivalent linearization. TELM defines probability
distributions of a single specific response only, thus, it is a single–objective analysis. Common structures usually
require a multi–objective analysis: buildings’ structural safety conditions often require that each inter–storey
drift remains below a safety threshold. Thus, structural RV analysis can be considered as the investigation of
the global reliability of a stochastic system which may be defined by a set of mutually related components both
in series (such as in the inter–storey drift case) and parallel subsets.

Efficient algorithm have been developed for this purpose. Joint First–Passage Probability of interconnected
systems (Song and Der Kiureghian 2006) leads to reasonably accurate estimates, however, the joint–PDF of
the responses of interest is required. Matrix–based System Reliability (MSR) and Linear Programming (LP)
(Song and Der Kiureghian 2003) efficiently compute reliability for any general system; the procedure is not
dependent on the number of components and it is able to define the narrowest possible bounds for the available
informations. However, because of its wide capability, Linear Programming can be demanding because it must
be able to address any possible system configuration.



A procedure for multi–objective random vibration analysis is presented in this work. Its purpose is to define
a discretized form of a non–Gaussian responses joint-PDF. This formulation is very fruitful because, eventually,
the computed joint–PDF can be employed either for stationary or non–stationary analysis applying classical
stochastic methods regardless of dimensions and parameters of the structural system. The underlying philoso-
phy consists in defining the statistics of a “multi–objective” linearized system, whose equivalence condition is
defined in therms of joint–tail probability of the system components.

Briefly, the joint–tail probability of a structural system is written as the product of conditioned probabilities
of each response. Then, an equivalent linear system (TELS) is computed by TELM for each response. The TELS
are defined in terms of a collection of Impulse Response Functions (IRF), each corresponding to a specified
threshold.

Note that the IRF is defined as the evolution in time of a chosen response, given by a generical impulsive
action. Thus, the proposed strategy will compute two different kinds of IRFs: a ground motion – response
relationship, if only the marginal distribution of the specified response is needed, or a response–i – response–j
relationship, if the needed distribution of the response j is conditioned on the response i.

Once the input excitation process statistics have been defined, it is possible to evaluate all the marginal
distributions of the non–conditioned responses and also their power spectral densities which will be employed
in order to get the statistics of the conditioned responses.

In Section 2 a review of the classic formulation of TELM is presented. Afterwards, the decomposition of
the multiobjective problem is shown in Section 3 and then, the conditioned tail probabilities are computed in
Section 4. Finally, numerical applications and comparisons with the results of a Monte Carlo simulation are
provided in Section 5.

2 TELM REVIEW

Let F (t) be a random process defined as the response of a linear filter excited by a white noise W (τ):

F (t) =
∫ t

0
hf (t− τ)W (τ) dτ (1)

where hf (τ) is the Impulse Response Function (IRF) of the linear filter. The random process F (t) can be
expressed in discretized form as a random pulse train (Der Kiureghian 2000) as:

F (t) =
n∑

i=1

si (t)ui = sT (t)u (2)

where u is a vector of standard normal random variables and s (t) is a deterministic vector depending on the
base–excitation’s covariance.

A multi–degrees–of–freedom (MDOF) nonlinear system can be defined by its equation of motion:

MÜ + CU̇ + R
(
UU̇

)
= PF (t) (3)

where U denotes the displacements vector, M, C and P, respectively, the mass, damping and loads matrixes
and R is the nonlinear restoring force. A generic response of interest X (t) can be defined as nonlinear func-
tion of nodal displacements, velocities and accelerations. Our interest is in determining the tail probability
Pr [x ≤ X (tn)] for a specified threshold x at time tn. Defining a limit state function such as:

G (x, tn,u) = x−X (t) (4)

TELM (Fujimura and Der Kiureghian 2007) is able to perform the First–Order Reliability Method (FORM)
which evaluates the tail probability and the “design point” as the solution to the costrainted optimization prob-
lem:

u� (x, tn) = arg min [‖u‖ |G (x, tn,u) = 0] . (5)

Note that u� is the closest point of the limit state surface 4 to the origin in the standard–normal space and
corresponds to its maximum likelihood. Furthermore, FORM linearizes the limit state function and gets the
first–order approximation of its tail–probability.



Now, the generic response of a linear system can be expressed in terms of its IRF:

XL (t) =
∫ t

0
h (t− τ)F (τ) dτ (6)

or, in discretized form:

XL (t) =
∫ t

0
h (t− τ)

n∑
i=1

si (τ)ui dτ = a (t)u (7)

where the deterministic vector a (t) has elements:

ai (t) =
∫ t

0
h (t− τ) si (τ) dτ. (8)

The limit state function 4 for the response 6 describes an hyperplane in the standard normal space, due to
the linearity of the system. Geometrical considerations yield:

a (tn) =
x

‖u� (x, tn)‖
u� (x, tn)T

‖u� (x, tn)‖ . (9)

The TELM equivalent condition requires that the tail probability of the nonlinear and linearized system must
be the same, then, both systems must lead to the same design point. Once the nonlinear design point is computed
by FORM, it is possible to get the linera IRF by the 9 and the 8. The Tail–equivalent Linearized System (TELS),
then, is fully defined by a collection of IRFs, each one depending on a different threshold xi.

3 MULTIOBJECTIVE RANDOM VIBRATION ANALYSIS

TELM is very powerful because it can be performed regardless of the number of DOFs and of the constitutive
models (as long as they can be smoothed). Its only requirements are that the nonlinear system must reach
stationarity before the considered time tn and the Limit State Function’s first derivative must be continuous in
the standard normal space. While the first requirement can be easily achieved, the latter one could be harder to
satisfy. In fact, most of the common problems require to evaluate the first–excursion probability with respect a
safety threshold of either displacements or internal forces. While for some structures safety can be expressed in
terms of a single response (such as for tanks, bridges and electrical substations), in many cases the global safety
depends on a set of responses of interest. For example, the safety condition of a building requires that each
inter–storey drift remains smaller than the safety threshold during the seismic motion. In that case, the global
limit state function and the tail probability can be written as:

G (x, tn) = min [x1 −X1 (tn) , x2 −X2 (tn) , . . . , xm −Xm (tn)] (10)

Pr [G (x, tn) ≤ 0] = Pr [x1 ≤ X1 ∪ x2 ≤ X2 ∪ . . .∪ xm ≤ Xm] = 1− Pr

[
m⋂

i=1

xi ≥ Xi

]
. (11)

Note that in the 11 the dependence on tn of the Xi has been omitted for simplicity. TELM is not able to get
the 11 because the first derivative of the 10 is usually non–continuous in the standard normal space. Furthermore,
the LSF itself cannot be easily approximated by an hyperplane.

This drawback can be overcome by decomposing the joint–probability into the product of lower–order
conditioned probabilities:

Pr [G (x, tn) ≥ 0] = Pr [x1 ≥ X1]Pr [x2 ≥ X2|X1] . . .Pr [xm ≥ Xm|X1 . . .Xm−1] . (12)

The proposed stategy consists in computing the conditioned probability of the 16 by TELM and then to get
the joint–tail probability in order to perform nonlinear random vibration analysis. Note that the Equations 10, 11
and 16 refer to a series system, i.e. the global chrisis occurs if any of the responses crosses its safety threshold.
In case of parallel or hybrid systems, the Equation 16 can be easily modified by computing the complementary–
conditioned tail probabilities.



4 THE CONDITIONED PROBABILITIES

Each term of the right side of the 16 can be computed separately. The first one is a marginal probability which
can be computed by the usual formulation of TELM. In particular, let’s consider a set of threshold of interest
x = [x1 x2 . . . xm]T , for each one of them, TELM evaluates the correponding IRF in discretized form: h1,l

k , where
the indexes 1, k and l designate respectively the response, the time step and the threshold. The Fourier transform
of the IRF is the Frequency Response Function (FRF) H1,l (ω), corresponding to the lth threshold, which leads
to the variance of the response:

σ2
1,l = 2

∫ ∞

0

∥∥∥H1,l (ω)
∥∥∥2

ΦFF (ω) dω (13)

where ΦFF is the power spectral density of the base excitation. Then, the tail probability is:

Pr
[
xl

1 ≥ X1

]
= Φ

[
xl

1

σ1,l

]
(14)

where Φ[·] denotes the Standard Normal Cumulative Distribution Function. Also, the power spectral density of
the displacements and of the acceleration is:

Φl
X1X1

(ω) =
∥∥∥H1,l (ω)

∥∥∥2
ΦFF (ω) (15)

note that the tail probability and the power spectral density are referred only to the threshold xl. The power
spectral density of the derivatives of X1 can be easily obtained from the 15 as shown in (Lutes and Sarkani
2004). Performing a similar procedure, also the conditioned tail probabilities can be computed:

Pr
[
xl

2 ≥ X2|xk
1 = X1

]
= Φ

[
xl

2

σ2|1,l|k

]
(16)

where:

σ2
2|1,l|k = 2

∫ ∞

0

∥∥∥H2|1,l (ω)
∥∥∥2

Φk
Ẍ1Ẍ1

(ω) dω. (17)

The frequency response function H2|1,l (ω) it the response X2 for a steady–state action in X1. Its evaluation
will be described in the following. Note that the 17 can be written only if the response X2 given by an excitation
in X1 is uncoupled with the base excitation F (t). This hypothesis is usually right for common buildings as
long as the responses of interest are either the interstorey drifts or the floor displacements. In fact, if the first
floor displacement is assigned, then the second floor drift can be considered independent of the base excitation.
Thus, TELM can be performed in order to get the IRF h

2|1,l|k
k where the index l denotes the lth threshold for X2

and k denotes the kth threshold of X1. For each threshold value of X1, then, TELM defines a set of IRFs each
corresponding to a threshold value of X2. This procedure can be applied recursively to each response of interest
in order to get all the conditioned tail probabilities; its generalized formulation is:

Pr
[
xl

j ≥ Xj|xk
i = Xi

]
= Φ

[
xl

j

σj|i,l|k

]
; σ2

j|i,l|k = 2
∫ ∞

0

∥∥∥Hj|i,l (ω)
∥∥∥2

Φk
ẌiẌi

(ω) dω. (18)

The conditioned IRFs and FRFs h
j|i,l
k and Hj|i,l (ω) can be easily computed by TELM, by using the jth

limit state function and an excitation at the ith response. In case of interstorey drift responses, the ith excitation
would be a storey acceleration.

Note that the input excitation of TELM should be defined with respect the power spectral density ΦẌiẌi
(ω):

first, the auto–covariance ΓẌiẌi
is computed by taking the Fourier Transform of the PSD, then, the covariance

matrix G can be built as discretized form of the auto–covariance (where each row–column corresponds to a
specific time–step) which leads to the matrix S:

SST = G; S = [s (t1) s (t2) . . . s (tn)] (19)

which defines the excitation process by the Equation 2. However, this procedure could be demanding because the
linearized system would depend on each specific threshold of the previous responses and on the base excitation.
It has been shown in (Fujimura and Der Kiureghian 2007) that the linearized system does not depend on the
excitation scale and that in common practice it is possible to evaluate the TELS with respect a White Noise
excitation regardless of its real power spectral density. The so–called “White Noise approximation” leads to
reasonably approximated linearized systems. Thus, the set of IRFs of each response of interest will be computed
for each threshold of the response itself and regardless of the statistics of the other responses.
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Figure 1:

Table 1: Mechanical parameters of the structural models
Model k1

[
N
m

]
k1

[
N
m

]
m [kg]

2DOF–1 7.5 · 107 7.0 · 107 3.0 · 104

2DOF–2 4.0 · 107 2.0 · 107 3.0 · 104

5 NUMERICAL APPLICATION

In order to test the proposed procedure, a numerical application has been developed. The chosen structural
models are two degrees–of–freedom nonlinear buildings, whose geometric scheme is shown in Figure 5; also,
mechanical parameters are summarized in Table 1. Note that the first–floor displacement has been set as the
first response of interest X1 (t) and the drift between the first and the second floot has been set as the second
response X2 (t). Nonlinearities are modeled by Bouc–Wen constitutive models (Bouc 1963), (Wen 1976), (Wen
1980) with α = 0.05, A0 = n = 1 and β = γ = 35. A sample hysteretic loop of the Bouc–Wen model is shown
in Figure 5. The material’s stiffness shown in Table 1 is the tangent of the Bouc–Wen loop at zero displacement.

The first performance of TELM computes the IRFs of X1 (tn) for a set of 20 thresholds with step Δx = 1cm;
some of the computed IRFs are shown in Figure 2. Then, a random vibration analysis is performed in order to
get the statistics and the power spectral density of the displacement X1. The base excitation has been defined
as an unfiltered white noise. The analysis has been performed for the white noise cutoff standard deviation
σWN = 0.50g. The displacement power spectral densities are shown in Figure 3.

Then, TELM has been performed again; the input excitation is the first displacement X1 and the Limit State
Function has been defined in terms of X2. The computed IRFs are shown in Figure 4; note that each IRF is the
evolution in time of the interstorey drift given by an impulsive action of the first floor displacement, as explained
in the previous section.

The computed IRFs lead to the evaluation of the conditioned tail probabilities of X2 given X1. The condi-
tioned response statistics are easily computed by evaluating the FRFs as the Fourier transform of the IRFs, and
then to combine them with the power spectral densities of the displacement X1. The conditioned PDFs of X2

given X1 are shown in Figure 5.
Finally, it is possible to employ the 16 in order to get the joint distribution of the responses. In Figure 6 the

complementary–joint–PDF are shown, i.e. the probability that at least one of the responses is greater than the
corresponding threshold.

In order to check the approximation of the proposed strategy, a Monte Carlo simulation has been performed.
The response statistics obtained with 10,000 samplings have been compared with the results of TELM. In
particular, Figure 7 shows the difference of the complementary–joint–PDFs with respect the thresholds x1 and
x2, specifically, in both cases, the computed error is not negligible for small thresholds. This expected behavior
is due a drawback of TELM: the linearized system depends on the dimensions of the hysteresis loops. For this
reason, the nonlinear relationship between forces and displacements is close to be linear at small thresholds,
then, the response statistics are quite close to be Gaussian. However, it has been shown in (Fujimura 2006)
that this drawback is overcomed by the evaluation of the extreme–response statistics: the error of the response
statistics at tn does not affects the first–passage probability. Also, in common practice, the structural safety
is usually computed for higher values of the threshold, where the error between TELM and the Monte Carlo
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Figure 2: Impulse Response Functions – X1 (t)
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Figure 3: Power spectral densities of X1 – σWN = 0.50g
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Figure 4: Impulse Response Functions – X2 (t)
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Figure 5: PDF of X2 (t) given X1 – σWN = 0.5g
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Figure 6: Complementary Joint–CDF – σWN = 0.50g

simulation is negligible.

6 CONCLUSIONS

An extension of the Tail Equivalent Linearization Method is presented. Its goal is to compute the joint tail
probability of structural systems whose reliability depends on two or more responses of interest. The proposed
procedure can be performed regardless of the system dimensions, the only requirements are the existence and
uniqueness of TELS. In this paper, just the series system case has been investigated, however, the algorithm can
be easily extended to the general case of parallel and hybrid systems. Furthermore, numerical applications have
been provided; in order to be able to show the joint probabilities, only the two–degrees of freedom has been
presented. In any case, a generalized procedure can be applied also to multi–dimensional systems.

The proposed algorithm leads to reasonably accurate results which can be employed in order to get the
level–crossing rate and the Joint First–Passage Probability of interconnected systems (Song and Der Kiureghian
2006); it appears particularly convenient for buildings. Also, the TELM algorithm has been implemented in
OpenSees, a framework for structural analysis provided by the Pacific Earthquake Engineering Research Center
and it is available for scientific purposes.

However, further work can be developed. In fact, the white noise approximation affects the computation
of the conditioned Impulse Response Functions (IRFs); the error is negligible for the provided applications,
however, it could be higher for complex systems and narrow band excitations. A further development would
define the conditioned IRFs with respect conveniently filtered white noises in order to get the structural filtering.

Also, a further development is the implementation of multi–support excitations: the provided structure
presents two responses whose the second one can be expressed in function of the first response and regard-
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Figure 7: Monte Carlo - TELM error – σWN = 0.50g

less of the base excitation. If the structure has coupled responses, then TELM should take into account of the
multiple dependence by using multi–support excitations.
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