
 

 

 

Abstract— The transport industry especially that aviation one is 

investing in research for innovative technologies to improve the 

internal comfort both in the design phase and in aircraft already 

operative. The vibration and noise attenuation is of course among the 

most relevant target in the aeronautical scientific community actually 

many research programs which see the cooperation between academic 

institutions and leading industries are promoting the development and 

the application of innovative materials: smart composites, SMA, 

piezoceramics are only few examples of this increasingly emerging 

field. In this paper, the latest results achieved on the self-healing 

laminates for their too very appreciable damping performance are 

presented. The effectiveness of the proposed biomimetic technology 

has already been assessed in terms of damping capability compared to 

a standard CFRC specimen. The tests evidence has revealed a really 

better behavior of the self-healing sample compared to the 

conventional one in terms of vibrational energy: the average damping 

coefficient, measured in two different ways has been found to be about 

four times higher. Therefore, relying upon the results achieved on 

simple specimens, a numerical model representative of an aircraft 

fuselage section has been developed in order to predict the levels of 

noise and vibrations generated by a typical propeller excitation load. 

A careful investigation of air-structure interaction for internal noise 

forecast and surface radiated power has been carried out combining the 

numerical solutions performed within MSC Nastran® and Actran® 

environments. The Finite Element approach has allowed for 

emphasizing that the adoption of these smart treatments could led to 

an average noise reduction of about 3 dB compared to the conventional 

laminate configuration as well as a surface vibration decrease up to 

50%. 
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I. INTRODUCTION 

HE use of composite materials involves de facto the 

exploitation of many advantages such as lightness, 

strength, rigidity, good behavior to fatigue, ability to design the 

material according to its own need, but also cost reduction of 

manufacturing, weight and joints. Furthermore, the different 

parameters that determine the final behavior of a structural 

composite offer the designer a large field of action, in which the 

optimum design of the material is stated as a new discipline of 

structural mechanics. However, the laminates exert damping 

levels generally lower than metallic structures: the connecting 

elements such as rivets and bolts for internal friction are just 

localized points of vibrational energy dissipation. In such 

framework, the authors have experimentally assessed the 

considerable improvement of damping characteristics of CFRF 

laminates when treated with self-healing resin infused into 

carbon fibers. Aerospace and aeronautic structural systems 

experience a broad spectrum of environmental and operational 

loads. Severe and/or prolonged load exposures may trigger the 

damage accumulation process even in recently deployed 

structures. The process of implementing a strategy of auto-

repair of a damage is a subject of increasing interest. One of the 

challenges for many of the already developed self-repairing 

systems is to enhance the structural stability and mechanical 

properties of the materials [2]. Such biomimetic treatment then 

allows on one hand to improve the reliability and the lifetime of 

the structural element and on the other to ensure really an 

appreciable damping capacity [3]. The following survey is the 

result of intensive cooperation between the Industrial 

Engineering Departments of Università degli Studi di Napoli 

“Federico II” and Università degli Studi di Salerno on the 

ambitious application of self-healing materials in primary 

aircraft structures, Fig. 1. Some targeted investigations already 

conducted previously by the same partners have highlighted the 

excellent damping capacity of these samples compared to 

standard specimens [4]. Therefore, on the basis of the results 

achieved in the laboratory on simple specimens, a numerical 

model of an aircraft fuselage section has been developed in 

order to assess the levels of noise and vibration generated by a 

typical propeller excitation load. The FE (Finite Element) 

modelling has allowed for emphasizing that the adoption of 
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these smart treatments could led to an average noise reduction 

of about 3 dB compared to the conventional laminate 

configuration. Further analysis within Actran® environment 

have been performed to estimate the surface radiated power 

reduction. 

 

 
Fig.1 Self-healing (SH1) panel 

 

II. EXPERIMENTAL BACKGROUND 

The experimental tests were carried out on different    

compositions (Fig. 2) with the intent to select the most 

appropriate composition of self-healing system for aeronautic 

vehicles. In the paper [2], the results related to the healing 

efficiency and dynamic mechanical properties of self-healing 

epoxy formulations cured by a twostage curing cycle consisting 

of a first isotherm at 125 °C (2 h) followed by a second isotherm 

(2 h) where the temperature was set at 170 °C or 180 °C, are 

discussed. The used catalystwas the Hoveyda–Grubbs’ 

firstgeneration catalyst (HG1). 

 

 
Fig. 2 Different compositions of self-healing systems [2] 

 

The results highlight that the chemical nature of the epoxy 

matrix of developed self-healing systems plays an important 

role in determining the mechanical properties of the resulting 

material. The use of a reactive diluent to replace the flexibilizer 

Heloxy 71, already used in other self-healing formulations, 

makes it possible to obtain better dynamic mechanical 

properties than the already published results for self-healing 

epoxy resins. The innovative biomimetic treatment for the 

realization of the self-repair laminates allows for, on the one 

hand increasing the reliability and the long-term resistance of 

the component, while the other provides a better vibrational 

energy damping capacity. The latter is often an objective sought 

in the orthotropic structures because even if have many 

advantages compared to metal ones, such as the preservation of 

the weight, the resistance to fatigue and corrosion, are not able 

to dissipate the vibration energy in the same way. An 

assessment of such property of two carbon fiber/epoxy coupons 

has been carried out by experimental tests conducted in the 

laboratory of Department of Industrial Engineering (Aerospace 

Section, Università degli Studi di Napoli “Federico II”), Fig. 3, 

4 [1], [4]. 

 

 
Fig. 3 Composite specimens analyzed 

 

 
Fig. 4 Dynamic test: Standard (a), SH1 (b) 

 
The following values represent the estimated damping 

coefficient using two different methods, one in the time domain 

and the other based on the analysis of FRF (Frequency 

Response Function), Table I. 

 
Table I Damping coefficients measurement 

 Time Domain Spectral Domain 

Standard 1.178% 1.73% 

SH1 3.967% 5.00% 

 
The experimental outcomes has revealed an actually better 

behavior of the self-healing sample compared to the 

conventional one: the average-damping coefficient has been 

found to be about four times higher. 
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III. TURBOPROP AIRCRAFT APPLICATION 

A. Finite Element Model 

The next industrial segment where applications of self-healing 

materials are foreseen is the aviation industry. Use of 

composites in aircrafts has grown significantly in the past years. 

Hollow fibers reinforced composites are a possible solution to 

recover cracking or damages. Self-healing polymers have 

paved its way in space applications [3]. As part of this research 

project, it was decided instead to characterize preliminarily the 

role of these treatments within the vibro-acoustic insulation, 

taking a sample of a turbo-propeller primary structure like the 

fuselage. A typical barrel has been modelled within MSC 

Nastran® environment, Fig. 5: a 2D mesh (CQUAD) with cross-

ply orthotropic properties simulates the 24 plies external 

coating (SIGMATEX (UK) LDT 193GSM (grams square 

meter)/PW (plain wave)/HTA40 E13 3K (3000 fibers each 

tow)) having a thickness of 2 mm except for areas interested by 

the plexiglass windows, with thickness of 3 mm, Fig. 6. 

Moreover, the structure has been reinforced by Z-stiffeners in 

aluminium (CBAR) [5]. The main characteristics of the 

numerical model are summarized in Table II. 

 

 

 
Fig. 5 Fuselage FE Model 

 

 
 

Fig. 6 FEM properties 

 

 

 

 

Table II FEM Entities 

Entity Number 

Nodes 17073 

CQUAD 6300 

CHEXA 9600 

CBAR 1386 

 

The aircraft section subject of the current study is positioned 

around the propeller plane, therefore most exposed to the noise 

source. The following diagram, Fig. 7, represents the 

characteristic tonal load exerted by the propeller. A distributed 

pressure was realized, such as to simulate the typical anti-

symmetrical pattern along each bay in correspondence of the 

three blade pass frequencies (BPF), Fig. 8. All numerical 

analyses have been performed assuming the extreme edges 

constrained in the rotation around the fuselage Z-axis. A 3D 

mesh (CHEXA) was then coupled to the structural domain to 

take account of the presence of the fluid for the evaluation of 

the sound pressure level, Fig. 9 [5]. 

 

 
Fig. 7 Propeller tonal load, BPF 

 

 

 
Fig. 8 External tonal load field 
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Fig. 9 Fluid cavity domain 

 

B. Finite Element Analysis 

The FEA (Finite Element Analysis) results in terms of surface 

vibration and sound pressure levels in the fluid cavity are 

reported in the following figures. In this investigation, the bare 

structure of the fuselage has been considered, i.e. without 

interiors and payload. The first three elastic modes of the 

structure are represented in Fig. 10-12. The mode shapes are 

congruent for both standard configuration that self-healing one: 

the difference between the two models has been contemplated 

only through the damping coefficient definition in the following 

frequency response analysis [4]. 

 
Fig. 10 Structural frame: first mode shape 

 

 
Fig. 11 Structural frame: second mode shape 

 

 
Fig. 12 Structural frame: third mode shape 

 

For each configuration, the acoustic response by the air-

structure interaction has been determined at every BPF. The 

average noise reduction achieved in the cabin thanks to the 

implementation of a more damped material is about 3 dB, Fig. 

13. Such value will then be further reduced if the insulating 

interior treatments placed on the fuselage walls are considered. 

 

 
 

Fig. 13 BPF noise level reduction 

 

Therefore, the dynamic test has been simulated on the 

numerical model, considering a white-noise pressure load 

applied along the bays in the same constraint condition in the 

spectral range [0; 200 Hz], Fig. 14.  
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Fig. 14 White-noise signal 

 

So both the acceleration and vibration velocity spectrum have 

been computed by means of modal frequency analysis, SOL 

111 [5], Fig. 15-16. It is evident from the spectrograms the 

damping effect induced by the self-healing material SH1: the 

RMS (Root Mean Square) (1) rate as average of the squared 

values in a data set, indicates that the innovative composite 

treatment allows for reducing the surface vibration of 

approximately 50% compared to the standard laminate, Table 

III, Table IV. 

 

 

 

 

 

𝑅𝑀𝑆 = √
∑ 𝑥𝑖

2𝑛
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𝑛
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Table III Shell acceleration RMS rate 

 Standard SH1 

RMS [m/s2] 6.58*10-3 2.98*10-3 

 
Table IV Shell velocity RMS rate 

 Standard SH1 

RMS [m/s] 8.74*10-6 5.05*10-6 

 

 

 
Fig. 15 Vibration acceleration spectrum, SOL 111 

 

 
Fig. 16 Vibration velocity spectrum, SOL 111 

 

C. Radiated Power: Rayleigh Surface approach 

The main objective of this step is to develop a numerical 

expression for free-field acoustic power radiation due to 

harmonically vibrating source on the external skin. Acoustic 

power radiation can be defined as the rate of acoustic energy 

delivered by a source. Since the acoustic intensity is the 

acoustic power flow per unit area, the total acoustic power 

radiated by any source can be obtained by integrating the 

acoustic intensity over a reference surface. The acoustic power 

obtained as integration of the acoustic intensity over the surface 

can be expressed as a function of the vibrating pulsation 𝜔 (2): 

 

 

 

 

𝛱𝑅𝐴𝐷(𝜔) =
1

2
𝑅𝑒 {∫ 𝑝𝑠𝑢

∗

𝑆

𝑑𝑆} (2) 

where pS is the surface pressure, and u* is the complex 

conjugate of the surface vibration velocity (see [26-29]). Lord 

Rayleigh in 1896, was the first to study and define the structural 

relationship between velocity and pressure level produced by a 

plan radiator (3): 

 

𝑝(𝜔, 𝑃) =
𝑗𝜔2𝜌0
2𝜋𝑐0

∫
𝑒−𝑗𝑘|𝑃−𝑄|

𝑘|𝑃 − 𝑄|
𝑣(𝜔, 𝑄)𝑑𝑆

𝑆

 (3) 

 

in which P, Q represent two points positioned on the vibrating 

surface, 𝜌0 and 𝑐0, respectively the medium density and the 

speed of the sound while k is the wave number of the acoustic 

disturbance (4): 

 

 𝑘 =
𝜔

𝑐0
 (4) 

 

In such framework, the fuselage skin has been defined as a 

radiating surface subjected also in this case to a spatially 

uniform harmonic pressure excitation in the range [0; 1000 Hz], 

consistent with the maximum elements size per wavelength. 

The FE model, set by means MSC Nastran® has been realized 
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with too much detailed discretization level allowing to analyze 

with great accuracy the frequency response up to 1000 Hz. The 

finite element technique is widely applicable in the low-mid 

frequency range, while above this threshold statistical methods 

(SEA) are more appropriate due to the high modal density. The 

FE model has then been imported in Actran® for acoustic 

emission analysis in free-field, Fig. 17. 

 

 
Fig. 17 Structural domain, Actran®  

 

The Fig. 18 shows the trend of the radiated power in the narrow-

band spectral domain: an average reduction of about 3 dB 

reduction of the smart laminate is observed also in this case 

validating that already provided by the previous simulations in 

MSC Nastran®. 

 

 
Fig. 18 Sound radiated power, radiating surface  

 

IV. CONCLUSIONS 

The prediction and reduction of aircraft interior noise are 

important considerations for conventional propeller aircraft 

now entering the commercial market as well as for aircraft 

currently being developed, such as the advanced turboprop. 

Consequently, the interior noise problem is receiving attention 

even during the first stages of the aircraft design process [23-

25]. Vibrations topic is central in “low-noise” engineering field, 

especially in this research has been found an optimized solution 

to reduce the noise impact in the aircraft sector [30-31]. The 

present work has conducted a research to examine preliminary 

the adoption of innovative composite laminates with a self-

repair treatment for aircraft primary structures, which may be 

as in this case the fuselage barrel. The self-healing design 

consists in dispersing microcapsules containing finely 

pulverized catalyst into the epoxy resin components [4]. These 

properties are very near to the requirements of structural 

materials and offer a very good solution among the analysed 

systems in the literature. These results can constitute a basis for 

improving self-healing function in aeronautic materials [2]. The 

damping enhanced performance of smart biomimetic solution 

reflects both into a lower acoustic noise transmitted inside the 

cabin and in a reduction of surface vibration, all over the 

investigated frequency range as outlined by the combined 

numerical simulation carried out within MSC Nastran® and 

Actran® environments [6], [16]. Further studies can be 

conducted on the original self-healing panel measuring the real 

acoustic emission by means of by non-invasive measurement 

techniques like the laser vibrometry or PU (pressure-velocity) 

probe in “near-field” conditions [32].  
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