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Lysosomal dysfunction disrupts presynaptic
maintenance and restoration of presynaptic
function prevents neurodegeneration in lysosomal
storage diseases
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Abstract

Lysosomal storage disorders (LSDs) are inherited diseases character-
ized by lysosomal dysfunction and often showing a neurodegenerative
course. There is no cure to treat the central nervous system in LSDs.
Moreover, the mechanisms driving neuronal degeneration in these
pathological conditions remain largely unknown. By studying mouse
models of LSDs, we found that neurodegeneration develops progres-
sively with profound alterations in presynaptic structure and function.
In these models, impaired lysosomal activity causes massive perikaryal
accumulation of insoluble a-synuclein and increased proteasomal
degradation of cysteine string protein a (CSPa). As a result, the avail-
ability of both a-synuclein and CSPa at nerve terminals strongly
decreases, thus inhibiting soluble NSF attachment receptor (SNARE)
complex assembly and synaptic vesicle recycling. Aberrant presynaptic
SNARE phenotype is recapitulated in mice with genetic ablation of
one allele of both CSPa and a-synuclein. The overexpression of CSPa in
the brain of a mouse model of mucopolysaccharidosis type IIIA, a
severe form of LSD, efficiently re-established SNARE complex assem-
bly, thereby ameliorating presynaptic function, attenuating neurode-
generative signs, and prolonging survival. Our data show that
neurodegenerative processes associated with lysosomal dysfunction
may be presynaptically initiated by a concomitant reduction in a-
synuclein and CSPa levels at nerve terminals. They also demonstrate
that neurodegeneration in LSDs can be slowed down by re-estab-
lishing presynaptic functions, thus identifying synapse maintenance as
a novel potentially druggable target for brain treatment in LSDs.
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Introduction

Lysosomes are cellular organelles, which play a key role in the

digestion and recycling processes of the cell (Settembre et al, 2013).

The decline of lysosomal function is a central event in a wide range

of neuropathological conditions (Nixon et al, 2008; Nixon, 2013;

Fraldi et al, 2016). Among these lysosomal storage disorders (LSDs)

are a group of severe disorders often affecting patients in early child-

hood with an overall incidence of 1 in 5,000 (Suzuki, 2002). LSDs

are caused by inherited defects of either lysosomal or non-lysosomal

proteins and are characterized by both the accumulation of unde-

graded material into the lysosomes and global impairment of lysoso-

mal function (Platt et al, 2012; Boustany, 2013). Central nervous

system (CNS) involvement represents one of the most important

clinical features in LSDs and a major target for any effective thera-

peutic protocol. However, to date, there is no cure that can treat the

CNS in LSDs and existing protocols, mostly based on correcting/

replacing the defective gene/protein, have shown substantial ineffi-

cacy. Thus, there is an urgent need to improve CNS therapy in LSDs

for clinical purposes.

The general lysosomal impairment in LSDs occurs independently

from the specific genetic deficiency and triggers neurodegenerative

processes by mechanisms that are only partially understood

(Schultz et al, 2011; Fraldi et al, 2016). In particular, how the fail-

ure of lysosomal system impacts on specific neuronal functions and

how this contributes to neurodegenerative processes remain largely

unknown. A better understanding of these pathways may open new

therapeutic interventions in LSDs and, more in general, in other

neurodegenerative conditions with lysosomal involvement.

Presynaptic nerve terminals are deeply specialized area of

neuronal cells that sustains central nervous system (CNS) activity

through the neurotransmission (Murthy & De Camilli, 2003). Neuro-

transmitter release is mediated by the consecutive recycling of

synaptic vesicles, a process that requires a continuous turnover of
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synaptic proteins (Fernandez-Alfonso & Ryan, 2006). Growing

evidence indicates that presynaptic terminals may initiate neurode-

generation (Kramer & Schulz-Schaeffer, 2007; Scheff et al, 2007;

Nemani et al, 2010; Lundblad et al, 2012). However, whether presy-

naptic deficits may be involved in neurodegenerative processes

associated with lysosomal dysfunction is still unexplored.

By studying models of LSDs, we demonstrated that the failure of

lysosomal system in neurons disrupts the homeostasis of the

machinery involved in the synaptic vesicle recycling, thus severely

affecting presynaptic integrity and contributing to neurodegenera-

tive processes. Our findings identify synaptic maintenance as a new

target for the treatment of LSDs, thus having important implications

in the therapy for these diseases.

Results

Alterations of presynaptic structure and function are associated
with lysosomal dysfunction in in vivo and in in vitro models

Mucopolysaccharidosis type IIIA (MPS-IIIA) is caused by deficiency

in the lysosomal hydrolase sulfamidase (SGSH) and represents one of

the most common and severe forms of LSDs (Valstar et al, 2010). In

MPS-IIIA mice, lysosomal degradation defect leads to progressive

lysosomal dysfunction and neurodegeneration, which give rise to the

first signs of neurological impairments at around 6 months of age

and become more and more severe as the mice age (Bhaumik et al,

1999; Hemsley & Hopwood, 2005; Fraldi et al, 2007; Lau et al,

2008). Therefore, MPS-IIIA mice represent an optimal model to study

the pathogenic cascade of events underlying neuronal degeneration

in LSDs. We first examined the architecture of presynaptic terminals

in the brain of MPS-IIIA mice at different ages using electron micro-

scopy (EM) ultrastructure analysis. In 10-month-old MPS-IIIA mice,

although the average size of synaptic vesicles remained unchanged

compared to WT mice, their number drastically decreased in several

brain regions and this was associated with the presence of abnormal

vacuoles and/or giant mitochondria, all of which are symptomatic of

degenerative processes (Figs 1A and EV1). Structural alterations of

presynaptic terminals in MPS-IIIA mice proceeded progressively with

phenotype worsening and concomitantly with lysosomal enlarge-

ment, which is symptomatic of overt lysosomal dysfunction; they

were undetectable at 3 months and became significantly evident at

6 months of age (Figs 1A–C and EV1). Synaptic density was also

significantly decreased in 10-month-old MPS-IIIA mice, while any

significant reduction in the synapses number was observed at 3 and

6 months (Figs 1A and EV1). Moreover, electrophysiological

measurements in acute brain slices of 6-month-old MPS-IIIA mice

(when any significant loss of synaptic terminals was detected)

revealed that reduction in the synaptic vesicles pool was also associ-

ated with severe functional impairments in synaptic activity

(Fig 1D). Since the correct function of presynaptic terminals relies on

synaptic vesicle recycling processes (Fernandez-Alfonso & Ryan,

2006), we investigated the efficiency of this process in MPS-IIIA

nerve terminals by analyzing endocytic and exocytic events in indi-

vidual presynaptic boutons of cultured hippocampal neurons using

FM1-43 dye and pHluorin-based assays. MPS-IIIA hippocampal

neurons appeared healthy during the first days of culture in vitro

(DIVs). Similar to control wild-type (WT) cells, DIV10 MPS-IIIA

hippocampal neurons formed dense synaptic interconnections and

remained healthy until DIV18–19, when they began showing axonal

swelling before dying at DIV20–21 (Fig EV2A). Starting from DIV10,

MPS-IIIA neurons exhibited significantly enlarged lysosomes

(Fig EV2B and C). At this time, EM analysis showed the presence of

structure alterations in the presynaptic terminals similar to those

found in MPS-IIIA brain samples (Fig EV2D). The FM dye uptake

was reduced in the synaptic boutons of MPS-IIIA neurons compared

to that observed in control WT cells (Fig 2A). Moreover, we

found that exocytosis rate was also significantly attenuated in MPS-

IIIA presynaptic terminals compared to controls (Fig 2B and

Appendix Fig S1). To test whether these defects may be recapitulated

by inducing lysosomal dysfunction in healthy neurons, we blocked

lysosomal degradation activity in DIV10 WT hippocampal neurons

by treating cells with a cocktail of specific lysosomal inhibitors (leu-

peptin, pepstatin A, and E-64). This treatment led to a severe lysoso-

mal enlargement (Fig 2C) associated with both inefficient endocytic/

exocytic events at presynaptic boutons (Fig 2D and E) and decreased

number of synaptic vesicles (Fig 2F). Therefore, the establishment of

lysosomal dysfunction in neurons negatively affects the recycling of

synaptic vesicles at nerve terminals and leads to presynaptic dysfunc-

tion. This suggested that defective recycling of synaptic vesicles

might play an important role in determining the presynaptic alter-

ations observed in the brain of MPS-IIIA.

The homeostasis of the machinery involved in the synaptic
vesicle recycling is affected in MPS-IIIA mice

The recycling of synaptic vesicles is sustained by the function of a

specific set of soluble NSF attachment receptor (SNARE) proteins,

Figure 1. Alterations of presynaptic structure and function are associated with lysosomal dysfunction in MPS-IIIA mice.

A EM analysis of cortical synapses derived from WT and MPS-IIIA mice at different ages. The size of synaptic vesicles was quantified from 400 to 500 vesicles (taken
from five mice for each genotype at each time point) and expressed as the average of vesicle diameter (nm). The number of synaptic vesicles per synapse was
quantified from 20 different images (taken from five mice for each genotype at each time point), normalized by the length of synaptic cleft and expressed as
percentage of WT. The synaptic density was measured from 20 different images (taken from five mice for each genotype at each time point) as the number of
synapses/area (#/500 lm2) and expressed as percentage of WT. Arrows indicate the synaptic cleft, while asterisks indicate abnormal vacuoles.

B, C The size of the lysosomal compartment was evaluated by both WB (B) and IF (C) analysis in the brain of MPS-IIIA mice at the indicated ages. Quantitation of WB
by densitometry analysis (ImageJ) is shown (B). N = 3 (biological triplicates).

D Extracellular recordings (fEPSPs) in hippocampal brain slices from 6-month-old WT and MPS-IIIA mice. The left panel shows representative fEPSP traces. Summary
graphs show the fEPSP slope as a function of either the applied stimulus intensity or the prevolley amplitude. Data are the average of the values from nine slices
(from nine mice) in the WT group and six slices (from five mice) in the MPS-IIIA. *P < 0.05, repeated-measures ANOVA.

Data information: Data are means � s.e.m; *P < 0.05, **P < 0.001, Student’s t-test: MPS-IIIA at each age vs. WT (A, B). Scale bars: 0.2 lm (A); 20 lm (C).
Source data are available online for this figure.
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which include vesicle-associated membrane protein 2 (VAMP2),

synaptosomal-associated protein 25 (SNAP-25), and syntaxin 1

(Sudhof & Rothman, 2009). Presynaptic SNAREs are continuously

used during synaptic activity; therefore, their protein levels need to

be strictly maintained at nerve terminals to ensure synaptic recy-

cling and neurotransmitter release. Western blot (WB) analysis in

synaptosomal fractions revealed that SNAP-25 and VAMP2 protein

levels were severely reduced in MPS-IIIA samples compared to
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Figure 2. Presynaptic alterations are recapitulated in cultured MPS-IIIA neurons and are induced by lysosomal inhibition in healthy neurons.

A Synaptic terminal endocytosis was analyzed in WT and MPS-IIIA DIV14 hippocampal neurons by quantification of incorporated FM1-43 dye fluorescence in ~300
individual boutons (taken from 4 to 5 coverslips for each group). Fluorescence intensities were expressed as arbitrary units (A.F.U.) and displayed both as a
distribution and as mean values � s.e.m.

B WT and MPS-IIIA hippocampal neurons (DIV14) were transfected with v-Glut1-pHluorin-mCherry plasmid, and synaptic recycling was evaluated by the fluorescence
change of the probe from 80 to 100 individual boutons (taken from 4 to 5 coverslips for each group). Fluorescence intensity was quantified at each bouton during KCl
perfusion, normalized to the fluorescence value obtained upon rapid alkalization (NH4Cl perfusion), and expressed as Δfluorescence (normalized to baseline; DFKCl/DF
NH4Cl). Values were displayed both as fluorescence traces and as maximum fluorescence after KCl perfusion. Representative panels on the right show the fluorescence
intensity change in control neurons (WT). Pseudo-color was applied to better reveal fluorescence changes. Note that NH4Cl alkalinizes all vesicles revealing the total
(recycling + resting) pool in neuronal cells analyzed.

C WT hippocampal neurons at DIV10 were treated with a lysosome inhibitor cocktail for 3 days. The size of lysosomal compartment was evaluated in both treated
and control untreated WT neurons by EM examination. Quantitation analysis was performed on 30 different images. Asterisks indicate lysosomal structures.

D, E Endocytosis (D) and exocytosis (E) in presynaptic boutons from treated and control untreated WT hippocampal neurons were monitored as in (A, B).
F EM analysis of synaptic terminals was performed in treated and control untreated WT neurons. The number of synaptic vesicles per synapse was quantified from ~20 different

images (taken from three ultrathin sections for each group), normalized by the length of synaptic cleft and expressed as percentage of WT. Arrows indicate the synaptic cleft.

Data information: Data are means � s.e.m; *P < 0.05, Student’s t-test: MPS-IIIA vs. WT (A, B). WT + lys. block (72 h) vs. control WT (C–F). Scale bars: 4 lm (A, D); 0.2 lm
(C); 0.1 lm (F).
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control samples, while syntaxin 1 protein levels were unchanged

(Fig 3A). The protein level decrease was age dependent reaching

~40% of WT levels in 10-month-old MPS-IIIA mice (Fig 3A).

Remarkably, no significant changes in protein levels were found in

other presynaptic proteins such as synapsin I, thus indicating that

no general emptying processes were occurring at presynaptic termi-

nals (Fig 3A). WB analysis in total brain homogenates showed that

VAMP2 and SNAP-25 proteins were also reduced in whole brain

samples, but to a lower extent compared to synaptosomal fractions

(Fig EV3). Confocal analysis in MPS-IIIA hippocampal neurons

showed a sharp decrease in the percentage of synapsin I that

co-localized with either VAMP2 or SNAP-25, confirming the loss of

both VAMP2 and SNAP-25 proteins at presynapses (Fig 3B). Impor-

tantly, mRNA levels of all synaptic SNARE analyzed were similar in

MPS-IIIA and WT brain tissues, demonstrating that there were no

changes in the transcription of SNARE genes (Appendix Fig S2A)

and indicating that the age-dependent reduction in VAMP2 and

SNAP-25 protein levels at nerve terminals is due to disturbed local

proteostasis mechanisms. Further supporting this conclusion, we

observed that VAMP2 and SNAP-25 proteins are destabilized and

degraded at higher rates in MPS-IIIA neurons compared to control

cells and that their levels are rescued by inhibiting the proteasome

system (Fig 3C), which is known to be involved in SNAP-25 and

VAMP2 clearance (Sharma et al, 2012b). Moreover, consistently

with reduced SNARE protein levels, we detected a progressive

impairment of SNARE complex assembly in the brain of MPS-IIIA

mice (Fig 3D and E).

a-Synuclein and cysteine string protein a (CSPa) are two abun-

dant presynaptic proteins that were identified as key chaperones,

which assist SNARE complex formation by ensuring appropriate

levels at nerve terminals of VAMP2 and SNAP-25, respectively

(Chandra et al, 2005; Burre et al, 2010; Burgoyne & Morgan, 2011;

Sharma et al, 2011). Genetic ablation of CSPa causes defective

SNARE complex assembly and fulminant neurodegeneration, while

triple abc-synuclein null mice exhibit late-onset decrease in SNARE

complex assembly and neurological impairments (Fernandez-

Chacon et al, 2004; Burre et al, 2010; Greten-Harrison et al, 2010;

Sharma et al, 2012a). Therefore, we asked whether a-synuclein and

CSPa were involved in deficient SNARE complex formation and

reduced levels of VAMP2 and SNAP-25. WB analysis in total homo-

genates showed an age-dependent accumulation of a-synuclein
oligomers and a progressive decrease in total CSPa protein in the

brain of MPS-IIIA mice (Fig 3F). Analysis of synaptosomal fractions

revealed that CSPa protein levels were reduced in MPS-IIIA nerve

terminals to ~40% of WT levels in 10-month-old mice, thus

reflecting the decrease in CSPa in whole brain samples (Fig 3G).

Unexpectedly, however, we found that a-synuclein protein levels

were also strongly reduced in MPS-IIIA synaptosomal samples

reaching ~30% of WT levels in 10-month-old mice (Fig 3G). There-

fore, deregulation of SNARE protein levels in MPS-IIIA brain was

associated with a progressive and concomitant loss of a-synuclein
and CSPa at nerve terminals. This loss was consequence of a

massive accumulation of a-synuclein oligomeric forms and overall

reduction of CSPa protein levels in the brain.

At this point, different questions arised: (i) What is the link

between a-synuclein/CSPa changes and lysosomal dysfunction? (ii)

Isolated hemizygous reduction in either a-synuclein or CSPa protein

levels does not cause any synaptic phenotype (Chandra et al, 2004;

Fernandez-Chacon et al, 2004). We therefore asked whether the

concomitant reduction in a-synuclein and CSPa at nerve terminals

was, instead, sufficient to cause presynaptic SNARE defects; (iii)

What is the contribution of these events to neurodegenerative

processes in LSDs?

Functional and mechanistic link between presynaptic depletion
of a-synuclein and CSPa and lysosomal dysfunction

First, we evaluated the effect of restoring normal lysosomal activity

in MPS-IIIA brain on a-synuclein and CSPa protein levels. We have

previously demonstrated that intravenous injection in MPS-IIIA

mice of adeno-associated virus (AAV) bearing a functional copy of

the defective gene (SGSH) engineered to cross the blood–brain

barrier resulted in the correction of the primary lysosomal defect

into the brain and, thus, in extensive amelioration of brain

pathology (Sorrentino et al, 2013). Here, we showed that restoring

lysosomal activity in treated MPS-IIIA mice also led to the

Figure 3. Proteostasis of the machinery components mediating the synaptic vesicle recycling is altered in MPS-IIIA mice.

A VAMP2, SNAP-25, and syntaxin 1 SNAREs were immunoblotted in WT and MPS-IIIA synaptosomal brain samples at the indicated ages. Synapsin I was also blotted as
a control. Quantitation of WB is shown.

B Confocal microscopy images of WT and MPS-IIIA hippocampal neurons (DIV14) double labeled with anti-synapsin I (presynaptic marker; red) and either anti-VAMP2
or anti-SNAP-25 antibodies (green). The merges (yellow) of confocal images are shown. SNAP-25–synapsin I and VAMP2–synapsin I co-localizations were quantified
using the Manders’ co-localization coefficients (MCC) (ImageJ) and displayed as percentage (MCC × 100) of synapsin I co-localizing with either SNAP-25 or VAMP2
(means � s.e.m. from 15 different images taken from 4 to 5 coverslips for each group). Scale bar: 5 lm.

C VAMP2 and SNAP-25 protein levels were quantified by immunoblot analysis in WT and MPS-IIIA hippocampal neurons (DIV14) at different times after cycloheximide
treatment and expressed as percentage of remaining protein at T0 (100%). The proteasome was inhibited as indicated. Quantification of the WB is shown.

D SDS-resistant complex levels were evaluated in WT and MPS-IIIA total brain samples at the indicated ages by immunoblotting of non-boiled samples with VAMP2 or
syntaxin 1 antibodies. Quantitation of WB is shown.

E Total brain lysates were immunoprecipitated with antibodies to syntaxin 1, and co-immunoprecipitated VAMP2 and SNAP-25 proteins were revealed by WB analysis.
The levels of immunoprecipitated proteins were quantified.

F a-Synuclein and CSPa were immunoblotted in WT and MPS-IIIA total brain lysates at the indicated ages. Total protein levels were quantified.
G a-Synuclein and CSPa were immunoblotted in WT and MPS-IIIA synaptosomal fractions at the indicated ages. Hsc70, a heat shock cognate protein, which forms

together with CSPa and SGT (small glutamine-rich tetratricopeptide repeat domain protein) the “chaperone machine”, was also blotted. Protein levels were
quantified.

Data information: Data are means � s.e.m. N = 3 (biological triplicate) in WB quantitations. *P < 0.05, Student’s t-test: MPS-IIIA at each age vs. WT (A, D, F, G); MPS-IIIA
vs. WT (B, E); either WT or MPS-IIIA + prot. inhib. (at each time point) vs. MPS-IIIA (C).
Source data are available online for this figure.
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normalization of a-synuclein and CSPa protein levels and to

increased levels of VAMP2 and SNAP-25 at presynaptic terminals

(Fig EV4).

We then investigated the mechanism underlying a-synuclein and

CSPa loss at presynaptic terminals. No differences in a-synuclein
and CSPa mRNA levels were detected between MPS-IIIA and control

WT brain samples (Appendix Fig S2B), indicating that changes in

a-synuclein and CSPa protein levels observed in brain samples were

caused by alterations in post-translational processes controlling

their homeostasis. Lysosomal–autophagic pathways play a key role

in a-synuclein clearance (Lee et al, 2004; Mak et al, 2010). Further

expanding previous data (Settembre et al, 2008; Sorrentino et al,

2013), we found that lysosomal dysfunction led to a block of autop-

hagic flux from 6 months of age in MPS-IIIA brain (Fig 4A). Dif-

ferential detergent extraction revealed that the accumulation of

a-synuclein reflected a drastic increase in insoluble species in whole

brain and a consequent decrease in soluble forms in both whole

brain and synaptosomal fractions (Fig 4B). These data suggested

that imbalance in the lysosomal–autophagic degradation of a-synu-
clein led to a progressive deposition of insoluble forms of the

proteins, which depleted the amount of soluble a-synuclein at nerve

terminals. To support this hypothesis, we analyzed protein levels

and distribution of a-synuclein in MPS-IIIA hippocampal neurons at

different DIVs. At early DIVs, WT and MPS-IIIA cultured neurons

exhibited very similar patterns of a-synuclein immunostaining

(Appendix Fig S3A). Starting at approximately DIV10, a-synuclein
accumulates in MPS-IIIA neurons almost exclusively as perikarya

inclusions, thereby resulting in a sharp decrease in the protein in

synaptic puncta (Appendix Fig S3A and Fig 4C). Consistently,

a-synuclein was found reduced in synapsin I-positive presynaptic

terminals (Appendix Fig S3B). Similar to the findings in brain

samples, MPS-IIIA hippocampal neurons displayed severely

impaired autophagy associated with lysosomal enlargement starting

from DIV10 (Figs EV2B and C, and EV5A). Confocal analysis in

these cells showed that a-synuclein perikaryal inclusions co-

localized with the lysosomal compartment (Fig 4D). Therefore, as

consequence of defective lysosomal–autophagic degradation,

a-synuclein progressively builds up as insoluble species in the lyso-

somal compartment of neuronal cell bodies. This accumulation

prevents a-synuclein targeting to nerve terminals likely sequestering

soluble a-synuclein species.

Differently from a-synuclein, the presynaptic decrease in the

CSPa protein levels reflected the overall reduction in the protein and

was not associated with any significant increase in its insoluble

forms (Fig 4E). CSPa protein levels in MPS-IIIA hippocampal

neurons exhibited a progressive reduction (detectable from

DIV10–11) associated with an overall loss of CSPa-positive synaptic

puncta, thus supporting the biochemical results in brain samples

(Appendix Fig S3 and Fig 4F). We therefore investigated the possi-

bility that the reduction in CSPa protein levels may be due to its

accelerated clearance. We found that the proteasome system is the

major pathway involved in CSPa degradation (Fig EV5B). CSPa
degradation rates were then analyzed by blocking protein synthesis

and measuring the levels of CSPa with or without proteasome

inhibition. This analysis showed that CSPa is destabilized and

heavily degraded by the proteasome system in MPS-IIIA neurons

(Fig 4G). The question thus arises on why these processes are accel-

erated in MPS-IIIA. Normally, CSPa is extensively palmitoylated at

presynaptic terminals where this modification stabilizes the protein

preventing its degradation (Greaves et al, 2008). Analysis of palmi-

toylation state of CSPa in MPS-IIIA brain samples at different ages

showed that CSPa palmitoylation is severely reduced in MPS-IIIA

brain compared to WT starting from 3 months of age (Fig 4H).

Moreover, proteasome pathway was found activated both in

MPS-IIIA brain samples and in hippocampal neurons starting,

respectively, from 6 months of age and DIV10, when lysosomal–

autophagic stress also takes place (Figs 4I and J, and EV5C). Impor-

tantly, no activation of other proteolytic systems was observed in

MPS-IIIA brain and neurons (Appendix Fig S4 and Fig EV5D).

These data suggested that reduced palmitoylation of CSPa
increased the susceptibility of the protein to degradation early, but

translated in effective enhanced proteasomal clearance only late

Figure 4. Lysosomal-driven deregulation of a-synuclein and CSPa degradation.

A WB analysis of LC3 and p62 (an autophagy substrate) was performed on WT and MPS-IIIA brain samples at the indicated ages. WB quantitation is shown.
B a-Synuclein was immunoblotted in WT and MPS-IIIA in both total and synaptosomal brain fractions at the indicated ages after sequential extraction with detergents

with increased strength. Soluble (Sol.), lowly insoluble (L. Insol.), and highly insoluble (H. Insol.) forms correspond to the protein solubilized in Triton X-100, 10% SDS
and 8 M urea, respectively.

C Co-immunofluorescence analysis of a-synuclein with SMI-32 in WT and MPS-IIIA hippocampal neurons (DIV14). a-Synuclein synaptic puncta present in a neurite
tract of 10 lm is shown in a representative enlarged image. Quantification of a-synuclein synaptic puncta was calculated from 30 different enlarged images.

D Confocal analysis of a-synuclein (green) and LAMP1 (red) in WT and MPS-IIIA hippocampal neurons (DIV14). Enlarged merge images are also shown. Co-localization
was quantified using the MCC (ImageJ) and displayed as percentage (MCC × 100) of a-synuclein co-localizing with LAMP1 (15 different images taken from 4 to 5
coverslips for each group).

E CSPa was immunoblotted in WT and MPS-IIIA total brain lysates at the indicated ages after sequential extraction with detergents with increased strength as in (B).
F Co-immunofluorescence analysis of CSPa and SMI-32 in DIV14 hippocampal neurons. CSPa synaptic puncta was quantified as in (C).
G CSPa protein levels were evaluated by immunoblot analysis in WT and MPS-IIIA hippocampal neurons (DIV14) at different times after cycloheximide treatment and

expressed as percentage of remaining protein at T0 (100%). The proteasome was inhibited as indicated. WB quantification is shown.
H Palmitoylation-dependent shift in the molecular weight of CSPa was evaluated in WT and MPS-IIIA brain samples at the indicated ages by immunoblotting CSPa in

boiled samples prepared without exposure to sulfhydryl agents (b-mercaptoethanol or dithiothreitol).
I The protein levels of RPN10 (the regulatory subunit of 26S proteasome) and ubiquitinated proteins formed by Lys48 (K48) residue linkage (involved in protein

degradation via the proteasome) were evaluated in WT and MPS-IIIA brain samples at the indicated ages by WB analysis. WB quantitation is shown.
J Proteasome activity was evaluated by measuring the chymotrypsin-like activity in WT and MPS-IIIA mouse brain samples at different ages. Proteasome activity was

expressed as percentage of WT activity.

Data information: Data are means � s.e.m.; N = 3 (biological triplicate) in WB quantitations. *P < 0.05, **P < 0.001, Student’s t-test: MPS-IIIA at each age vs. WT (A, I, J);
MPS-IIIA vs. WT (C, D, F); either WT or MPS-IIIA + prot. inhib. (at each time point) vs. MPS-IIIA (G). Scale bars: 10 lm (C, D, F).
Source data are available online for this figure.
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when the proteasome system became highly activated, likely to

compensate for deficient lysosomal degradation activity in

MPS-IIIA.

Therefore, collectively, our findings indicated that presynaptic

loss of a-synuclein and CSPa is linked to lysosomal dysfunction

through mechanisms that involve both the reduced capability of

lysosomes to degrade a-synuclein and the accelerated proteasomal

clearance of CSPa.

a-Synuclein- and CSPa-dependent SNARE defects at presynaptic
terminals are triggered by lysosomal dysfunction independently
from the specific stress causing the dysfunction

To support this conclusion, we analyzed a-synuclein, CSPa, and

the presynaptic SNAREs VAMP2 and SNAP-25 in WT cultured

neurons upon inhibition of lysosomal degradation. As shown

before, this treatment led to severe lysosomal enlargement and

presynaptic alterations similar to those found in MPS-IIIA brain

(Fig 2C–F). We found that the treatment also induced a progres-

sive block of autophagic pathway and a concomitant activation of

the proteasome system (Fig 5A and B). Moreover, any other prote-

olytic systems were found activated in treated neurons (Fig 5C).

Under these conditions, a-synuclein was found largely accumu-

lated as high molecular weight forms mostly localized to the peri-

karya lysosomal compartment of cells (Fig 5D and E). Lysosomal

inhibition also resulted in an overall robust decrease in CSPa
proteins levels and a consequent reduction in CSPa synaptic

puncta (Fig 5D and F). Moreover, presynaptic proteostasis of

SNAREs was found strongly altered in treated neurons as shown

by loss of VAMP2 and SNAP-25 at nerve terminals and impairment

of SNARE complex formation (Appendix Fig S5 and Fig 5G). We

then evaluated the impact of lysosomal impairment on presynaptic

integrity in two other neurodegenerative LSDs, the multiple

sulfatase deficiency (MSD; caused by the deficiency of sulfatase

modifying factor-1) and the Niemann–Pick type C-1 (NPC1; caused

by the deficiency of the lysosomal membrane protein NPC1)

(Settembre et al, 2008; Sarkar et al, 2013). Presynaptic depletion

of a-synuclein and CSPa, defective SNARE proteostasis, and

presynaptic structure abnormalities were found associated with

lysosomal deficiency also in MSD and NPC1 mouse models

(Appendix Fig S6). Furthermore, no presynaptic abnormalities

were observed in a mouse model of MPS type VI (Evers et al,

1996), a non-neuropathic LSD due to the inherited deficiency

in the lysosomal hydrolase arylsulfatase-B that does not show

major impairments in neuronal lysosomal degradation pathways

(Tessitore et al, 2009; Appendix Fig S6). Together, these findings

showed that loss of lysosomal function in neurons triggers

presynaptic proteostasis defects independently from the specific

stress causing lysosomal dysfunction.

Genetic ablation of one allele of both CSPa and a-synuclein in
mice leads to altered proteostasis of presynaptic SNAREs and
defect in synaptic vesicle number

Our data strongly suggest that the simultaneous loss of a-synu-
clein and CSPa at nerve terminals destabilizes VAMP2 and

SNAP-25 SNAREs, thus concurrently contributing to inefficient

SNARE complex formation. To support this hypothesis, we gener-

ated double heterozygous mice with one allele of both CSPa and

a-synuclein depleted (CSPa+/�/a-syn+/�). As expected, double

hemizygosity condition in CSPa+/�/a-syn+/� mice reduced both

CSPa and a-synuclein proteins in brain samples to ~50% of WT

levels (Fig 6A). SNARE function and structural alterations were

then evaluated in the nerve terminals of double heterozygous

CSPa+/�/a-syn+/� mice and single both heterozygous and

homozygous mice for either CSPa or a-synuclein KO at 7 weeks

of age. Consistent with previous findings (Burre et al, 2010),

SNAP-25, but not VAMP2, levels were found decreased in

synaptosomal fractions derived from homozygous CSPa-KO mice

(Fig 6A). Instead, in homozygous a-synuclein-KO mice, SNAP-25

remains unchanged, whereas VAMP2 levels decreased (Fig 6A).

Mice single heterozygous for either CSPa or a-synuclein dele-

tion did not display altered levels of SNARE proteins at presy-

naptic terminals (Fig 6A). In contrast, age-matched double

Figure 5. a-Synuclein- and CSPa-dependent defective proteostasis of SNAREs is recapitulated in healthy neurons upon lysosomal inhibition.

A Autophagy was monitored in WT hippocampal neurons treated with the lysosome inhibitor cocktail for 3 days by immunoblot analysis with anti-LC3 antibodies. As
control, DIV10 WT neurons were left untreated and monitored by LC3 blot over the 3-day period. The LC3-II level quantitation is shown.

B Proteasome activity was measured in treated and control untreated WT neurons using pZsProSensor-1 vector (green). Cells were co-stained with anti-SMI-32 (blue).
Proteasome activity was quantified by measuring the green fluorescence (inversely correlated with proteasome activity) in 10 different cells (taken from 4 to 5
coverslips for each group) and expressed as fold to WT.

C Activation of calpain 2 and caspase-3 proteolytic systems was evaluated by WB measurement of the protein levels of calpain 2 and caspase-3 (both full-length and
activated cleaved forms of ~17 KDa) in treated and control untreated WT neurons. Arrow indicates the full-length caspase-3 protein.

D After 3 days of treatment, cell lysates from treated and control untreated WT neurons were immunoblotted with a-synuclein and CSPa and protein levels were
quantified.

E Treated and control untreated WT neurons were subjected to a-synuclein (green) and LAMP1 (red) confocal analysis. Enlarged merge images are also shown. Co-
localization was quantified using the MCC (ImageJ) and displayed as % (MCC × 100) of a-synuclein co-localizing with LAMP1 (means � s.e.m. from 15 different
images taken from 4 to 5 coverslips for each group). Cells were also co-stained with anti-SMI-32.

F Treated and control untreated WT neurons were subjected to CSPa/SMI-32 co-immunofluorescence. CSPa synaptic puncta present in a neurite tract of 10 lm is
shown in a representative enlarged image. Quantification of CSPa synaptic puncta was calculated from 30 different enlarged images taken from 4 to 5 coverslips for
each group.

G SDS-resistant complex levels in treated and control untreated WT neurons were evaluated by immunoblotting analysis of non-boiled samples with VAMP2 or
SNAP-25 antibodies. The amounts of SNARE complexes were quantified.

Data information: Data are means � s.e.m. N = 3 (biological triplicate). *P < 0.05, **P < 0.001, Student’s t-test: WT + lys. block (at each time point) vs. control WT (A).
WT + lys. block (72 h) vs. control WT (B–G). Scale bars: 5 lm (B); 10 lm (E, F).
Source data are available online for this figure.
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heterozygous CSPa+/�/a-syn+/� mice exhibited ~30% reduction in

the presynaptic levels of both SNAP-25 and VAMP2 proteins

(Fig 6A). The extent of such decrease was sufficient to cause

inhibition of SNARE complex formation, reduction in the number of

synaptic vesicles, and most importantly, impaired synaptic activity.

(Fig 6B–D).
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Therefore, genetic reduction in both CSPa and a-synuclein
protein levels acts synergically in deregulating SNARE proteostasis

at nerve terminals, thus leading to defective SNARE complex forma-

tion and synaptic toxicity in mice.

Overexpression of CSPa in the brain of MPS-IIIA mice ameliorates
presynaptic function, attenuates neurodegenerative signs, and
prolongs survival

On the basis of our data, we reasoned that re-establishing the levels

of either CSPa or a-synuclein at presynaptic terminals in LSD mice

would be sufficient to slow down SNARE-dependent degenerative

processes by increasing SNARE protein levels, thus allowing us to

evaluate the effective contribution of a-synuclein- and CSPa-depen-
dent SNARE defects to LSD neurodegeneration. To address this

hypothesis, we overexpressed CSPa in MPS-IIIA mouse brain in vivo

using adeno-associated viral (AAV) vectors. Transgenic overexpres-

sion of a-synuclein may compensate for CSPa deficiency in KO mice

(Chandra et al, 2005). However, we chose to overexpress CSPa
rather than a-synuclein because we assumed that in our disease

model, a-synuclein overexpression could result in a more severe

phenotype due to its propensity to aggregate. Newborn MPS-IIIA

mice received a single intracerebroventricular injection of AAV sero-

type 9 encoding a myc-tagged CSPa under the control of a synapsin I

promoter. IF analysis revealed a synaptic punctuate transduction

pattern in which several brain areas exhibited high levels of

myc-tagged CSPa protein that co-localized with the presynaptic

compartment (Fig 7A). Consistently, WB analysis 10 months after

injection showed increased CSPa protein levels in synaptosomal

fractions of CSPa-injected MPS-IIIA mice compared with controls

(Fig 7B). CSPa overexpression rescued SNAP-25 physiological levels

and also led to a significant increment in VAMP2 levels (Fig 7C).

Increased SNARE protein levels were sufficient to restore efficient

formation of SNARE complexes at synapses (Fig 7D and E). EM anal-

ysis 10 months after injection showed that CSPa overexpression was

able to attenuate the loss of synapses observed in affected age-

matched MPS-IIIA mice (Fig 8A). At this age, presynaptic terminals

of CSPa-treated MPS-IIIA mice also displayed an overall significant

increase in the number of synaptic vesicles compared with control

MPS-IIIA mice, even if some abnormal structures and vacuoles were

still observed in the synapses of injected animals, indicating that

degenerative processes at nerve terminals were not fully prevented

(Fig 8A). Synaptic strength was also recovered, as shown by fESPS

measurements in acute hippocampal slices (Fig 8B).

To address the hypothesis that such relief of synaptic toxicity

was effectively mediated by the rescue of proper synaptic recycling

through the re-establishment of normal SNARE protein levels at

nerve terminals, we overexpressed either CSPa or SNAP-25 in MPS-

IIIA cultured neurons. These data showed that both endocytic and

exocytic rates were efficiently recovered in synaptic boutons of

MPS-IIIA neuron upon overexpression of either CSPa or SNAP-25,

thus supporting our hypothesis (Fig EV6).

Finally, we evaluated the impact of CSPa overexpression on

neuropathology and survival. Seven-month-old MPS-IIIA mice

displayed a sex-dependent reduced neuromotor performance in the

open field exploratory test, in the elevated plus maze, and in the

◀ Figure 6. CSPa and a-synuclein synergically contribute to defective SNARE proteostasis in genetically modified mice.

A a-Synuclein, CSPa, VAMP2, and SNAP-25 were immunoblotted in total brain homogenates and/or synaptosomal fractions of 1.5-month-old WT (CSPa+/+/a-syn+/+),
CSPa�/�, CSPa+/�, a-syn�/�, a-syn+/�, and CSPa+/�/a-syn+/�. Synapsin I was also blotted as a control. Quantitation of WB in synaptosomal samples is shown.

B SDS-resistant complex levels were evaluated in brain homogenates derived from mice with the indicated genotypes by immunoblotting of non-boiled samples with
VAMP2 or syntaxin 1 antibodies. Quantitation of WB is shown.

C EM analysis of cortical synapses derived from mice with indicated genotypes. The number of synaptic vesicles per synapse was quantified from 40 different images
(taken from five different mice for each genotype), normalized by the length of synaptic cleft, and expressed as percentage of WT. The size of synaptic vesicles was
quantified from 400 to 500 vesicles (taken from five different mice for each genotype) and expressed as the average of vesicle diameter (nm). Arrows indicate the
synaptic cleft. Scale bar: 0.2 lm.

D Extracellular recordings (fEPSPs) in hippocampal brain slices from 1.5-month-old WT (CSPa+/+/a-syn+/+) and CSPa+/�/a-syn+/� mice. The left panel shows
representative fEPSP traces. Summary graphs show the fEPSP slope as a function of either the applied stimulus intensity or the prevolley amplitude. Data are the
average of the values from five slices (from four mice) in the WT group and five slices (from four mice) in the CSPa+/�/a-syn+/�. *P < 0.05, repeated-measures ANOVA.

Data information: Data are means � s.e.m. N = 3 (biological replicate) in WB quantitation (A, B). *P < 0.05, **P < 0.001, Student’s t-test: each genotype vs. WT (A, B).
Source data are available online for this figure.

Figure 7. Overexpression of CSPa in the brain of MPS-IIIA mice re-establishes normal SNARE proteostasis.

A Anti-myc immunostaining in different brain regions derived from 10-month-old MPS-IIIA mice intraventricularly injected with AAV2/9 vectors encoding CSPa under
synapsin I promoter (MPS-IIIA-myc-CSPa experimental group). As a control, immunostaining was performed in brain sections from 10-month-old MPS-IIIA mice
injected with empty AAV2/9 vectors (MPS-IIIA-empty experimental groups). To evaluate co-localization between exogenous CSPa and presynaptic compartment, brain
sections were also co-stained with anti-myc and anti-synapsin I antibodies (confocal images are also shown). Scale bars: 30 lm (epifluorescence images) or 10 lm
(confocal images).

B Anti-myc WB in synaptosomal fractions derived from MPS-IIIA-myc-CSPa mice. As a control, WB was performed in samples from 10-month-old WT and MPS-IIIA
mice injected with empty AAV2/9 vectors (WT-empty and MPS-IIIA-empty experimental groups). Synaptosomal fractions were also blotted with anti-CSPa.

C VAMP2, SNAP-25, and syntaxin 1 were immunoblotted in synaptosomal samples derived from the three experimental groups of mice. Protein levels were quantified.
D The amount of SNARE complexes was detected in synaptosomal brain samples derived from the three experimental groups of mice by immunoblotting analysis of

non-boiled samples with VAMP2, SNAP-25, or syntaxin 1 antibodies. The amounts of SNARE complexes were quantified.
E Total brain lysates derived from the three experimental groups of mice were immunoprecipitated with syntaxin 1 antibodies and co-immunoprecipitated VAMP2 and

SNAP-25 proteins were revealed by WB.

Data information: Data are means � s.e.m. N = 3 (biological triplicate) in WB quantitation. *P < 0.05, Student’s t-test: either MPS-IIIA-empty or MPS-IIIA-myc-CSPa vs.
WT-empty (C, D).
Source data are available online for this figure.
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wire hanging test (Fig 8C). CSPa injection in MPS-IIIA mice resulted

in an overall improvement of all neurobehavioral activities with a

significant rescue observed in most of the parameters tested

(Fig 8C). Moreover, examination of neuronal density in different

brain regions of CSPa-injected MPS-IIIA mice revealed that treat-

ment also attenuated the loss of neuronal cells in affected mice
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(Fig 8D). We then evaluated the survival rates in MPS-IIIA mice

upon CSPa treatment. The Kaplan–Meier survival curve showed that

at 20 months of age, 92.3% of control WT mice survived, while

only 7.7% of affected MPS-IIIA survived at same age, P = 0.00003

(Fig 8E). MPS-IIIA mice receiving CSPa injection lived significantly

longer than untreated MPS-IIIA mice (69.2% vs. 7.7% survived

mice at 20 months; P = 0.000776; Fig 8E).

Therefore, CSPa overexpression in MPS-IIIA mice was sufficient

to prevent SNARE loss. This ameliorated presynaptic function,

protected against neurodegenerative signs, and extended survival.

Discussion

Our study sheds new light on the mechanisms leading to neurode-

generation in lysosomal diseases. We found that lysosomal dysfunc-

tion exerts a disruptive action on presynaptic integrity and that the

loss of SNARE function mediated by the concomitant deficiency of

a-synuclein and CSPa at presynaptic terminals is a critical mecha-

nism triggering this action.

Mechanistically, a-synuclein presynaptic deficiency is caused by

impaired lysosomal–autophagic degradation, which leads to a-synu-
clein sequestration in large insoluble forms localized to neuronal

bodies. a-Synuclein aggregation in Lewy bodies is a hallmark of

neurodegeneration in synucleinopathies (Spillantini et al, 1997; Roy,

2009). Therefore, the relative loss of a-synuclein function by its

abnormal sequestration in Lewy bodies may contribute to drive

neuronal degeneration in synucleinopathies. Recently, CSPa muta-

tions have been found associated with lysosomal dysfunction in a

late-onset form of neuronal ceroid lipofuscinosis, a severe neurode-

generative LSD (Noskova et al, 2011). Our data show that in neurons

with lysosomal impairment, the protein levels of CSPa are overall

decreased due to its increased destabilization and proteasomal

degradation. We also found that in these neurons, CSPa palmitoyla-

tion, a modification known to affect the stability of the protein, is

reduced. Such alteration appeared at 3 months of age in MPS-IIIA

mice, that is, at time when lysosomal dysfunction in terms of autop-

hagic stress is still absent. One hypothesis is that already at this time

lysosomal deficiency may affect CSPa palmitoylation. Indeed, (i)

together with the primary genetic deficiency of a specific enzyme,

the activity of other lysosomal hydrolases can change as an early

event as a consequence of secondary inhibitory mechanisms in LSDs

(Platt et al, 2012) and (ii) lysosomal enzymatic activity was found to

be involved in palmitoylation dynamics (Prescott et al, 2009). As a

consequence of lysosomal dysfunction, we also found that the

proteasome system is activated, likely to compensate for defective

cellular degradation capacity. Therefore, our data strongly suggest a

model in which lysosomal dysfunction accelerates CSPa degradation

by acting at two levels; first, it reduces the palmitoylation state of

CSPa making the protein more prone to be degraded, and then, it

hyper-activates the proteasome system, likely as compensatory

mechanisms, thus resulting in a high rate of CSPa degradation.

Isolated a-synuclein depletion does not lead to neurodegenera-

tion (Chandra et al, 2004). Moreover, neither CSPa nor SNAP-25

hemizygosity is sufficient to cause major synaptic dysfunction as

opposed to a complete loss of either CSPa or SNAP-25 in KO mice

(Washbourne et al, 2002; Fernandez-Chacon et al, 2004; Sharma

et al, 2012a). By analyzing double heterozygous CSPa+/�/
a-syn+/� mice, here we found that the concomitant reduction of

CSPa and a-synuclein to ~50% of WT levels synergically contri-

butes to the loss of SNARE function at nerve terminals and is

therefore deleterious for presynaptic integrity. This is an important

new finding that adds more insight into the disease relevance of

a-synuclein and CSPa deficiencies. Very importantly, we also

demonstrated that CSPa overexpression prolonged survival and

exerted a protective action against neurodegeneration in MPS-IIIA

mice by re-establishing efficient SNARE complex formation and

improving presynaptic function. Furthermore, similar to CSPa
overexpression, SNAP-25 overexpression was also able to rescue

presynaptic function in MPS-IIIA neurons. Together, these data

strongly argue that a-synuclein-/CSPa-mediated SNARE defect is a

critical pathway mediating presynaptic and neuronal degenerative

processes in LSDs. As expected, however, restoring SNARE func-

tion via CSPa overexpression was not sufficient to fully prevent

the neurodegenerative phenotype in MPS-IIIA mice since other

mechanisms activated by lysosomal dysfunction continue to

Figure 8. Overexpression of CSPa in the MPS-IIIA mouse brain prevents presynaptic failure, protects against neuropathology and prolongs survival.

A EM analysis of cortical and hippocampal synapses derived from the three experimental groups of mice. The number of synaptic vesicles per synapse was quantified
from ~40 different images (taken from five mice for each group), normalized by the length of synaptic cleft, and expressed as percentage of WT. The synaptic density
was measured from 20 different images (taken from five mice for each group) as the number of synapses/area (#/500 lm2) and expressed as percentage of WT.
Arrows indicate the synaptic cleft, while asterisks indicate abnormal vacuoles. Values are means � s.e.m.; *P < 0.05, **P < 0.01 (MPS-IIIA-empty vs. WT-empty),
#P < 0.05 (MPS-IIIA-myc-CSP-a vs. MPS-IIIA-empty). Scale bar: 0.2 lm.

B Extracellular recordings (fEPSPs) in hippocampal brain slices from WT-empty (n = 8), MPS-IIIA-empty (n = 5), and MPS-IIIA-myc-CSPa mice (n = 5). The upper panel
shows representative fEPSP traces. Summary graph shows the fEPSP slope as a function of the applied stimulus intensity. Data are means � s.e.m.; *P < 0.05 (WT-
empty vs. MPS-IIIA-empty), #P < 0.05 (MPS-IIIA-myc-CSPa vs. MPS-IIIA-empty), Kruskal–Wallis ANOVA followed by Dunn’s test.

C Mean distance travelled, maximal speed, immobility time, and line crossing during 10-min testing in the open field, divided into 5-min intervals in WT-
empty (n = 9), MPS-IIIA-empty (n = 9), and MPS-IIIA-myc-CSPa (n = 7) female mice. Distance, percentage open entries, and open time in the elevated plus
maze and latency to fall off the wire (× body weight) in the wire hanging test in WT-empty, MPS-IIIA-empty, and MPS-IIIA-myc-CSPa male mice (n = 10,
n = 8, and n = 9, respectively). Values are means � s.e.m.; *P < 0.05 (MPS-IIIA-empty vs. WT-empty), #P < 0.05 (MPS-IIIA-myc-CSPa vs. MpS-IIIA-empty), two-
way ANOVA for repeated measures for open field measures and t-test for the plus maze and the wire hanging followed by Duncan post hoc test. Animals’
average age was 28 � 2 weeks.

D Neuronal cell death was evaluated in the cerebellum (calbindin immunostaining) and in different layers of cortex (NeuN immunostaining of frontal cortex) of
10-month-old mice belonging to each experimental group of mice. The number of cells was quantified from 20 different images (taken from five mice for each group)
and expressed as percentage of WT. Values are means � s.e.m. *P < 0.05, **P < 0.001, Student’s t-test. Scale bar: 50 lm.

E Kaplan–Meier survival analysis in WT-empty (n = 13), MPS-IIIA-empty (n = 13), and MPS-IIIA-myc-CSPa (n = 13) male mice. The Kaplan–Meier survival curve was
analyzed with the chi-squared test. A P-value < 0.05 was considered to be statistically significant. P = 0.00003 (MPS-IIIA-empty vs. WT-empty), P = 0.000776 (MPS-
IIIA-myc-CSPa vs. MPS-IIIA-empty).
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operate in driving neurodegenerative processes. Nevertheless, our

findings provide a proof-of-principle demonstrating the therapeutic

effectiveness of targeting SNARE chaperone-mediated synaptic

maintenance. Moreover, the possibility of acting on the endoge-

nous players of this pathway by drug repositioning/discovery may

implement and greatly improve the effectiveness of existing proto-

cols, which, to date, have shown a substantial inefficacy in the

treatment for brain pathology in LSDs. Importantly, such possibil-

ity may have an immediate impact in the clinical management of

LSD patients.

In conclusion, our study uncovers an unknown link between

lysosomal dysfunction and presynaptic maintenance that is medi-

ated by a concurrent loss of a-synuclein and CSPa at nerve termi-

nals. Our findings also demonstrate that the deregulation of this

pathway is relevant for the neuropathogenesis of LSDs and that the

re-establishment of its integrity may be exploited for the therapy of

LSDs.

Materials and Methods

Cultured mouse hippocampal neurons

Hippocampal neurons were cultured from newborn mice as

described (Kaech & Banker, 2006). Briefly, brain regions were

dissected in ice-cold Hank’s balanced salt solution (HBSS), dissoci-

ated via trypsinization with 0.05% trypsin–EDTA for 10 min at

37°C, triturated with a siliconized pipette, and plated (100 ll) onto
a 12-mm coverslip (for immunofluorescence microscopy or confocal

analysis) or onto 12-well plastic dishes, coated for at least 30 min

with Matrigel (BD Biosciences). Plating medium [MEM (Gibco)

supplemented with 5 g/l glucose, 0.2 g/l NaHCO3 (Sigma), 0.1 g/l

transferrin (Calbiochem), 0.25 g/l insulin (Sigma), 0.3 g/l L-gluta-

mine (Gibco), and 10% horse serum (Gibco)] was replaced with

growth medium (MEM) containing 5 g/l glucose, 0.2 g/l NaHCO3

(Sigma), 0.1 g/l transferrin (Calbiochem), 0.3 g/l L-glutamine, 2%

B-27 supplement (Gibco), and 2 lM cytosine arabinoside (Sigma)

24–48 h after plating.

mRNA isolation and quantitative RT–PCR

Mouse brains were dissected and kept at 4°C in RNAlater solution

(Ambion) and homogenized in Trizol solution (Invitrogen). RNA

was extracted using the guanidinium salt/phenol–chloroform

method. RNA in the aqueous phase was isopropanol-precipitated,

followed by DNase I treatment (Qiagen) and LiCl precipitation.

cDNA was prepared using oligo-dT primers and the Omniscript

reverse transcription kit (Qiagen). Quantitative RT–PCR (qRT–PCR)

was performed using TaqMan probes (Roche) for Snca (a-synuclein,
REF 05532957001), DNAjc5 (CSPa REF 05583055001), Snap25

(SNAP-25, REF 05583055001), Stx1a (syntaxin 1 REF 05583055001),

Vamp2 (VAMP2 REF 05583055001) with Gapdh (REF

05532957001), Hprt (REF 05532957001) probes as control and

Lc480 probe Mastermix (Roche). Quantitative PCR and quan-

tification, including water controls and melting curves for verifi-

cation of product specificity, were performed on HT-7500

thermocycler (Applied Biosystems) and visualized with SDS 2.0

software (Applied Biosystems).

Animals

MPS-IIIA mice (homozygous mutant Sgsh�/�) (Bhaumik et al,

1999; Bhattacharyya et al, 2001), MSD mice (knock-out

Sumf1�/�) (Settembre et al, 2007), and MPS-VI mice (knock-out

Asb�/�) (Evers et al, 1996) together with respective control

littermate wild type (+/+) were utilized. Niemann–Pick type C1

(NPC1) brain samples were obtained from NPC1 mice and were

kindly provided by F. Platt. CSPa-KO (�/�) mice were kindly

provided by F. Chacon. a-Synuclein-KO (�/�) mice were

purchased from Harlan Laboratories. All mice were C57BL/6

congenic. Animal studies were conducted in accordance with

the guidelines of the Animal Care and Use Committee of

Cardarelli Hospital in Naples and authorized by the Italian

Ministry of Health. No randomization was used to allocate

animals to each experimental group.

Brain collection

After euthanization, mouse brains were collected from each experi-

mental group and perfused with phosphate-buffered saline (PBS pH

7.4) to completely clear blood from tissue. The brains were divided

into two equal parts: Half of each was frozen in dry ice and used for

biochemical analysis. The other halves were fixed in 4% (w/v)

paraformaldehyde in PBS and embedded into an OCT matrix (for

immunostaining) or in 4% paraformaldehyde, 25% glutaraldehyde

in phosphate buffer (for EM).

Preparation of total brain homogenates and synaptosomes

To isolate synaptosomes, mice were euthanized and their brains

were collected, weighed, and dounced in a grinder using Syn-PER

synaptic protein extraction reagent purchased from Thermo

Scientific (cat# 87793). Immediately before use, protease inhibitor

mixture for mammalian cells from Sigma (cat# P8340; St. Louis,

MO, USA) was added to the Syn-PER reagent. The homogenate

was centrifuged at 2,000 g for 10 min to remove cell debris. The

resulting supernatant (total homogenate samples) was centrifuged

at 15,000 g for 20 min. The supernatant formed the cytosolic

fraction, while the pellet (the synaptosomal fraction) was gently

re-suspended in Syn-PER synaptic protein extraction reagent. The

amount of total proteins in the homogenate, cytosolic fraction,

and synaptosomes was measured with bicinchoninic acid

colorimetric (BCA) method (Pierce Biotechnology Inc., Rockford,

IL, USA). Equal amounts of proteins were then subjected to

SDS–PAGE.

SNARE complexes analysis

Brain tissue was homogenized in 10 volumes of Ripa buffer

(50 mM Tris–HCl, pH 8.0, 150 mM NaCl, 0.02% sodium azide,

1% sodium Nonidet P-40) containing complete protease

inhibitor cocktail (Sigma) and clarified by a centrifugation at

950 g for 15 min. Protein concentrations from each sample were

measured with the BCA method. Equal amount of proteins were

either boiled (5 min at 100°C) to disrupt SDS complexes or

kept at 4°C (non-boiled samples) before being subjected to

SDS–PAGE.
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Proteins’ differential extraction

Approximately 0.5 g of brain tissue was homogenized in 10

volumes of Ripa buffer containing 1% Triton X-100 and then

sonicated. After 5 min of centrifugation at 1,000 g, the super-

natants were ultracentrifuged for 1 h at 130,000 g. The resulting

supernatants represented the Triton-soluble fractions. The pellets

were rinsed twice with Ripa buffer and extracted with 500 ll of

5% SDS in Ripa buffer. All subsequent steps were performed at

24°C. After ultracentrifugation for 30 min at 130,000 g, the pellets

were re-extracted twice with 5% SDS, and the resulting super-

natants represented the SDS-soluble fractions. The extensively

washed detergent-insoluble pellets were squashed in 100 ll of

8 mol/l urea–5% SDS in Ripa buffer and incubated for at least

10 min at room temperature. The resulting supernatants repre-

sented the urea-soluble fractions. Protein samples were loaded

onto an SDS–PAGE.

Analysis of CSPa protein palmitoylation in brain samples

Brain lysates were prepared by homogenization in ice-cold buffer

(25 mM Tris–HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA, and 1%

Triton X-100 supplemented with protease inhibitor cocktails). Insol-

uble material was removed by centrifugation at 16,000 g at 4°C for

10 min. To appreciate the CSPa band shift due to its depalmitoyla-

tion state, the brain lysates obtained were heated for 10 min at 65°C

in sample buffer without b-mercaptoethanol or dithiothreitol to

avoid the exposure to sulfhydryl agents. Protein samples were

loaded onto a 13% SDS–PAGE.

Immunoprecipitation

Brain samples were extracted in ice-cold lysis buffer (25 mM Tris–

HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA, and 1% NP-40 supple-

mented with protease inhibitor cocktails) and centrifuged for 15 min

at 16,000 g at 4°C, and the supernatants were collected. Cell

supernatants were incubated with 1 ll of anti-syntaxin 1 antibody

(1 lg/ll), 1 ll of rabbit control IgGs (1 lg/ll) for 16 h. Samples

were then incubated with Protein G Sepharose (Sigma-Aldrich, St.

Louis, USA) for 2 h at 4°C. Immunoprecipitates were collected by

centrifugation at 5,000 g at 4°C and extensively washed, and the

proteins were eluted with a Laemmli sample buffer (60 mM Tris–Cl

pH 6.8, 2% SDS, 10% glycerol, 10% b-mercaptoethanol, 0.01%

bromophenol blue). After denaturation at 95°C for 5 min, samples

were analyzed by SDS–PAGE (12%) under reducing conditions and

transferred to nitrocellulose membranes. The membranes were then

incubated with the appropriate antibodies. Enhanced chemilumines-

cence reagent was used for protein detection.

Pharmacological treatments of cultured neurons

For steady-state CSPa quantification, cultured hippocampal neurons

were treated with either proteasome inhibitor (MG132 10 lM;

Sigma) or lysosome inhibitor (chloroquine 10 lM; Sigma) for 1 h.

Cells were then analyzed for either immunofluorescence or WB.

To sustainably block lysosomal degradation activity in WT

hippocampal neurons, cells were treated with a cocktail of

lysosomal degradation inhibitors (leupeptin 20 lM, pepstatin A

20 lM, and E64 20 lM; Sigma) continuously for 3 days (refreshing

the cell media with the cocktail every day during the treatment).

Cells were then collected in SDS sample buffer and loaded onto an

SDS–PAGE.

For CSPa, SNAP-25, and VAMP2 degradation rate analysis,

protein synthesis was inhibited by adding cycloheximide (0.1 g/l;

Sigma) to cultured hippocampal neurons at DIV13. Proteasome was

inhibited by adding MG132 (10 lM; Sigma) to cultured hippocampal

neurons at DIV13 as indicated. Cells were then chased for 0, 6, 12,

and 24 h, collected directly in SDS sample buffer, and loaded onto

an SDS–PAGE.

Proteasome activity

To measure proteasome activity in cultured hippocampal neurons,

cells were transiently transfected with 1 lg/ml of pZsProSensor-1

Vector (Clontech), using Lipofectamine 2000 (Invitrogen) according

to the manufacturer’s protocol. After 48 h, cells were harvested and

analyzed by immunofluorescence. This vector is designed to express

ZsGreen fused to the mouse ornithine decarboxylase degradation

domain (MODC d410). When the proteasome is highly active in

living cells, the protein will not accumulate; otherwise, the fusion

protein will accumulate in cells and thus results in an increase in the

number of green fluorescent spots under 488-nm laser beam. The

average fluorescence of GFP-positive structures (F) was measured by

ImageJ software on 8 bit threshold images using analyze particle

plugin. Proteasome activity was inversely correlated with F (1/F).

Proteasome activity in the brain samples was measured with a

Proteasome Activity Assay Kit (Abcam) according to the manufac-

turer’s protocol. Fluorescence was measured with a microtiter plate

reader (Tecan) in the presence/absence of MG132 after 15 min at

37°C for 100 min.

Caspase-3/7 assay

Wild-type and MPS-IIIA hippocampal cells at DIV 20 were treated

with CellEventTM Caspase-3/7 Green Detection Reagent (5 lM Cat

no. C10423 Invitrogen) according to the manufacturer’s protocol.

Fluorescence was evaluated directly by microscopic observation.

Electron microscopy

Fixed brain samples (1% glutaraldehyde/4% PFA in 200 mM

Hepes, pH 7.3, for 10 min at 37°C) of specific brain regions were

post-fixed in 1% osmium tetroxide, dehydrated, and embedded in

resin. Ultra-thin sections taken from the selected regions were cut

on ultramicrotome LEICA EM UC7, and the morphology of cellular

and subcellular structures was analyzed by EM core. Primary

hippocampal cells were grown on CELLocate coverslips in neuro-

basal medium. The cells were fixed in 1% glutaraldehyde in

200 mM Hepes, pH 7.3, for 10 min at 37°C and then post-fixed,

dehydrated, and embedded in resin. Ultra-thin sections were cut

and then analyzed for EM.

Immunofluorescence microscopy

Cultured neuronal cells were washed three times in cold PBS and

then fixed in 4% paraformaldehyde (PFA) for 10 min. After
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quenching with ammonium chloride 50 mM/PBS for 20 min, cells

were permeabilized with 0.1% Triton X-100 in PBS for 10 min, incu-

bated with blocking solution (2% FBS, 2% BSA in PBS) for 30 min,

and then immuno-labeled with appropriate primary and secondary

antibodies. Confocal microscopy was performed with a Zeiss LSM

710 microscope equipped with a Zeiss confocal scanning laser using

either 63× or 40× objective. The percentage of co-localizing fluores-

cence (merge) was quantified by using the “co-localization” plugin

of the ImageJ software (JACoP).

Medial sagittal sections of frozen brain tissue were cut on a cryo-

stat at either 10 or 30 mm of thickness, fixed with 4% PFA, perme-

abilized (PBS, 0.2% Tween-20, and 10% fetal bovine serum), and

stained with appropriate primary and secondary antibodies. The

background signal of anti-myc staining was quenched with ammo-

nium chloride 50 mM in PBS solution after PFA fixation. Stained

sections were mounted with Vectashield (Vector Laboratories, CA,

USA). Photographs were taken with an epifluorescence microscope.

Immunohistochemistry

Brains were post-fixed (4% PFA (wt/vol) overnight at 4°C), dehy-

drated in a graded series of ethanol, cleared with xylene, and infil-

trated with paraffin. Paraffin-embedded brain blocks were cut on a

microtome in 6-lm sagittal sections. Sections were washed in PBS/

0.2%Triton X-100, incubated for 30 min at room temperature in 1%

hydrogen peroxidase diluted in 1× PBS, and incubated overnight at

4°C in primary antibody. Signal was developed using the Vectastain

ABC kit (Vector Labs) following the manufacturer’s instructions.

Images were acquired with a high-resolution color digital camera

(Axio Cam) using the Zeiss AxioVision software (Zeiss Axioplan 2

microscope).

Neuronal quantification

For the quantification of cortical neurons and Purkinje cells, five

mouse brains for each experimental group were used.

For cortical neuron count, at least three sagittal sections (6 lm
thick) per brain were stained with NeuN antibody. The sections then

were photographed, and a 200-lm2 grid was applied (Adobe Photo-

shop software). Four squares per section were selected from a cerebral

cortical area below the bregma. The number of NeuN+ dots per square

was counted using the cell counter program (ImageJ). The cortical

layers were defined as follows: layers II and III, 150 lm from the

surface to a depth of 350 lm; layer IV, 350–550 lm from the surface;

layer V, 550–750 lm from the surface (Hampton et al, 2010). To

count Purkinje cells, at least three sagittal sections (6 lm thick) per

brain were stained with calbindin antibody. Cells were quantified in

the lobe III of the cerebellum within a defined region. The experiments

were performed with the operator blinded to experimental group.

Antibodies

Rabbit polyclonal anti-c-Myc (A-14) sc-789 (1:500, Santa Cruz

J1210), mouse monoclonal anti-c-Myc-Cy3 (1:1,000, C6594 Sigma,

St. Louis, MO), mouse monoclonal anti-NeuN (1:200, MAB 377

Millipore). Rabbit monoclonal anti-calbindin D-28K (1:1,000,

AB1778 Millipore). Polyclonal rabbit antibody anti-SNAP-25

(1:1,000, Cat 111002 SySy), polyclonal rabbit antibody

anti-synaptobrevin2/VAMP2 (1:1,000, Cat. 104202 SySy), mono-

clonal mouse antibody anti-syntaxin 1 (1:1,000, clone 78.2 Cat

110011 and 110011C3, SySy), monoclonal mouse antibody anti-

synapsin I (1:1,000, Cat 106011 and 106011C3 SySy), polyclonal

rabbit antibody anti-a-synuclein (1:300, Cat 128102 SySy) used in

immunofluorescence experiments, monoclonal mouse antibody

anti-a/b-synuclein (1:300, Cat 128111, SySy) used in immunofluo-

rescence experiments, mouse anti-a-synuclein (1:1,000, Cat.610787,

BD Transduction LaboratoriesTM) used in biochemical experiments,

polyclonal rabbit antibody anti-CSPa (1:1,000, Cat. 154003, SySy),

anti-rabbit LC3 (1:200, Novus Bio NB100-2220), anti-mouse Hsc70

(1:500, Cat 149011 Sysy), anti-rabbit Lamp1 (1:200, Abcam

AB24170) used in immunofluorescence experiments, monoclonal

anti-rabbit Lamp1 (1:1,000, Cell Signaling 9091) used in biochemical

experiments, monoclonal anti-mouse SQSTM1 (p62) (1:1,000,

Abnova H00008878-M01), monoclonal mouse anti-SMI-32 (1:200,

neurofilament H marker) (Millipore NE1023). Alexa-fluor secondary

antibodies were purchased from Molecular Probe (1:1,000, Invitro-

gen). Proteasome 19S Rpn10/S5a subunit monoclonal antibody

(1:500, S5a-18) BML-PW9250 (Enzo Life Science), anti-ubiquitin

(1:1,000, linkage-specific K48) antibody ab140601 (Abcam), calpain

2 large subunit (M-type) antibody #2539 (1:1,000, Cell Signaling),

caspase-3 antibody #9662 (1:1,000, Cell Signaling).

Imaging synaptic vesicle exocytosis and endocytosis with FM dye

The imaging procedures that we used have been previously

described (Gaffield & Betz, 2006). Briefly, presynaptic terminals

were labeled by exposure to styryl dye (8 lM FM1-43) during high-

K+ depolarization (modified Tyrode, 55 mM KCl). Dye was left in

the extracellular solution for 1 min to let the nerve terminal recover

in the presence of the dye and allow for complete endocytosis of all

released vesicles. Then, we washed away the extracellular FM dye

by switching out solution multiple times with fresh saline solution.

All staining and washing protocols were performed with modified

Tyrode containing 10 lM CNQX to prevent recurrent activity.

Images were taken after 10- to 15-min washes in dye-free solution.

The amount of fluorescence in each terminal was quantified using

ImageJ analysis software. We analyzed 300 boutons from both WT

and MPS-IIIA neurons. Upon fluorescence quantification, data were

either plotted as distribution (fraction of boutons showing similar

intensity) or displayed as mean � s.e.m.

To image vesicle release, synaptic vesicle exocytosis was stim-

ulated with the depolarizing solution (modified Tyrode, 55 mM

KCl) during the imaging process. As vesicles exocytosed, dye

was released into extracellular space and was quickly washed

away. The amount of fluorescence in each synaptic bouton was

quantified for each time point using ImageJ analysis software.

Loss in fluorescence measured during stimulation (expressed as

percentage of fluorescence intensity at the time of stimulation;

T30: 100% fluorescence) indicates the rate of synaptic vesicle

exocytosis.

For FM dye experiments in transfected neurons, DIV 10

hippocampal cells were transiently transfected with 1 lg/ml of

either pSNAP-25-EGFP (kindly provided by Michela Matteoli and

Davide Pozzi) or pEGFP-CSPa mammalian expression plasmids.

pEGFP-CSPa was generated by subcloning the CSPa cDNA (from

pcDNA3-myc-CSPa vector kindly provided by Pier Scotti) into the
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pEGFP-C1 plasmid (Clontech). Lipofectamine 2000 (Invitrogen) was

used as transfection lipid according to the manufacturer’s protocol.

After 24–48 h, the synaptic recycling rate (dye uptake and release)

was evaluated in transfected (EGFP-positive boutons) and not trans-

fected cells (GFP-negative boutons).

vGlut1-pHluorin assays

Synaptic recycling was evaluated by v-Glut1-pHluorin assays

(Burrone et al, 2006). Hippocampal neurons (DIV14) were trans-

fected with v-Glut1-pHluorin-mCherry plasmid, and coverslips with

transfected neurons were mounted into a perfusion flow chamber

(OkoLab, Naples, Italy), and the entire system was perfused with

Tyrode solution (pH 7.4) containing 119 NaCl mM, 2.5 KCl mM,

2 CaCl2 mM, 2 MgCl2 mM, 25 HEPES mM, 30 glucose mM, 10 lM
6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, TOCRIS Bioscience,

Bristol, UK), and 50 lM D,L-2-amino-5-phosphonovaleric acid

(AP5, TOCRIS Bioscience). For field stimulation, KCl 50 mM perfu-

sion was applied for 60 s using a peristaltic Pump model 720

(OkoLab, Naples, Italy). The fluorescence change of the probe was

monitored during time upon KCl perfusion (exocytosis of recycling

pool) followed by NH4Cl perfusion (exocytosis of total vesicle pool).

Images were acquired with 100-ms autoexposures at 3-s intervals

for three minutes. ROIs were placed on each bouton and average

intensities were obtained for each frame within the time lapse. Fmax

was defined as the average fluorescence of the maximal five frames

after NH4Cl perfusion. Baseline F0 was defined as the average fluo-

rescence of the initial 10 frames before stimulation [(F0 = average

(F1:F10)]. Fluorescence intensity of a bouton at a given time point

(F) was normalized to F0 and Fmax and expressed as (F � F0)/

(Fmax � F0).

Construction of pAAV2/9 hSYN-Myc-CSP vector

PRC amplification and standard ligation procedures were used to

construct the pAAV-hSYN-myc-CSP vector. Briefly, the CMV

promoter of pAAV2.1 CMVeGFP3 vector was replaced by the

hSYN promoter contained in AAV-6P-NoTB-SEWB vector (kindly

provided by Sebastian Kugler) by using NheI and PstI enzymes.

Then, eGFP3 fragment from pAAV2.1-hSYNeGFP3 vector was

replaced by myc-CSPa insert (taken from pcDNA3-myc-CSPa
vector, kindly provided by Pier Scotti) by using NotI and HindIII

enzymes. Therefore, the modified construct pAAV2.1-hSYN-myc-

CSPa was used to generate the AAV serotype 9 (AAV2/9) viral

vectors according to the protocols established by the AAV TIGEM

Vector Core.

Intraventricular injections

Newborn MPS-IIIA and littermate WT mice were cryoanesthetized

at postnatal day 0 or day 1. The AAV2/9 vectors (1.5 × 1010 parti-

cles in 3 ll) were delivered bilaterally into the lateral ventricles. At

7 months after injection, mice from each experimental group (MPS-

IIIA injected with AAV9-hSYN-mycCSPa, MPS-IIIA injected with

AAV9-hSYN-empty, and WT injected with AAV9-hSYN-empty) were

used for both the behavioral tests and electrophysiology studies.

Four mice from each experimental group were kept until 10 months

of age before sacrifice and brain analysis.

Preparations of hippocampal slices and field potential recordings

Mice were anesthetized with chloral hydrate (400 mg/kg, ip) and

decapitated. The brain was quickly removed and transferred in an

oxygenated ice-cold NMDG-based cutting solution containing in

mM: 93 N-methyl-D-glucamine, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3,

20 Hepes, 25 glucose, 5 ascorbic acid, 3 Na-pyruvate,

10 MgSO4�7H20, 0.5 CaCl2�2H20 (pH 7.4 with HCl); 400-lm-thick

transversal hippocampal slices were obtained using a VT-1000S

vibratome (Leica, Milan, Italy). The slices were transferred into an

interface recording chamber and let equilibrate for 1.5 h while

continuously superfused (5 ml/min) with artificial cerebrospinal

fluid (ACSF) at 32°C, equilibrated at pH 7.4 with gas mixture (95%

O2, 5% CO2), and containing in mM: 124 NaCl, 2 KCl, 1.25 KH2PO4,

2 MgSO4, 2 CaCl2, 26 NaHCO3, and 10 D-glucose. A bipolar elec-

trode tungsten electrode (0.5 MΩ impedance, WPI, Sarasota, FL,

USA) was placed in the stratum radiatum of the CA1 region to stim-

ulate Schaffer collateral fibers. Bipolar square wave electrical stimuli

(200 ls duration) were generated with an ISO-STIM 01D stimulus

isolation unit (npi Electronic, Tamm, Germany) with a 30-s interval

between one stimulus and the following. Synaptic responses of the

apical dendrites of CA1 pyramidal neurons were recorded in the

stratum radiatum with an NaCl (2 M)-filled borosilicate microelec-

trode (2 to 3 MΩ final resistance) connected to the preamplifier

probe of an EXT-02F extracellular amplifier (npi Electronic, Tamm,

Germany). Data were digitized at 50 kHz with a Digidata 1322A A/D

converter (Molecular Devices, Sunnyvale CA, USA) and collected

with the pClamp 10 software. Offline analysis was performed using

the Clampfit 9 software (Molecular Devices, Sunnyvale CA, USA).

Behavioral procedures

Exploratory behavior was tested in the open field task (one single

batch), anxiety was tested in the elevated plus maze, and neuromus-

cular function was tested in the wire hanging. These are the three

tasks where MPS-IIIA mice have been reported to show impairment,

although with sex differences. Female and male mice were housed

in Plexiglas cages (18 × 35 × 12 cm) with free access to food and

water and kept at a temperature range between 20 and 23°C. These

tests were carried out in a behavioral testing room maintained under

constant light, temperature, and humidity. The mice were tested

during daylight hours (between 9 AM and 6 PM). Before testing,

animals were habituated to the testing room for at least 30 min. All

behavioral tests were performed by the same experimenter (MDR)

blinded to genotype. During the open field task, the MPSIIIA mice

were placed in the middle of a Plexiglas arena with a masonite base

(43 × 32 × 40 cm) placed on a flat surface 70 cm over the floor.

Animals were left free to explore the device for 10 min. The distance

travelled (m), maximum speed (m/s), central area line crossing,

and immobility time (s) were recorded for 10 min using a video

camera (PANASONIC WV-BP330) hanging over the arena that was

connected to a video-tracking system (ANY-MAZE, Stoelting, USA).

The data were analyzed considering two 5-min time intervals, with

two-way ANOVA for repeated measures, with the factors groups (3

levels) and time intervals (2 levels) as between groups and repeated

measures, respectively. In the elevated plus maze, mice were placed

individually onto the center of the maze and videotracked for a

5-min period. The measures taken were distance travelled (m) and
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percentage entries in open arms (open arms entries/total arm

entries). The wire hanging was performed about 2 h after the

elevated plus maze. The animal was placed on a wire 50 cm above

a sawdust-covered cage, gently shaken to favor animals grasping.

The wire was turned upside down, and the latency to fall down

from the wire was measured using a 120-s cut-off time testing.

Data analysis

Data are expressed as mean � s.e.m. Student’s t-test was used to

compare different samples in biochemical and EM analyses. Mann–

Whitney U-test and Kruskal–Wallis ANOVA followed by Dunn’s test

were used for electrophysiology. Duncan post hoc test was used for

behavioral data. The Kaplan–Meier survival curve was analyzed

with the chi-squared test. A P-value of < 0.05 was considered to be

statistically significant. The investigator was blinded when assessing

the outcome during data analysis.

Expanded View for this article is available online.
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