
Bollettino U.M.I. manuscript No.
(will be inserted by the editor)

Length-Preserving Monomorphisms for Steenrod
Algebras at odd primes

Maurizio Brunetti and Adriana Ciampella

Received: date / Accepted: date

Abstract Let p be an odd prime. In this paper we determine the group of
length-preserving automorphisms for the ordinary Steenrod algebra A(p) and
for B(p), the algebra of cohomology operations for the cohomology of cocom-
mutative Fp-Hopf algebras. Contrarily to the p = 2 case, no length-preserving
strict monomorphism turns out to exist.
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1 Introduction and Preliminaries

Let ExtΛ(Zp,Zp) be the cohomology of a graded cocommutative Hopf algebra
Λ over Fp. When p is ad odd prime, the algebra B(p) of Steenrod operations
on ExtΛ(Zp,Zp) has been described in terms of generators and relations by
Liulevicius in [20]. Namely, the generators, together with the unit 1, are the
p-th powers

P k : Extq,tΛ (Zp,Zp)→ Ext
q+2k(p−1),pt
Λ (Zp,Zp) (k, q, t ≥ 0)

and the Bockstein operator

β : Extq,tΛ (Zp,Zp)→ Extq+1,pt
Λ (Zp,Zp) (q, t ≥ 0)

subject to the following relations:

β2 = 0, (1.1)
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P aP b =

b ap c∑
t=0

A(b, a, t) P a+b−tP t when a < pb, (1.2)

and

P aβP b =

b ap c∑
t=0

B(b, a, t) βP a+b−tP t+

b a−1
p c∑
t=0

A(b, a−1, t) P a+b−tβP t when a ≤ pb.

(1.3)
Coefficients in the several sums of (1.2) and (1.3) read as follows:

A(k, r, j) = (−1)r+j
(

(p− 1)(k − j)− 1

r − pj

)
,

and
B(k, r, j) = (−1)r+j

(
(p− 1)(k − j)

r − pj

)
.

The algebra of Liulevicius operations turned out to play an important
role in stable homotopy computations (see for example [1], [2], [3], [20]). Out
of some categorical peculiarities (see [4], [11], [23] and [27]), there are also
significant connections with several other algebras of operations: for instance,
the subalgebra C(p) ⊂ B(p) generated by the set {P i, βP i | i ≥ 0} ∪ {1} is
a quotient of the Universal Steenrod algebra Q(p), introduced in [25] and
broadly studied by the authors and other people ([5]-[8] and [10]-[18]).

Moreover, the ordinary Steenrod algebra A(p) and the algebra A(p)L of
cohomology operations for the cohomology of restricted Lie algebras over Fp,
are both quotients of B(p):

A(p) ∼=
B(p)

(P 0 − 1)
and A(p)L ∼=

B(p)

(P 0)
(1.4)

(for the latter, see Thm. 8.5 in [25]). When p = 2, Congruences (1.4) continue
to hold once you replace the p-th power P 0 with the Steenrod square Sq0.

Inspired by [19] and [26], where fractal structures inside A(p) – i.e. infinite
descending chains of nested isomorphic subalgebras – led to find restrictions on
the nilpotence of some elements in the Milnor basis, the authors investigated
in the last few years the possible existence of fractal structures inside Q(p)
(see [7], [4], [11], and [15]). In this paper we focus our attention on B(p).

Proposition 1.1 The algebra B(2) admits a chain of nested subalgebras

B(2) = B0 ⊃ B1 ⊃ · · · ⊃ Bk ⊃ · · · (1.5)

all isomorphic to B(2).

Proof We recall that the mod 2 universal Steenrod algebra Q(2) is the F2-
algebra generated by xk, k ∈ Z, together with 1 ∈ F2, subject to the so-called
mod 2 generalized Adem relations:

R(k, n) = x2k−1−nxk+
∑
j

(
n− 1− j

j

)
x2k−1−j xk−n+j , where (k, n) ∈ Z× N0.
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Following two different approaches (see [7] and [15]), the authors proved
that the F2-linear map λ : Q(2)−→Q(2) acting as follows

1 7−→ 1 and xi1 . . . xim 7−→ x2i1−1 · · · x2im−1

is well-defined and injective, hence it can be regarded as a length-preserving
strict monomorphism of algebras.

We also recall that the algebra B(2) of Steenrod operations on the coho-
mology ring of any cocommutative Hopf F2-algebra Λ is generated by

Sqk : Extq,tΛ (Z2,Z2)−→Extq+k,2tΛ (Z2,Z2) (k, q, t ≥ 0)

subject to the following relations (see [25]):

SqaSqb =
∑
j

(
b− 1− j
a− 2j

)
Sqa+b−jSqj (0 ≤ a < 2b).

It is not hard to show that

ζ : xk ∈ Q(2) 7−→

{
Sqk if k ≥ 0

0 if k < 0

is an epimorphism of algebras. The map λ̃ : B(2)→ B(2) obtained by extend-
ing multiplicatively

1 ∈ B(2) 7−→ 1 ∈ B(2) and Sqk ∈ B(2) 7−→ Sq2k−1 ∈ B(2)

is a map of algebras. In fact it makes commutative the following diagram

Q(2) Q(2)

B(2) B(2)

-λ

?

ζ

?

ζ

p p p p p p p-
λ̃

Finally we set Bk = Im λ̃k. ut

Let p be an odd prime. A set of algebra generators for B(n) is given by S∪{1},
where

S = {β, P k | k ≥ 0}.

Each monomial of B(n) \ Fp has the form

m = c βε1P i1 · · · βεnP inβεn+1

where c ∈ Fp, ih ≥ 0, εj ∈ {0, 1}, and β0 has to be read as 1.
We assign a degree and a length to each monomial m of B(n) as follows.

When m = cβε with (c, ε) ∈ Fp × {0, 1}, we set deg(m) = `(m) = ε.
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If instead
m = c βε1P i1 · · · βεnP inβεn+1 6= 0

with c ∈ F∗p, we set

deg(m) = εn+1 +

n∑
j=1

(
2(p− 1)ij + εj

)
,

and

`(m) = n+

n+1∑
j=1

εj .

These notions are well-defined since Relations (1.2) and (1.3) are degree-
and length-preserving.

Section 2 is devoted to prove the following Theorem.

Theorem 1.2 Let p be an odd prime. All length-preserving injective algebra
endomorphisms for B(p) are isomorphisms.

As a consequence, the odd p-counterpart of (1.5) would possibly come from
an Fp-algebra monomorphism ξ : B(p) −→B(p), such that ξ(S) does not be-
long to the graded Fp-linear span of S. The existence of such monomorphism
remains dubious.

Let A be an algebra graded by length (i.e. relations in A preserve the
length of each monomial). As in [11] we denote by Aut(A) the group of length-
preserving algebra (from now on: LPA-automorphisms) with respect to ordi-
nary composition.

A key feature to prove Theorem 1.2 is the fact that, for any φ ∈ Aut(B(p)),
the elements in S are all φ-eigenvectors. By closely examining such LPA-
automorphisms we shall be able to prove the following Theorem.

Theorem 1.3 Let p be an odd prime. The groups Aut(B(p)) is isomorphic to
Z/(p− 1)× Z/(p− 1)× Z/(p− 1).

We end this section by recalling a result surely known by the experts.

Proposition 1.4 As an Fp-vector space, B(p) has a basis Adm made by all
monic admissible monomials, i.e. elements in S∪{1} together with monomials

βP k, P kβ, βP kβ and βε0 P t1 βε1 P t2 βεs−1 P ts βεs ,

where k ≥ 0, εi ∈ {0, 1}, and tj ≥ ptj+1 + εj ≥ 0 for 1 ≤ j < s.

Proof Follow the proof of Proposition 9 in [9], and make the suitable straight-
forward changes. ut
Example 1.5 Let k be any positive integer. The elements of B(p)(

P 0)k, β
(
P 0)k, and β

(
P 0)kβ

all belong to Adm.

Elements in Adm can be totally ordered by degree first, and then by lexi-
cographic order.
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2 Proof of Theorem 1.2

Throughout the rest of the paper p will denote an odd prime. The chosen line
of attack will resemble as closely as possible [11, Section 2].

We start by collecting some consequences of Relations (1.2) and (1.3).

Lemma 2.1 Let S = {β, P k | k ≥ 0} ⊂ B(n). The following statements hold.
i) P 0 commutes with all elements of type βεP k. Furthermore βεP kP 0 is ad-
missible.
ii) P 1P b = 0 if and only if b ≡ −1 (mod p).
iii) Suppose a and b are two distinct non-negative integers. P aP b = P bP a if
and only if ab = 0.

Proof Part i) is immediate. Since P 1P 0 is admissible, to prove Part ii) we can
assume b ≥ 1. Relation (1.2) for a = 1 says that

P 1P b = (b+ 1)P b+1P 0.

To prove Part iii), fix two integers a and b such that 0 ≤ a < b. The element
P aP b is involved on the left side of a relation of type (1.2). There, the binomial
coefficient A(b, a, a) is 0 unless a = 0. ut

Proposition 2.2 Let φ : B(p) −→ B(p) be any LPA-endomorphism. The
element P 0 is a φ-eigenvector.

Proof P 0P 0 is admissible and P 1P 1 is non-zero by Lemma 2.1 ii).
It follows that φ(P 0) and φ(P 1) are not proportional to β.
Setting φ(P 0) = d0P

L(0) and φ(P 1) = d1P
L(1), we deduce that PL(0) and

PL(1) commutes from Lemma 2.1 i). By Lemma 2.1 iii), this can only happen
if L(0)L(1) = 0.

The proof will be over if we show that L(1) 6= 0. Suppose the contrary.
By Lemma 2.1 ii), we see that P 1P p−1 = 0. By applying φ we would get

d1P
0φ(P p−1) = 0. (2.1)

Since P 0β is admissible, Lemma 2.1 i) forces φ(P p−1) in (2.1) to be zero,
against the injectivity of the map φ. ut

Proposition 2.3 Let φ : B(p) −→ B(p) be any LPA-endomorphism. The
element β is a φ-eigenvector.

Proof By Proposition 2.2 we know that φ(P 0) = c0P
0 for a certain c0 ∈ F∗p.

The elements βP 0 and P 0β hit different elements through the injective map
φ. By Lemma 2.1 i) φ(β) cannot be proportional to a p-th power. ut

Lemma 2.4 Let φ : B(p) −→ B(p) be any LPA-endomorphism. If φ(P 1) =
d1P

` for a certain d1 ∈ F∗p, then

φ(P k) = dkP
`k

for each k ≥ 1 and a suitable dk ∈ F∗p.
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Proof By Proposition 2.3, the element φ(P k) is proportional to a pure p-th
power for every k. We set

φ(P k) = dkP
L(k)

for a suitable dk ∈ F∗p.
Relation (1.3) for a = 1 gives

P 1βP k = k · βP k+1P 0 + P k+1βP 0. (2.2)

Once we apply the map φ to both sides of (2.2), for dimensional reasons we
get

`+ L(k) = L(k + 1) ∀ k ≥ 1

or, equivalently,
L(k) = ` k ∀ k ≥ 1

as claimed. ut

Proposition 2.5 Let φ : B(p) −→ B(p) be any LPA-endomorphism. For any
m ∈ N the element Pm is a φ-eigenvector.

Proof Again by Proposition 2.3, the element φ(P 1) is proportional to a pure
p-th power. Suppose, by contradiction, that

φ(P 1) = d1P
`

for a suitable d1 ∈ F∗p and ` > 1. Relation (1.2) for a = 2p− 1 and b = 2 gives

P 2p−1P 2 = 0.

We now apply the map φ to both sides. By Lemma 2.4 we get

P (2p−1)`P 2` = 0

which is not true for ` > 1. In fact, if this is the case,

`+ 1 < 2`− b `
p
c.

When we try to express P (2p−1)`P 2` as sum of admissibles, we find

P (2p−1)`P 2` =

2`−b `
p c∑

t=0

A(2`, (2p− 1)`, t) P (2p+1)`−tP t,

and
A(2`, (2p− 1)`, `+ 1) = −1.

So far, we have proved that necessarily

φ(P 1) = d1P
1.

Now the statement comes from Lemma 2.4.

Obviously, Propositions 2.2, 2.3, and 2.5 together prove Theorem 1.2.
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3 Length-preserving automorphisms for B(n)

Fix an element φ in Aut(B(p)). Consistently with notations introduced in
Section 2, we set

φ(P k) = dkP
k and φ(β) = c β.

Lemma 3.1 For each k ≥ 0 we have

dk = d1 ·
(d1

d0

)k−1

.

Proof By applying the map φ to both sides of (2.2) we deduce that

d1dk = dk+1d0 ∀k ≥ 0,

and our statement comes from a straightforward inductive argument. ut

We have now all the ingredients to prove Theorem 1.3.
Fixed a triple

(c, d0, d1) ∈ F ∗p × F∗p × F∗p ∼= Z/(p− 1)× Z/(p− 1)× Z/(p− 1),

by multiplicatively extending the Fp-linear map Φc,d0,d1 defined on the set S
as follows

Φc,d0,d1(β) = c β and Φc,d0,d1(P k) = d1 ·
(d1

d0

)k−1

P k,

we get a well-defined map in Aut(B(p)). In fact all Relations (1.1)-(1.3) are
preserved.

4 Some remarks on the ordinary Steenrod algebra

The Adem relations in the ordinary Steenrod algebra A(p) = B(n)/(P 0 − 1)
do not preserve the length of monomials. For instance, we have

P 1P 1 = 2P 2.

Yet, we could define an LPA-endomorphism forA(p) being an injective algebra
homorphism preserving the length of admissible monomials. Specializing a
result of Section 2, we get the following Proposition.

Proposition 4.1 In the ordinary Steenrod algebra A(p) we have

P 1P b = (b+ 1)P b+1.

Proposition 4.2 Let φ be an LPA-endomorphism for A(p). For all k ≥ 0,
the elements φ(P k) are proportional to p-th powers.
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Proof We argue by contradiction. Suppose that φ(P b̄) = db̄β. By applying the
map φ to both sides of

P 1P b̄ = (b̄+ 1)P b̄+1

we would get

d1db̄P
L(1)β = (b+ 1)db+1P

L(b+1),

which is not justified by any Adem relation. ut

Let φ : A(p) −→ A(p) be any LPA-endomorphism. It is easy to adapt the
arguments along the proof of Lemma 2.4 and Proposition 2.5 to show that all
p-th powers are φ-eigenvectors. Now injectivity of φ implies that φ(β) = c β
for a suitable c ∈ F∗p. This proves the following Theorem.

Theorem 4.3 Let p be an odd prime. All length-preserving injective algebra
endomorphisms for A(p) are isomorphisms.

We denote by Aut(A(p)) the group of A(p)-automorphisms preserving the
length of admissible monomials. Fixed an element φ ∈ Aut(A(p)), we set

φ(β) = c β and φ(P k) = dkP
k ∀ k > 0.

Arguing as in the proof of Lemma 3.1, we get dk = dk1 , and we can infer that

Aut(A(p)) ∼= Z/(p− 1)× Z/(p− 1).

In fact, each (c, d1) ∈ F∗p × F∗p determines an element Φc,d1 acting as follows
on monic monomials of length 1:

Φc,d1β = c β and Φc,d1P
k = dk1 P

k.

As a final remark we note that the quotient map

π : B(n)−→A(p)

induces the monomorphism

Aut(π) : Φc,d1 ∈ Aut(A(p)) 7−→ Φc,1,d1 ∈ Aut(B(p)).

Our analysis leaves G = Aut(A(p)L) out. The relation P 0 = 0 makes (2.2)
less restrictive in an A(p)L-context, hence the authors plan to figure out how
G is related with Aut(B(p)) and Aut(A(p)) in a future paper.
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