On the evaluation of the Eshelby tensor for polyhedral inclusions of arbitrary shape
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Abstract

We derive the analytical expression of the Eshelby tensor field for inclusions of arbitrary polyhedral shape. The formula contributed
in the paper is directly expressed as function of the coordinates defining the vertices of the polyhedron thus avoiding the use of
complex variables and anomalies exploited in previous contributions on the subject. It has been obtained by evaluating analytically
the integrals appearing in the very definition of the Eshelby tensor by means of two consecutive applications of the Gauss theorem.
The first one allows one to express the original volume integrals as a sum of 2D integrals extended to the faces of the polyhedron,
while the second application transforms each 2D integral into the line integrals extended so the edges of each face.
The effectiveness of the proposed formulation is numerically assessed by comparing the results provided by its implementation

in a Matlab code with results available in the literature.
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1. Introduction

The presence of inclusions in engineering materials affects
their elastic fields, at the local and global scale, thus greatly
influencing their mechanical and physical properties.

In particular composite materials take advantage of inclu-
sions as reinforcements in the matrix in order to achieve su-
perior properties that, otherwise, could not be obtained by indi-
vidual constituent materials [1].

In other cases inclusions are unintentionally but inevitably
formed during the material manufacturing process, such as ox-
ides, carbides and voids in steel, and act as sources of stress
concentration that affect performance and endurance of the ma-
terial. Hence the study of inclusions plays an important role in
the development of advanced materials for aerospace, marine,
automotive and several additional applications.

Inclusions are usually categorized [2, 3] into homogeneous,
inhomogeneous and inhomogeneities. Homogeneous inclu-
sions have the same elastic moduli as the surrounding host or
matrix material but contain the so called eigenstrain, i.e. a non
elastic strain such as thermal expansion [4, 5], phase transfor-
mation [6], visco-plastic strain [7] misfit strain [8] of quantum
dot structures [9].

An inhomogeneous inclusion not only contains an eigen-
strain but has also elastic moduli different from those of the
matrix. Differently from the previous case an inhomogeneity
does not contain an eigensrain.

The study of inclusions was pioneered by Eshelby in a cele-
brated paper [10] in which he considered an ellipsoidal inhomo-
geneous inclusion in an infinite matrix by simulating it as a ho-
mogeneous inclusion with an initial eigenstrain plus a properly
selected equivalent eigenstrain. The ellipsoidal inclusion had
uniform eigenstrain and stress if the initial eigenstrain within it
was uniform.
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The basic tool of this approach, denominated Equivalent In-
clusion Method (EIM), was the Eshelby tensor, i.e. a fourth-
order tensor relating the total strain to the eigenstrain, ex-
pressed as second derivative of the Green function of the elastic
medium.

The EIM has allowed the effects of inclusions to be studied
extensively and has been summarized in classical references,
such as the review papers by Mura and co-workers [11, 12, 13,
14] and in several books [15, 16, 17, 18, 19]. Comprehensive
reviews addressing applications of the EIM in micromechanics
and homogeneization can be found in [20, 21, 22, 23].

Of particular relevance is the combination of the Eshelby the-
ory with the Mori-Tanaka approach [24] for an accurate pre-
diction of the effective thermomechanical properties of com-
posites. Actually, just to quote some of the most recent con-
tributions on the subject, the Eshelby-Mori-Tanaka mean-field
theory has been applied in several contexts ranging from dam-
age mechanics of cement concrete [25], to periodic composites
[26], to micromechanical models of carbon nanotube compos-
ites [27, 28, 29, 30] to multi-coating micromechanics account-
ing for interphase behaviour [31, 32], to the analysis of thermal
stresses developed in ceramic matrix composites [33] or hy-
brid nanocomposites [34], to studies concerning the influence
of size effects in the evaluation of macroscopic properties of
multifunctional nanocomposites [35, 36].

Although Eshelby tensor theory has been conceived for el-
liptical (ellipsoidal) inclusions, mainly to simplify the analyti-
cal treatment, non-elliptical (non-ellipsoidal) inclusions are of
great practical importance for applications [37]. For instance
polygonal or polyhedral SiC whiskers are used in metal and ce-
ramic matrix composites, or eutectics in superconductor com-
posites. Furthermore several modern semiconductor devices,
such as lasers, infrared detectors and information storage de-
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vices use composite materials in which objects having the size
of several nanometers are buried in the surrounding matrix
[9, 38].

Since the elastic deformation produced by inclusions are de-
scribed by harmonic and bi-harmonic potentials [10], Rodin
[39] adopted the Waldvogel’s algorithm [40] for the Newtonian
potential to formulate a two-dimensional plane strain problem
for the polygonal section of an infinite cylinder.

The solution contributed by Rodin was cumbersome and the
programming implementation of his algorithm required ad-hoc
strategies such as coordinate rotation. In two subsequent pa-
pers Nozaki-Taya derived a rather involved expression of the
Eshelby tensor for convex [41] and non convex [42] inclusions
obtained as a function an of the rays connecting the observation
point with the vertices of the polygon.

Further results on the Eshelby tensor of 2D inclusions of a
arbitrary shape have been contributed in [43], by using tech-
niques of analytical continuation and conformal mapping, or in
[44, 45] exploiting special properties of tensors proved in [46].

In two recent papers [47, 48], limited to the case of 2D inclu-
sions, effective formulas for the Eshelby tensor have been ob-
tained by exploiting recent results for the Newtonian potential
[49, 50], and subsequently applied to several problems ranging
from geophysics [51, 52], to geomechanics [53, 54] and to heat
transfer [55].

To the best of the author’s knowledge papers providing an-
alytical evaluation of the Eshelby tensor of 3D inclusions of
arbitrary shape are scarce, the only remarkable exceptions be-
ing the contributions by Gao and Liu [56], although devoted to
gradient elasticity, and Wang et al [57].

Hence, aim of this paper is to derive a particularly compact
and effective expressions by suitably generalizing the approach
presented in [47]. In particular we consider a first application
of the Gauss theorem to express the volume integral extended
to the polyhedral domain as sum of area integrals extended to
the faces bounding the polyhedron.

A further application of the Gauss theorem transforms the
face integrals into line integrals, extended to the edges of each
face, that are analytically evaluated, thus allowing for closed-
form expression of the Eshelby tensor.

Remarkably, differently from previous contributions, our for-
mula is directly expressed as function of the position vectors
defining the vertices of the polyhedron, i.e. the basic geometric
elements used to assign the inclusion.

The numerical assessment of the novel formula for the Es-
helby tensor has been carried out by means of a Matlab code.
Several examples related to different shape inclusions [56]
prove the effectiveness of the proposed approach.

2. The Eshelby tensor

Let us consider an infinite, elastic, homogeneous and
isotropic space having an arbitrarily shaped inclusion Q in
which a uniform eigenstrain &* is assigned. Furthermore we
introduce a Cartesian reference frame of origin O and axis xj,
x; and x3 as shown in Fig. 1
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Figure 1: A polyhedral inclusion Q

Adopting index notation, the displacement u generated by
the inclusion at a point P of position p = (pi, p2, p3) is ex-
pressed as [3]
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where d = (d,, da, d3) is the position of a generic point inside
the inclusion and the vector r = p — d has been introduced to
simplify the notation. The comma in the last formula denotes
differentiation with respect to r;.

The tensor G is the Green’s function in the case of three-
dimensional elasticity and its expression is [3]
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where u is the shear modulus, v is the Poisson’s ratio and I
is the three-dimensional identity tensor. In index notation the
previous relation becomes
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where U = 1/[16u(1 —v)] and V = 3 — 4y.
The elasticity tensor C used in formula (1) is expressed in
index notation as

Ciimn = A010mn + 1(OkmOin + Onlim) (€

where A is the first Lamé constant.

The infinitesimal strain tensor & at P can be evaluated as a
function of the displacement u by differentiating formula (1).
Accordingly one has
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where the fourth-order tensor

1
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is the Eshelby tensor for three-dimensional elasticity.

We apply the Gauss theorem to transform the volume inte-
grals, extended to the region Q occupied by the inclusion, into
area integrals, extended to the boundary 0Q of the inclusion.
Hence, the Eshelby tensor (6) is rewritten as
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where n is the outward unit vector orthogonal to 0Q2.

The gradient of the Green function appearing as argument of
the two integrals in the previous equation can be obtained by
differentiating formula (3). Accordingly, one has
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Substituting formula (8) into (7) we obtain the following ex-
pression for the first integral appearing in the expression of the
Eshelby’s tensor
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The second integral in (7) has an expression similar to (9) by
exchanging the indexes i and j and observing that Y = Y jiis

The formulas for evaluating the integrals in (10) are obtained
in section 3 while here they are used to express the Eshelby
tensor as
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where the identities ¢;; = ¢;; and ;i = T have been used.
Finally, substituting formula (4) into the previous expression
one has
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which fulfils minor symmetries.
Adopting a Voigt notation [g]y for simmetric second-order
tensor [&]
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the Eshelby tensor can be expressed as
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3. Analytical expression of the boundary integrals in terms
of face integrals

For a polyhedral inclusion, whose boundary dQ is made of
Ny faces, the integrals (10) can be further specialized as follows
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and ny is the unit vector normal to the f-th face pointing out-
wards Q.

To express the previous 2D integrals in terms of line inte-
grals, we need a further application of Gauss theorem, now in
the plane of each face. To this end we consider the orthogonal
projection of the point P on the f-th face, say Py, and assume
this point as origin of a local 2D reference frame, see, e.g., Fig.
2.

As reported in [52, 58, 59], we introduce the linear operator
TF,, mapping 2D vectors to 3D ones; the columns of the asso-
ciated matrix contain the components of two arbitrary 3D unit
vectors, e.g., uy and vy, mutually orthogonal and parallel to the
generic face Fy

Urp  Vr
Tr,=| un vp (17)
Ur3 Vp3

The operator Ty, is useful to represent the orthogonal decom-
positionof a generic 3D vector ry belonging to F; in particular,
denoting by dy the distance of the f-th face from the origin of
the reference frame one has

r, =ryf+rj% =(rf-nf)nf+r9( =dmy +Tr,p, (18)
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Figure 3: 2D position vector of the g-th vertex of the f-th face

so that ry is expressed as sum of a vector rj% orthogonal to the

face Fy and a vector ryf parallel to it. In turn the 2D vector p,

contains the components of ryf in the plane of the face.

Actually, being parallel to F, the vector rﬂc can be equiva-
lently expressed as linear combination of two vectors parallel
to the face, i.e. the column of TFf, by means of coordinates
representing the 2D vector p,.

Multiplying to the left both sides of (18) by TTf, i.e. the
transpose of T Fy» ONE infers

ps= Tgf(rf —dmy) (19)

since T;fT r, = Iop where Ipp is the 2d identity matrix.

The previous relation plays a fundamental role to evaluate the
2D components of the 3D position vectors defining the vertices
of the generic face. Actually, the formulas resulting from the
two consecutive applications of Gauss theorem are expressed
as function of the 2D coordinates of the vertices referred to the
cartesian frame local to the face.

In turn, such 2D coordinates need to be computed from the
relevant 3D coordinates of the vertices of each face since they
represent the basic input data for assigning the polyhedron.

Denoting by p, = (£7.my) the position vector of each point
of the f-th face with respect to Py and observing that dy =

ry - ny is constant over each face, the expression (16); can be
equivalently written as

o = f — A, = (drny +Tr,py) (20)
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where k1, and kx, have been evaluated in [52]; their expressions
are reported in the Appendix A for the reader’s convenience.
Expanding ry ® ry ® ry on account of (18) one has
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To make the previous expression more concise we set
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and introduce the formal operator Tf;j;b where the symbol b...b
denotes an arbitrary sequence of 0 and 1. In particular
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Notice the previous symbol is purely formal since it involves
the tensor product od 2D and 3D vectors. It has been deliber-
ately introduced to focus the reader’s attention on the fact that
one first evaluates the integral (25) as a tensor product of 2D
vectors, as detailed in the sequel; only subsequently the result-
ing formula is expressed in terms of 3D vectors, by means of
the operator T F,» and combined with the 3D vector ny.

The analytical evaluation of the face integrals (23) - (26) will
be detailed in the next section.

4. Analytical expression of the face integrals in terms of 1D
integrals

Aim of this section is to illustrate how to express the integrals
(23) - (26) in terms of 1D integrals extended to the edges defin-
ing the boundary 6Q, of each face. To this end we shall make
repeatedly use of the Gauss theorem in several of its variants
depending on the field to integrate.

4.1. Analytical evaluation of the integral ¢, in terms of 1D
integrals

To evaluate the integral ¢, in (23) we invoke a general result

exploited in [49, 60] concerning the properties of the vector

field p,/(p; - py). Actually, given a continuous function ¢, it
turns out to be

Py
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where F is an arbitrary two-dimensional domain and a(o) rep-
resents the angular measure, expressed in radians, of the inter-
section between F' and a circular neighborhood of the singular-
itly point p = o, see [51, 61] for details and [55, 62] for further
applications. In particular a(o) = 27 if o belongs to the interior
of F and a(o) = m if o belongs to a straight edge defining the
boundary 0F of F.

Notice that when o € F the integral on the left-hand side
above is simply obtained by sampling the value of the function
¥ at o scaled by the quantity a(o).

We can now evaluate the integral (23) by invoking the differ-
ential identity

div(yu) =

where ¢ (u) is a scalar (vector) field.
In particular, one has

grady - u + ¢ diva (33)
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Integrating over Fy and invoking (32), the application of
Gauss theorem to the integral on the left-hand side above yields
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where v is the 2D outward unit normal to dF; and ay = a(oy)

is different from zero if and only if the point p, = 0 belongs to
Fy.

1
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4.2. Analytical evaluation of the integral @p, in terms of 1D
integrals
The integral ¢ in (24) can be simply expressed in terms of
line integrals by observing that

- 3
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Thus application of Gauss theorem yields
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4.3. Analytical evaluation of the integral ®y, in terms of 1D
integrals

The evaluation of the integral ®f, in (25) by means of line
integrals is based on the differential dentity

grad(y u) = u® grad ¥ + ¢ gradu (38)
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where I,p is the two-dimensional identity operator.
Integrating the previous expression over F; and invoking the
following variant of the Gauss theorem
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The evaluation of the last integral is detailed in the Appendix
A.

4.4. Analytical evaluation of the integral T, in terms of 1D
integrals

The express the integral §¢, in (26) by means of line integrals
we need to invoke the differential dentity

[grad (ya®b)] ;= Waibj)n =
= aibjYm + W ainbj +y aibjn =

(42)
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involving scalar () and vector (a, b) fields. The symbol X

used to combine the rank-two tensor grada and the vector b
is defined as a suitable extension of the more classical tensor
product (A X B) between rank-two tensors [63]
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Thus, applying formula (42)
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application of the Gauss theorem to (49) yields

PrOPrBpPy
5= | o p s ™ =
y ProPr Ty
i
3 1 prO®p,BY
T3 e
I Y
ﬂx A A+ (51)
3 (Pf‘Pf+d2)3/2
p, +d2)}" 3
7, (pf Py f)
Ly Ly
_ggﬁFf 3 XKFf KFf®T

5. Algebraic expression of the face integrals in terms of 2D
vectors

At this stage we despose of analytical expressions of the face
integrals as line integrals extended to the boundary of each face.
The relevant expressions are provided by eqn. (35) for ¢p,,
eqn. (37) for ®r,» eqn. (41) for ®p, and eqn. (51) for Fp,.
Having supposed that each face of the inclusion is polygonal,
the previous line integrals can be given an algebraic expres-
sion depending upon the 2D position vectors of the vertices; in
particular it is assumed that these are numbered in consecutive
order by circulating along the boundary dF of the generic face
in a counter-clockwise sense with respect to the outward unit
normal ny.

Supposing that the generic g-th side of dF is identified by
the two position vertices p, and p,._;, its parametric equation is
given by

p(/lg) =Py + ﬂg(pg-*—l - pg) =Py + ﬂgApg (52)

where A, € [0, 1] is a local abscissa along the g-th side.
Of future use is also the expression of the outward unit vector
v, orthogonal to the g-th side, given by

_Pea b Mo (53)
ng+1 - gl lg

where [, = [r,.; — 1| is the length of each edge and (-)* repre-
sents the clock-wise rotation of (-) by 7/2.
Additional quantities repeatedly used in the sequel are
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we shall also set wg = ug +d7 and Py (dy) = pedy+2gedg+w, =
P,(Ag) + dj%

Setting p,,.; = (£g+1, Ng+1) We have denoted by p;l the
quantity defined by (17441, —&g+1)-

5.1. Algebraic expression of the face integral ¢y, in terms of
2D vectors
Invoking formulas (52), (53), (54), (55) and (35) the integral
®ar, can be evaluated analytically as follows
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where Ngy is the number of edges of the face Fy, v, is the
outward unit normal to the g-th edge and ds, = [, dA,.

Recalling (53), (54) and (55) one has
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where the explicit expression of the integral I4, is detailed in
the Appendix B.

In conclusion, on account of (35) one has
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3 Z Py Pr) lae (58)

that represents the final result.
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5.2. Algebraic expression of the face integral @p, in terms of
2D vectors
Invoking formulas (52), (53), (54), (55) and (37) the integral
¢, admits the following analytical expression
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yielding finally
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where the integral Io, is analytically evaluated in the Appendix
A.

5.3. Algebraic expression of the face integral ®y, in terms of
2D vectors
By following the same path of reasoning illustrated in the
previous subsection, the integral @y, in formula (41) can be
transformed as follows
f Vv

NEf (61)
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or equivalently
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where the integrals /o, and I, are analytically evaluated in the
Appendix A. Thus, are finally has

12, 1
®r, = =2k, — 3 ) [pelo+ ApoIie| @ Apy (63)
T o=l

on account of (41).

5.4. Algebraic expression of the face integral §r, in terms of
2D vectors
It remains to transform the integral §sr, in (51). Proceeding
as in the previous subsections we set

pPr®P®Y

Sor, = | ——————=ds; =
! (Pf‘Pf+djzc)3/2
NEf
®
(pf ps +dz)3/2 (64)
NEf
P(/lg) ® p(dg)dA, L
= Z | @ AL
iy [Pu)]

Being
P @ P(Ly) = (P, + AAP) @ (P + AAp,) =
=P ®pP, + /lg(pg ® Ap, + Ap, ®pg)+ ©5)
+ L;Ap, ® Ap, =

_ 2
T T PePe + ﬂgngApg + ﬂé’DApgApg

we finally have
L fodi
8
Sor, = Z{ngpg f T
g=1 0 [Pw(/lg)]
A.dA
+ ngApg S 7
5 [Pu)] (©6)
22dA
+ DAPgAPe - g3/2 } ® Ap:,' =
5 [Puao)]
NEf
= Z{IOgngpg + IlgngApg + IngApgApg} ® Ap:,'
g=1
so that
I I
S'Ff = éD XKFf +KF, ® %—
1S
_ 3 Z{IOgngpg + IlgngApg + IngApgApg} ® Ap:,'
34
(67)

where the integrals Io,, 114 € Io, are evaluated in the Appendix
A.

6. Algebraic expression of the face integrals in terms of 3D
vectors

The integrals evaluated in the previous section have been ex-
pressed as function of 2D vectors collecting the coordinates of
the vertices of the inclusion projected in the plane of each face.

However the tensors @/ and Y/ are expressed in terms of
3D vectors so that the formulas derived in the previous section
need to be suitably reformulated in terms of the 3D coordinates
of each vertex.

This does not represent a problem for the expression (21) of
o/ since it is already expressed in this form. The same does
occur for the quantities Tr, ¢, and TFfCI)Fngf appearing in
formula (29) for Y/. Thus, we just need to detail how to express
the rank-three tensors T;(;I(CI) ¥, Any) and T}%IS F, as a function
of 3D vectors.

To this end setting

G, = TchprTg (68)
we have
T ®n, T
TIOI((I)Ff A “f) - Z;)pf id2);fzpf Ar=Grenny
rPrta;
(69)

where ®,3 denotes the tensor product obtained by switching the
second and third index of the rank-three tensor Gy ® ny.

To address the case of the tensor Tgl 3 r, we first notice that,
according to (67), the tensor §, is expressed as a sum of rank-
three tensors, two of which are given by tensor product between



rank-two tensors and a vector, while the remaining ones are
given by the tensor product of three 2D vectors. Denoting be
v, 0 and € the factors of these last addends of § Fy» ONE trivially
has

T"'(y®62e)=TryeTrd@Trs=tovaw (10)

so that the tensor product above between 3D vectors can be
suitably expressed in matrix form. For istance one can set

Viwp viwa  Viws
[Z] =] vow1 wvawy  vows3 (71)
VW V3wp V3w
and
t [Z]
[tevew|=| n[Z] (72)
13 [Z]

and define in accordance the composition of rank-three tensors
with vectors and rank-two tensors. Finally it is straightforward
to check that

Tl“(IzD X KFf) = TFfIZDT;f X Tpkp, =

(73)
=Ip X (TFfKFf)

and
Tm(KFf ® 121)) = (TFfKFf) ®Lzp (74)

that can expressed in matrix form similarly to (72).

7. Numerical examples

We report hereafter the results of some numerical examples
in order to show the effectiveness of the proposed approach and
the robustness of the relevant implementation in a Matlab code.

The compiled version of the code can be downloaded at the
address specified in the Appendix B.

7.1. Preliminary validation of the Matlab Code

In ordere to carry out a prliminary validation of the code,
the Eshelby tensor has been evaluated for a spherical inclusion
since the following analytical expression is available for the ten-
sor in Voigt notation

1 7-5v 1 5v—1 1 5v-1
115 51 —vl 115 71 —Sv 1 15 51 —vl O O O
V— —JV V—
115 51 —vl 115 51 —vl 115 71 —Sv O O O
V— V— —JV
S=| 151~ 15 1-v 15 1-v ) 95 0 0
—JV
0 0 0 15 1T-v ) ?5 0
0 0 0 0 24 0
0 0 0 0 0 LAy
15 1-v
(75)

where v is the Poisson’sratio. In particular the tensor is indipen-
dent from the dimension of the inclusion and constant within
the inclusion.

Assuming v = 0.3 the following expression is arrived at

0.5238 0.0476 0.0476 0 0 0
0.0476 0.5238 0.0476 0 0 0
S = 0.0476 0.0476 0.5238 0 0 0
0 0 0 0.4762 0 0
0 0 0 0 0.4762 0
0 0 0 0 0 0.4762
(76)

The Eshelby tensor S has been numerically evaluated by ap-
proximating the sphere with triangular facets obtained by con-
sidering n equally spaced parallel and meridian planes, see, e.g.,
fig. 4 for the case n = 20. The following results, obtained for

i /

-0.5 1
0.5

05 05
1.1

Figure 4: Polyhedral approximation of the sphere obtained by considering n =
20 equally spaced parallel and meridian planes

n =10,
0.5291 0.0477 0.0505 0 0 0
0.0477 0.5291 0.0505 0 0 0
Sy = 0.0447 0.0447 0.5131 0 0 0
0 0 0 0.4814 0 0
0 0 0 0 0.4736 0
0 0 0 0 0 0.4736
(77
n =20,
[ 0.5251 0.0476 0.0483 0 0 0
0.0476 0.5251 0.0483 0 0 0
Sy = 0.0469 0.0469 0.5212 0 0 0
0 0 0 0.4775 0 0
0 0 0 0 0.4755 0
0 0 0 0 0 0.4755
(78)
and n = 40,
[ 0.5241 0.0476 0.0478 0 0 0
0.0476 0.5241 0.0478 0 0 0
Sy = 0.0474 0.0474 0.5231 0 0 0
0 0 0 0.4765 0 0
0 0 0 0 0.4760 0
0 0 0 0 0 0.4760




clearly show how the numerical solution tends to the analytical
one as n increases.

7.2. Comparison with the results reported in [56]

More demanding benchmark tests of the proposed approach
have been obtained by considering three of the examples ad-
dressed by Gao and Liu [56] with reference to a cuboidal, an
octahedral and a tetradecahedral inclusion.

These are particularly interesting examples since some de-
screpancies with the results reported in [56] have obliged us to
further validate our approach by supplementing the analytical
evaluation of the integrals addressed in the previous sections
with a numerical one.

7.2.1. Inclusion of cuboidal shape

Let us consider a cuboidal inclusion immersed in an infinite
elastic space characterized by a Poisson’s ratio v = 0.3 , see,
e.g., fig. 5. The side length of the cube is equal to 2 and the ori-
gin of the cartesian reference frame coincides with the barycen-
ter of the cube.

The Eshelby tensor is computed at points P having x; coor-
dinated ranging from to 0 and 2, i.e. symmetrically with respect
to the face orthogonal to x; axis. Clearly, due to the symmetry
of the inclusion, the results presented in the sequel do apply as
well to points P placed along the x, and x3 axes.

The components S;;; and S, of the Eshelby tensor, plot-
ted in figs. 6, and 12 respectively, have been computed in Gao
et al., while the additional components in (14) have not. For
this reason the analytical computation of the components have
been supplemented with a numerical one obtained by numeri-
cally integrating the face integrals w/ and Y/ in formula (16).

Notice that the point P at which the components of the
Eshelby tensor are computed is internal to the inclusion for
0 < x; < 1, external to it for I < x; < 2 and belongs to its
boundary for x; = 1.

Furthermore all the components, with the exception of S 227,
S3333 and S5233 are discontinuous at the boundary of the inclu-
sion.

X3

Figure 5: A cuboidal inclusion having edge length equal to 2.
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Figure 6: Component S 1111 of the Eshelby tensor relevant to the cuboidal in-
clusion of fig. 5 at points P placed along the x; axis.
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Figure 7: Component S222, of the Eshelby tensor relevant to the cuboidal in-
clusion of fig. 5 at points P placed along the x; axis.

0.6; T T
% Analitical
0.5F ——Numcrical| |
0.4
Zoaf
Lol
02
0.1
0 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2

Figure 8: Component S 3333 of the Eshelby tensor relevant to the cuboidal in-
clusion of fig. 5 at points P placed along the x; axis.
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Figure 9: Component S 1122 of the Eshelby tensor relevant to the cuboidal in-
clusion of fig. 5 at points P placed along the x; axis.

7.2.2. Inclusion of octahedral shape
We now consider an octahedral inclusion belonging to an in-
finite elastic space having a Poisson’s ratio v = 0.3, see, e.g.,
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Figure 10: Component S 2233 of the Eshelby tensor relevant to the cuboidal

inclusion of fig. 5 at points P placed along the xj axis.
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Figure 11: Component S 1133 of the Eshelby tensor relevant to the cuboidal

inclusion of fig. 5 at points P placed along the xj axis.
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Figure 12: Component S 1212 of the Eshelby tensor relevant to the cuboidal

inclusion of fig. 5 at points P placed along the xj axis.
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Figure 13: Component S 1313 of the Eshelby tensor relevant to the cuboidal
inclusion of fig. 5 at points P placed along the xj axis.

fig. 15. The edge length of the octahedron is equal to 2 and the
barycenter coincides with the origin of the reference frame.
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Figure 14: Component S2323 of the Eshelby tensor relevant to the cuboidal
inclusion of fig. 5 at points P placed along the x axis.

/N

0
-O.2'x1«

-0.47
-0.67
-0.87

-17 1
-1 057 55 0 0.5

Figure 15: An octahedral inclusion havinhg edge length equal to 2.

The point P at which the Eshelby tensor is evaluated can be
anywhere between x; = 0, i.e. at the barycenter of the inclu-
sion, and x; = 2, i.e. outside the inclusion. The components of
S are plotted in figs. 16-24 but only for S11; and S ;7 it has
been possible to make a comparison with the values contributed
by Gao and Liu [56], though experiencing some discrepancies.

For this reason, as well as for validating the analytical formu-
las contributed in the previous sections, we have numerically
integrated the face integrals w/ and Y/ in formula (16).
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O Gao & Liu (2012)
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SJIII

Figure 16: Component S 1111 of the Eshelby tensor relevant to the octahedral
inclusion of fig. 15 at points P placed along the x; axis.

7.3. Inclusion of tetrakaidecahedral shape

A tetrakaidecahedron can be generated by uniformly truncat-
ing the six corners of an octahedron and is known to be the only
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Figure 17: Component 222, of the Eshelby tensor relevant to the octahedral

inclusion of fig. 15 at points P placed along the x; axis.
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Figure 18: Component S 3333 of the Eshelby tensor relevant to the octahedral

inclusion of fig. 15 at points P placed along the x; axis.
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Figure 19: Component S 1122 of the Eshelby tensor relevant to the octahedral
inclusion of fig. 15 at points P placed along the x; axis.
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Figure 20: Component S 2233 of the Eshelby tensor relevant to the octahedral
inclusion of fig. 15 at points P placed along the x; axis.

polyhedron that can pack with identical units to fill space and
nearly minimize the surface energy. In particular we consider
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Figure 21: Component S 1133 of the Eshelby tensor relevant to the octahedral

inclusion of fig. 15 at points P placed along the x; axis.
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Figure 22: Component S 1212 of the Eshelby tensor relevant to the octahedral

inclusion of fig. 15 at points P placed along the x; axis.
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Figure 23: Component S 1313 of the Eshelby tensor relevant to the octahedral

inclusion of fig. 15 at points P placed along the x; axis.
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Figure 24: Component S 2323 of the Eshelby tensor relevant to the octahedral
inclusion of fig. 15 at points P placed along the x; axis.

the tetrakaidecahedron illustrated in fig. 25. The barycenter of
the inclusion coincides with the origin of the reference frame
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and the components of the Eshelby tensor have been evaluated
at points P placed along the x| axis in the range 0 < x; < 2.

A comparison with the analogous results contributed by Gao
and Liu [56] has been possible only for the components S ;;;
and S 312, see, e.g., figs. 26 and 32, though some differences
can be noticed for values x| ranging in the interval [0.8, 1].

For this reason we have further validated our Matlab code by
comparing the analytical results, associated with the formula-
tion detailed in the previous section, with the numerical ones
obtained by quadrature of the face integrals w/ and Y/ reported
in formula (16).

As it can be seen from fig. 26-34 a perfect agreement be-
tween analytical and numerical evaluation of the Eshelby tensor
is obtained.

X3

Figure 25: A tetrakaidecahedral inclusion having distance between vertices op-
posite with respect to the barycenter equal to 2.
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Figure 26: Component S 111 of the Eshelby tensor relevant to the tetrakaideca-
hedral inclusion of fig. 25 at points P placed along the xj axis.

8. Conclusions

We have derived an analytical expression of the Eshelby ten-
sor field for arbitrary polyhedral inclusions by converting its
original expression, containing 3D integrals extended to the
domain of the inclusion, to 2D ones extended to the relevant
boundary. The result has been obtained by exploiting recent re-
sults on Newtonian potential [52, 53], based upon a generalized
version of the Gauss theorem which suitably takes into account
the singularities of the fields to be integrated.

Figure 27: Component S 2202 of the Eshelby tensor relevant to the tetrakaideca-
hedral inclusion of fig. 25 at points P placed along the x axis.
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Figure 28: Component S 3333 of the Eshelby tensor relevant to the tetrakaideca-
hedral inclusion of fig. 25 at points P placed along the x axis.
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Figure 29: Component S 1122 of the Eshelby tensor relevant to the tetrakaideca-
hedral inclusion of fig. 25 at points P placed along the x axis.
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Figure 30: Component S 2233 of the Eshelby tensor relevant to the tetrakaideca-
hedral inclusion of fig. 25 at points P placed along the x axis.

A further application of the Gauss theorem has allowed us to
further reduce the face integrals, i.e. the 2D integrals extended
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Figure 31: Component S 1133 of the Eshelby tensor relevant to the tetrakaideca-
hedral inclusion of fig. 25 at points P placed along the xj axis.
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Figure 32: Component S 1212 of the Eshelby tensor relevant to the tetrakaideca-
hedral inclusion of fig. 25 at points P placed along the xj axis.
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Figure 33: Component S 1313 of the Eshelby tensor relevant to the tetrakaideca-
hedral inclusion of fig. 25 at points P placed along the xj axis.
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Figure 34: Component S 2323 of the Eshelby tensor relevant to the tetrakaideca-
hedral inclusion of fig. 25 at points P placed along the xj axis.

to the faces of the inclusion, to simpler 1D integrals extended
to the edges of each face.
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Analytical integration of such line integrals has ultimately
allowed us to derive an algebraic expression of the Eshelby ten-
sor that is directly expressed as function of the position vectors
defining the vertices of the polyhedron.

The extension of the proposed approach to the case of non-
uniform eigenstrain within the inclusion will be dealt with in
forthcoming papers.
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Appendix A.

We hereby report the expressions of the integrals «p, and
K, referred to in formula (21) and some definite integrals used
throughout the paper. To this end we remind that for a generic
edge g of the face Fy, parameterized by the end vectors p, and
P, collecting the coordinates of the vertices in the 2D refer-
ence frame local to F, we have set Ap, = p,.; — p,

and wg = ug + d}. We further introduce the quantities
Idfl(pg +4y)
ATNI1, = arctan (A2)

A[Dells — qg Do + 2, + W,



ldslg.
— 4\

ATN2, = arctan
Dglle

repeatedly used in the sequel.
P,(Ay) = pg/l +2qgdg + Ug, Py(Ag) = Py(dg) + d2

Denoting by N, the number of edges of the face F; the in-

tegrals kr, and kr, have the following expression [52]

_ : _
- p+ P2 ld
¥, (Pf Py f) I

N ds,
; (e ®r PP pp+d)'?
NEf 1
_ ay " ﬂgd/lg _
_m_Z(pg'ng)f 12 ~
A= 2 Pul)[Pu(ay)]
NEf 1
a Pg P
- d—f - Y | —=—(ATN1, - ATN2,)
il 1 Jpeu, — a2
(A4)
and
prdAy

N e

NE]

- _ZAp;f

N3z
Pf"‘d) P

NE]

Zl Ap?

7z
[mum
(ALS)
where v, is defined in (53) and
l dAa
@:f S
24+ 2g,d, +
D [Ped} + 240k + e (A6)

npg+qg+ VDg Pe +2q, + Wy
Gg + VDgWy

The additional integrals referred to in the body of the paper
are detailed in the sequel together with their analytical evalua-
tion.

dx _
(PeX? + 2gox + wg)3/? -
. 1
PegX T ¢
= { - < = = } = (A7)
(qg — PeWe) \PeX? +2qoX + Wy 0
_ 1 Pet4g 4
- _ 2
(PeWe = q) Pi+2q, +wyg VWe

(A3)

For brevity we shall also set

v, —_—_— =
- gf(/?f‘Pfde_?)”z

I = f xdx 3
le = (PeX? + 2qx + wg)3/? -
0

i

and the final expression of /1, is

(A8)
qu + Wg

1
(g3 = PeWe) VDX + 2qoX + Wy }0

qg+Wg

(ngg - Clg)
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Differently from the previous integrals, the following ones
require some preliminary algebraic manipulation.

Actually, to compute

dx
(PeX? + 2qx + Ug)(PoX? + 2goX + Wg)!/?

wesett = x + q,/p, so as to get the simpler expression

L+q¢/pg

I 1 dt
3 T e— —————————————————
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where
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‘We thus have

; | | arctan{ tVB—A }“ﬂe
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since \wg — ug = |dy|

Analogously to the integral /3, we transform the integral

1
dx
L, = f (A.13)
¢ ) (PeX? + 2 oX + Ug)(PoX? + 2o X + Wg)3/?
by setting r = x + g,/ p, to get
144,/ pg
L, = ! f d (A.14)
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§ qe/Pe

In this case one has
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Appendix B. Supplementary material

Supplementary data associated with this article can be found
in the online version at “to be specified from the publisher”
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