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Summary
Several studies associate foetal human exposure to bisphenol A (BPA) to
metabolic/endocrine diseases, mainly diabesity. They describe the role of BPA in
the disruption of pancreatic beta cell, adipocyte and hepatocyte functions. Indeed,
the complexity of the diabesity phenotype is due to the involvement of different
endoderm-derived organs, all targets of BPA.
Here, we analyse this point delineating a picture of different mechanisms of BPA
toxicity in endoderm-derived organs leading to diabesity. Moving from epidemio-
logical data, we summarize the in vivo experimental data of the BPA effects on
endoderm-derived organs (thyroid, pancreas, liver, gut, prostate and lung) after
prenatal exposure. Mainly, we gather molecular data evidencing harmful effects
at low-dose exposure, pointing to the risk to human health. Although the fragmen-
tation of molecular data does not allow a clear conclusion to be drawn, the present
work indicates that the developmental exposure to BPA represents a risk for
endoderm-derived organs development as it deregulates the gene expression from
the earliest developmental stages.
A more systematic analysis of BPA impact on the transcriptomes of endoderm-
derived organs is still missing. Here, we suggest in vitro toxicogenomics approaches
as a tool for the identification of common mechanisms of BPA toxicity leading to
the diabesity in organs having the same developmental origin.
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Abbreviations: BPA, bisphenol A; ER, oestrogen receptor; GD, gestation day;
GPR30, G protein coupled receptor 30; 0mER, membrane-associated ER; NF-kB,
nuclear factor kappa B; NHANES, National Health and Nutrition Examination
Survey; PND, postnatal day; T2D, type 2 diabetes; T4, tetra-iodothyronine; TH,
thyroid hormone; XME, xenobiotic-metabolizing enzyme.

Introduction

Human exposure to bisphenol A (BPA), used in the
manufacturing of several products as polycarbonate

plastics, is continuous and widespread. Ingestion is thought
to be the primary source of human exposure (1–4). Several
studies showed its rapid transformation into an inactive
form (5). The residual active form is in small amounts, not
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raising concern if we exclude that metabolites can also exert
toxic activity. BPA acts with a nonmonotonic dose–response
curve (6,7), typical of natural hormones and other
endocrine-disrupting compounds, complicating the extrap-
olation of a threshold daily exposure dose from experimen-
tally determined high-dose effects (8).

Human exposure to BPA has been associated with different
diseases including the diabesity (obesity associated to type 2
diabetes [T2D]) (9). Indeed, BPA differentially interferes with
several hormonal signalling pathways. The ability of BPA to
interfere with oestrogen signalling was accepted from the
early beginning. It was considered a weak oestrogen because
its binding affinity to the oestrogen receptors (ERs) alpha
and beta was estimated to be over 1,000–10,000-fold lower
than the natural hormone E2 (10,11). However, more recent
studies have demonstrated that BPA oestrogenicity can be
exerted through ER-dependent extra-nuclear mechanisms, at
similar or stronger levels than E2 (12,13). It acts by binding
tomembrane-associated ER (mER) and theG protein coupled
receptor 30 (GPR30), for which it shows higher binding affin-
ities than for ERs (14–16). In addition, at low dose, BPA af-
fects the pathways related to the thyroid receptor (17) and
to the nuclear oestrogen-related receptor γ (18). At higher
concentrations, BPA can also act on the androgen receptor
(19). Other mechanisms of low-dose BPA toxicity include
the pathways related to oxidative stress (20), such as the
Nuclear Factor kappa B (NF-kB) (21,22) and, finally, epige-
netic modifications (23). The last is an important issue be-
cause the adverse effects of a foetal/neonatal exposure can
remain undetected till diseases develop in adulthood.

The BPA has been detected in amniotic fluid, neonatal
blood, placenta, cord blood and human breast milk (2). In-
fants and foetuses are more susceptible \to its effects because
of their rapid development and reduced detoxification abil-
ity during pregnancy observed in both rodents (24) and
humans (25). Indeed, BPA shows limited binding to alpha
fetoprotein, a protein that binds oestrogens and protects
the developing tissues from excessive exposure, resulting in
an increased access for BPA to oestrogen-sensitive tissues
(26,27). Altogether BPA can exert greater effects on devel-
opment than expected.

The BPA toxicity data are often contrasting, and they have
been already reviewed specifically for some endoderm-
derived organs (28–33). These organs develop from a specific
position of the primitive gut in response to inductive signals
from surrounding tissues, activating specific transcriptional
programmes. Although not confirmed in the Good Labora-
tory Practice (GLP) studies (34,35), academic research
provided evidence that BPA can alter the function of
endoderm-derived organs like liver, thyroid and pancreas as
well as, recently, prostate, gut and lung (36–47).

Considering the recent advances in the understanding of
stem cell biology and transdifferentiation processes, here,
we analyse the published research to explore the effects of

developmental exposure to BPA, via maternal intake,
exerted on the endoderm-derived organs and playing a direct
or indirect role in the diabesity phenotype in the adulthood.
The effects of BPA exposure on the metabolic–endocrine
functions of some of these organs have been partially sum-
marized at epigenetic/molecular level (9). As molecular data
are limited, we analysed in detail an in vitro toxicogenomic
analysis, conducted in our laboratory on thyrocytes, that
suggests mechanisms of BPA toxicity also in other
endoderm-derived tissues involved in diabesity.

Impact of developmental exposure to bisphenol
A on endoderm-derived organs

The metabolic imbalance and diabesity associated to early
exposure to BPA are the object of different reports, often fo-
cused on two endoderm-derived organs: liver and pancreas
(9). Recently published works underline the involvement
of other endoderm-derived organs in diabesity, although it
is debated if their impairment is a cause or an outcome of
the pathological condition. Here, we analyse those works
describing the damages of endoderm organs upon in utero
exposure to BPA in animal models, referring to the diabesity
phenotype. We will discuss molecular data to highlight
‘phenotype anchoring’ aspects.

Liver

The liver plays a relevant part in the metabolic balance im-
paired in the diabesity phenotype (48). Indeed, the increased
expression of hepatic genes involved in glycolysis and
lipogenesis is pivotal in the enhancement of insulin
resistance (49).

Human foetal exposure has been confirmed by the detec-
tion of BPA in foetal liver samples, at concentrations rang-
ing between 1.3 and 27 ng g�1 (50,51). The BPA molecular
targets in foetal liver have been investigated in animal
models. It altered the expression of key markers of hepato-
cyte maturation (i.e. glycogen synthase), of immature
hepatocytes (alpha fetoprotein) and of CCAAT/enhancer
binding protein alpha (C/EBP-α), a hepatocyte-specific tran-
scription factor, impairing the maturation of mouse livers in
female foetuses exposed via maternal diet (E7.5–E18.5). In-
creased expression of the xenobiotic-metabolizing enzyme
(XME), Cyp1a1 and Gst, was described only in livers of
murine embryos exposed to 200μg kg�1 d�1 of BPA, al-
though other doses were tested (52). In contrast, the inhibi-
tion of XME transcripts and the hypermethylation of their
promoters were reported in foetal human livers specimen
(BPA range: 35.4–56.1 ng g�1) (53). The described results
were not really contrasting (52) as different genes/proteins
of the XMEs family were monitored and the liver or plasma
level of BPA was not determined in the mouse study. In ad-
dition, the perinatal exposure to BPA determined liver
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damages in adult rats exposed to 50μg kg�1 d�1 of BPA
(reference dose) from conception to weaning. Increased ap-
optosis of adult hepatic cells, because of altered expression
of Bcl-2 family genes, was observed (54). In similar experi-
mental settings, a decrease in the global hepatic DNA meth-
ylation and the specific hypermethylation of the hepatic
glucokinase promoter were described in 3- and 21-week
old rats. The resulting inhibition of glucokinase transcript
could contribute to insulin resistance (55).

The modifications of hepatic methylome were investigated
by genome-wide analysis of liver DNA, conducted at postna-
tal day (PND) 22, in mice exposed to multiple doses of BPA
through the maternal diet (56). Interestingly, they involved
well-known targets of BPA, such as Myh7b and Slc22a12.
These results were not confirmed in another work, similarly
conducted, in which less sensitive techniques were used
(global DNA methylation – High-performance liquid chro-
matography) (57). Sex-specific epigenetic mechanisms have
been recently described for the inhibition of Cpt1a and other
fatty acid β-oxidation transcripts in liver of male rats exposed
to 100μgkg�1 d�1 of BPA from gestation day (GD) 6 to
PND21, developing the steatosis in adulthood (58).

The XME enzymes are considered factors of progression in
diabesity (59) and in the imbalance of the energetic metabo-
lism (60); therefore, they are the molecular targets of BPA in
diabesity. In addition, the analysis of mice metabolome sug-
gested that BPA could affect the energetic metabolism
impairing the mitochondrial pathways (61). The results were
confirmed at molecular level in a study characterizing the
fatty liver disease developed during adulthood in rats exposed
to 40μgkg�1 d�1 of BPA from GD0 to PND21. The up-
regulation of genes involved in lipogenesis pathways, Reac-
tive Oxygen Species generation and cytochrome C release
from mitochondria in liver was detected already at 3weeks,
when liver morphology and function were still normal (62).

In summary, prenatal and perinatal exposure to BPA can
damage liver activity deregulating gene expression by sex-
specific epigenetic mechanisms, implied in the diabetes
(63). The summarized molecular modifications are involved
in the diabesity phenotype progression, in particular, the
ones related to mitochondrial dysfunctions and resulting in
damage of redox homeostasis (64).

Pancreas

Exposure to BPA has been epidemiologically associated
with T2D, insulin resistance and obesity (65,66). BPA
administration (10μg kg�1 d�1, GD9–GD16) could predis-
pose adult male offspring to T2D development (36). The
pancreatic beta cells, isolated from exposed animals, ex-
hibited enhanced insulin secretion in response to basal
level of glucose, altered calcium signalling and reduced
proliferation rate (36). The results are in agreement with
other in vitro and in vivo studies demonstrating that

BPA could damage pancreatic beta cells or other pancre-
atic cell types (37), whose impairment is strictly con-
nected to T2D (67). The impairment of glucose
homeostasis dependent on BPA has been documented in
several other studies (68–70). The development of
hyperglycaemia, hyperinsulinemia and glucose intolerance
in adulthood was described in rats exposed to
50μg kg�1 d�1 of BPA from conception to weaning (71).
Morphological (swollen mitochondria, dilated rough retic-
ulum, etc.) and molecular changes (inhibition of specific
transcripts such as Pdx-1 and Nkx6.1) were described in
beta cells isolated from exposed animals. Recently, the
role of BPA exposure in proliferation and differentiation
of beta cells has been confirmed in a report showing an
altered α : β-cell ratio in islets prepared from the foetal
pancreas of exposed animals (72). The critical window
of susceptibility to BPA exposure on the development of
dysglycaemia was characterized by exposing pregnant
mice to 100μg kg�1 d�1 of BPA at different times during
foetal/neonatal life and analysing the offspring at 3, 6
and 8months of age. The study confirmed that male mice
were more prone to developing T2D and identified the
preimplantation period as the less vulnerable. All the
morphological and functional damages of beta cells were
confirmed, and a reduced rate of beta cells turnover
within the islet was observed (73). BPA exposure acceler-
ated spontaneous diabetes development in non-obese dia-
betic mice developmentally exposed from conception to
weaning, through the dams' drinking water (0.1, 1 and
10mgL�1). Increased apoptosis of beta and glucagon-
secreting cells was described, caused by damages of the
immune system (37). Recently, Angle et al. have demon-
strated the existence of a nonmonotonic relationship
between BPA foetal exposure (from GD9 to GD18) and
insulin sensitivity using a full range (from 5 to
50,000μg kg�1 d�1) of BPA doses. Insulin sensitivity
decreased at the other tested doses, 500 and
50,000mgkg�1 d�1 of BPA (69).
Molecular pathways have been investigated in beta cells

isolated from humans, mice and rats (12,14,74–77). BPA in-
creased the insulin content and its release in the mouse
pancreatic islets. The insulin gene expression was induced,
in an inverted U-shape dose–response manner (14), by
mechanisms involving nuclear ERs, mER and GPR30
(12,74). Other in vitro studies confirmed the role of mito-
chondria alteration (mass, morphology, etc.) and of Bax
(induced) and Bcl2 (reduced) gene expression in beta cells
failure upon exposure (75). Similar results were shown in
ex vivo mouse and rat pancreatic islets (76,77).
In summary, BPA is directly involved in islets failure,

which is considered a critical aspect of diabesity in youth
(78). Although the molecular mechanisms of BPA activity
in beta cells have been described, they need further verifica-
tion in vivo.
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Thyroid

Thyroid hormones (THs) regulate glucose and lipid metab-
olism; therefore, diabesity and thyroid diseases appear to
be closely linked (9,79,80). TH disruptors, such as BPA,
can perturb the TH action in all body tissues through differ-
ent mechanisms, in particular, antagonizing the activity of
the thyroid receptor (17,44,81). Epidemiological data from
the National Health and Nutrition Examination Survey
(NHANES) study suggested an inverse relationship between
BPA exposure and total tetra-iodothyronine (T4) concentra-
tions (82). Some aspects related to diabesity were also found
to be impaired in the NHANES cohort (83,84). The thyroid
effects were strengthened by another epidemiological study
following women and their children (Center for the Health
Assessment of Mothers and Children of Salinas cohort).
High maternal urinary concentrations of BPA were signifi-
cantly associated with lower maternal serum T4 and nega-
tively associated with neonatal thyroid-stimulating
hormone in boys but not in girls (85).

Contradictory results have been reported in animal models.
No alteration in serum T4 levels, dosed at 1, 3 and 9weeks of
age, was retrieved in rat offspring of pregnant dams orally
exposed to BPA (4–400mgkg�1 d�1, GD6–PND20) (81).
In contrast, BPA exposure (1–50mgkg�1 d�1) from GD6 re-
sulted in an increase of T4 serum level only at PND15 in rat
offspring. The increase resulted in an augmented expression
ofRC3/neurogranin, a TH target gene (38). A study executed
at lower BPA doses (1 and 0.1mgkg�1 d�1), administered
from GD11 to PND 21, reported a transient hyperthyroidism
at PND7 followed by hypothyroidism at PND21 in male off-
spring (87).

In a model of a long-gestation species, with regulation
and ontogenesis of thyroid function similar to humans
(Lacaune sheep), the exposure to BPA (5mg kg�1 d�1,
GD28 end of pregnancy) decreased the total T4 blood level
in pregnant sheep and in newborns (30% decrease),
disappearing at 2months of age (88).

The BPA might alter thyroid homeostasis antagonizing
TH signalling pathways (17,89). However, it is not possible
to exclude a direct action of BPA on thyrocytes. This point
was assessed in vivo (zebrafish embryos) and in vitro (im-
mortalized rat thyrocytes) analysing the transcription of thy-
roid specific genes such as thyroglobulin (codifying for the
precursor of TH) and Pax8, its main transcriptional regula-
tor, in both experimental models exposed to low-dose BPA
(21). This was the first evidence of a direct effect of BPA on
thyroid cells, suggesting the involvement of the NF-kB and
the Retinoic Acid Receptor/Retinoid X Receptor pathways
in this activity. Other mechanisms of thyroid BPA toxicity
as well as the deregulation of several pathways involved in
the diabesity phenotype were evidenced in an in vitro
transcriptomic analyses conduced on thyrocytes (90),
among them insulin receptor signalling (p-value = 0.025)

and 1D-myo-inositol hexakisphosphate biosynthesis II and
superpathway of inositol phosphate compounds
(p-value = 0,035) (unpublished results) (91). The
transcriptomic study suggested that the gene expression pro-
filing of immortalized thyrocytes exposed to 1 nM of BPA
could evidence the impairment of pathways andmechanisms
of toxicity in other endoderm-derived organs, in which they
have not been directly assessed.

Gut

The digestive tract is the largest endocrine-related organ sys-
tem in the body, secreting several metabolic hormones (i.e.
gherlin and leptin). Among the endoderm-derived organs,
it is the only one characterized by a continuous and rapid re-
newal of its epithelial cells. Gastrointestinal morphology and
function are affected in diabesity, in particular, with intesti-
nal barrier impairment (92,93). Recent evidence describes
‘leaky gut’ as a factor involved in the development of
diabesity. The destruction of the intestinal barrier and its
permeability may enhance the natural interactions between
intestinal bacterial products and hepatic receptors (e.g. toll-
like receptors) promoting oxidative stress, insulin resistance
and so on. The alterations of the junction systems in the in-
testinal epithelial cells are involved in the process (94).

Clinical and experimental evidence points to oestrogen
and xenoestrogen (BPA among them) role in the develop-
ment and regulation of the intestinal barrier (95). The im-
pact of BPA on the intestinal function remains poorly
explored although the gut is in direct contact with BPA
when orally absorbed. BPA affects the gut permeability re-
ducing Ca++ adsorption in pregnant mice (39,40). Perinatal
exposure (GD15–PND21) to BPA (5mg kg�1 d�1) impaired
intestinal permeability and, consequently, increased the in-
flammatory response after colitis induction in female rats
during adulthood. The increased transcription of tight junc-
tion proteins, occludin and junctional adhesion molecule A,
was described in the mother's colon whereas ER beta tran-
script was found to be increased in the mothers and reduced
in male offspring (39). In the same study, the reduction of
intestinal permeability in the colon of neonates and adult fe-
male offspring was documented (39). Thus, the intestinal
barrier is a target of BPA, and related damages, such as im-
pairment of cell–cell junctions, can contribute to progres-
sion of inflammatory diseases and diabesity (94).

More detailed molecular mechanisms on modulation of
junctions in intestinal mucosa are not available although it
was characterized in the blood–testis barrier (96). We tried
to gain further insights on this aspect by looking for cell
junction-related information in the previously described
in vitro toxicogenomics study (90). We evidenced the BPA
effects on the cellular junction systems in immortalized
thyrocytes (Table 1). Similar to gut epithelial cells, these
cells are polarized and strictly connected. In thyrocytes,
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genes involved in tight junction (i.e. Tjp3 and Tjp2),
adherens junctions (i.e. Vcl and Ctnn1a) and signal trans-
duction and related cytoskeleton remodelling (i.e. Nf2) were
inhibited. Although describing the BPA effects on junction
transcripts in thyrocytes, the results summarized in Table 1
are different to the ones described in vivo (39). The

discrepancy can depend on the short exposure time consid-
ered for in vivo experiments not reflecting continuous and
rapid renewal of the intestinal epithelium. These data are
just suggestive of the possible mechanisms responsible for
establishment of the leaky gut phenotype upon BPA foetal
exposure. They need to be specifically investigated in vivo.

Table 1 Tight junction-related genes deregulated in immortalized thyrocytes exposed to 1 nM of BPA as determined by microarray

Gene symbol Fold change (BPA-treated vs. untreated cells) Corrected p-value Gene description

Utrn �2.01 2.66E-05 Utrophin (113)
Ctnna1 �2.07 1.41E-03 Catenin (cadherin-associated protein), alpha 1
Vcl �2.09 2.81E-03 Vinculin (114)
Camk2d† �2.11 8.02E-04 Calcium/calmodulin-dependent protein kinase II delta
Nf2 �2.12 1.69E-04 Neurofibromin 2 (merlin) (115)
Shroom3 �2.13 3.68E-04 Shroom family member 3 (116)
Lrp4† �2.13 5.00E-03 Low-density lipoprotein receptor-related protein 4
Csk �2.15 1.90E-04 c-src tyrosine kinase (117)
Snta1† �2.24 3.80E-04 Syntrophin, acidic 1
Dlg1 �2.25 1.45E-04 Discs, large homolog 1 (Drosophila) (118)
Akap1† �2.26 1.50E-04 A kinase anchor protein 1
Tjp3 �2.26 1.43E-04 Tight junction protein 3 (119)
Ptprm �2.27 1.45E-04 Protein tyrosine phosphatase, receptor type (120)
Itga5 �2.31 5.11E-04 Integrin, alpha 5 (fibronectin receptor, alpha polypeptide)
Pard3 �2.39 3.00E-05 Par-3 (partitioning defective) (121)
Amotl2 �2.45 7.46E-04 Angiomotin like 2 (122)
Numb �2.48 1.58E-04 Numb homolog (Drosophila) (123)
Dsg2 �2.52 6.28E-05 Desmoglein 2
Tjp2 �2.53 1.61E-04 Tight junction protein 2
Arhgef2 �2.63 1.97E-06 Rho/rac guanine nucleotide exchange factor 2 (124)

Genes deregulated in immortalized thyrocytes after 7 d of exposure to 1 nM of BPA and selected for their involvement in cell junctions formation (the whole
gene list is available at www.ebi.ac.uk/arrayexpress under the accession number E-MTAB-4458) (90).
†Gene involved in cytoskeleton organization and characterized only in the neuromuscular junction.
BPA, bisphenol A.

Figure 1 Schematic drawing of the multiple bisphenol A (BPA)-induced effects contributing to the diabesity development. BPA involvement in diabesity is
exerted through different mechanisms: (i) induction of systemic inflammation; (ii) organ-specific inflammation; (iii) impairment of cell–cell interaction; and
(iv) dysfunction of oxidative stress control pathways. When these alterations occur in the endoderm-derived organs such as pancreas, gut, thyroid and
liver, it results in diabesity. The lung involvement in the disease development is not clearly stated, but the local inflammatory cytokines production
associated to BPA exposure could have a role in the diabesity progress.
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Lung

The BPA is reported as a risk factor for childhood respira-
tory problems (asthma) and chronic obstructive pulmonary
disease (COPD) (97), both exhibiting an increase of pro-
inflammatory cytokines potentially associated to T2D risk.
Furthermore, COPD, as well as diabesity, is associated to
oxidant/antioxidant imbalance and systemic inflammation
(98). BPA might have a role in the etiopathogenesis of
COPD through a mechanism involving Nrf-2, a character-
ized target in nonendodermal cells (99,100). This result
was confirmed by in vitro toxicogenomics analyses in im-
mortalized thyrocytes exposed to 1 nM of BPA for 3 d, in
which the activation of Nrf2-mediated oxidative stress re-
sponse pathway (p-value = 0.024, z-score = 1.4) was ob-
served (90).

Evidence of BPA toxicity in lungs came from epidemio-
logical studies that, although not describing identical
results, underline a positive correlation between maternal
urinary BPA concentrations and odds of the child's wheeze
(41,42).

The possible mechanisms through which prenatal expo-
sure to BPA affected the health of the lungs have been inves-
tigated in rhesus macaques, in which BPA (GD100–GD150)
altered the development of airway cells. Higher expression
ofMuc5B and Ccsp, genes codifying two secretory proteins,
was retrieved contributing to the excessive secretion and
storage of mucus. Notably, BPA exposure was conducted
in order to obtain BPA levels in serum (from 2.2 to
3.3 ngmL�1) within the range measured in humans (101).
BPA exposure during the prenatal and postnatal phases in
mice led to a predisposition to allergic asthma as well
(102). BPA exposure (10μgmL�1 in drinking water, from
GD0 to weaning) resulted in bronchial hyper-
responsiveness to allergens and eosinophilic airway inflam-
mation in PND17 offspring (103). The asthma BPA-related
phenotype was sex dependent, with women more prone to
its development (104). No effect was detected after postna-
tal exposure to BPA by breast milk (105). Effects of BPA de-
velopmental exposure on the expression of key molecular
markers of lung maturation, such as aquaporin 5, were
studied in mice exposed via mother's diet (E7.5–E18.5). It
was altered, and the involvement of glucocorticoid
signalling was suggested (106).

Overall, the effects of developmental exposure to BPA on
the lung have been analysed only recently and poorly at mo-
lecular level, a point that should be specifically addressed.

Prostate

Here, we will briefly discuss the molecular aspects of BPA
effects on the prostate epithelium as not directly involved
in diabesity, although diabesity markedly increases the risk
of benign prostatic hyperplasia (107,108).

The BPA developmental exposure (20μg kg�1 d�1,
GD13–GD16) in mice induced 17 beta-oestradiol levels
impairing the expression of Cyp19a1 and Cyp11a1 during
gland development. The increase of P450 aromatase
(Cyp19a1) has been also associated with obesity and diabe-
tes (108). In utero exposure to BPA deregulates the expres-
sion of different genes involved in prostate hyperplasia
such as Nr5a1, androgen receptor and prostatic acid phos-
phatase expression (109,110). The role of BPA in prostate
hyperplasia has been evidenced also in the previously men-
tioned in vitro toxicogenomic study, in which the
biofunction ‘hyperplasia of prostate gland’ (p-
value = 0.00858) was evidenced at 3 d of exposure (90).

The reports on the effects of in utero BPA exposure
mainly focus on the alteration of the prostatic epithelium
(43) and are related to the susceptibility of the prostate
gland to adult-onset carcinogenesis following hormonal ex-
posures. Its molecular aspects have been analysed even at
epigenetic levels but will not be discussed here as far beyond
the scope of this review (45,111).

Conclusion and needs

This review represents the first attempt to parallel the phe-
notypic and molecular effects of BPA in organs having the
same developmental origin (i.e. liver, pancreas and thyroid),
whose activities are strictly interplayed in diabesity.
Although the molecular data are fragmentary, the available
ones illustrate an important role for transcriptional regula-
tors and epigenetic changes induced by BPA in the develop-
ment of diabesity (20). This suggests that epigenetic
changes, inheritable through the germ line even in the
absence of continued exposure, should be considered for a
proper evaluation of BPA risks. Notably, a systematic anal-
ysis of the effects on the histones code is actually missing,
and a better evaluation of transgenerational effects related
to endoderm-derived organs should be conducted (112). In
addition, more molecular data are needed to have an
in vivo phenotype anchoring for the endoderm-derived
organs.

We suggest the gene expression profiling analysis as a
valid instrument to clarify the molecular pathways involved
in BPA activity in endoderm-derived organs in a first-line
approach. Although the use of toxicogenomics is strongly
increased in the assessment of xenobiotic activity, we found
few papers applying it in molecular dissection of BPA modes
of action in the endoderm-derived organs. We strongly sug-
gest this approach because the effects of the low-dose BPA
exposure can hardly be detected at phenotypic level as de-
pending on the experimental conditions (i.e. animal model,
strains and administration route). This gives rise to the
strong debate on the effects of BPA at its environmental
doses. Furthermore, the paucity of the molecular data nega-
tively influences the possibility to find molecular hallmarks
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of exposure or effect (i.e. genes and pathways), needed to set
up correct procedures in the risk evaluation.

In our opinion, in vitro toxicogenomic represents a
starting point, a good compromise between the costs, higher
for in vivo toxicogenomics, and the need for pathways dis-
covery. Indeed, we have reported here how in vitro
toxicogenomics data from a model of endoderm-derived
cells (rat follicular cells) highlight genes (i.e. codifying for
junction proteins) and pathways (Nrf2 pathway, 1D-myo-
inositol hexakisphosphate biosynthesis II, etc.) that play a
key role in damaging endoderm organs involved in diabesity
(Fig. 1). This is the evidence that the analysis of molecular
data sets in organs having the same developmental origin
and known to be targets of developmental exposure to
BPA could lead to the identification of common/specific
deregulated pathways. These pathways are hopefully usable
in the risk assessment procedures as well as in the establish-
ment of alternative methods.
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