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Image-Based Visual-Impedance Control

of a Dual-Arm Aerial Manipulator
Vincenzo Lippiello, Giuseppe Andrea Fontanelli, and Fabio Ruggiero

Abstract—Three new image-based visual-impedance control
laws are proposed in this paper allowing physical interaction of a
dual-arm unmanned aerial manipulator equipped with a camera
and a force/torque sensor. Namely, two first-order impedance
behaviours are designed based on the transpose and the inverse
of the system Jacobian matrix, respectively, while a second-order
impedance behaviour is carried out as well. Visual information
is employed both to coordinate the camera motion in an eye-
in-hand configuration with the assigned task executed by the
other robot arm, and to define the elastic wrench component of
the proposed hybrid impedance equations directly in the image
plane.

Index Terms—Aerial Systems: Perception and Autonom, force
control, Visual Servoing.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) are employed in

several “passive” tasks such as surveillance, inspection,

remote sensing, and so on. Recently, these vehicles have

also been tested in “active” tasks like grasping, transporting

and, lately, manipulation. Grasping objects during the flight

requires to cope with several issues mainly related to the

unstable dynamics of the vehicle and the coupling effects

due to the carried object [1]. UAVs equipped with robot arms

are a promising solution providing the capability of executing

dexterous manipulation tasks.

The mechatronic design of a robotic manipulator that is

meant mounted on a UAV and to be used in industrial

applications, for both aerial inspection by contact and aerial

manipulation, is proposed in [2]. Similarly, the design, model-

ing and control of a 5 degrees of freedom (DoFs) light-weight

robot manipulator for small-scale UAV has been proposed

in [3]. Recently, the design of a dual-arm aerial manipulator

consisting of a multi-rotor platform with an ultra-lightweight

human-size dual arm prototype and its control system have

been described in [4]. Such a solution is referred to as

Unmanned Aerial Manipulator (UAM) and is considered in

this paper. Sophisticated controllers are needed for UAMs to
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stabilize physical interaction with the environment. In [5],

an interaction control has been proposed allowing a UAM

to track a desired normal force while moving on a wall.

An impedance control law able to govern the DoFs of a

UAM is proposed in [6], while a Cartesian impedance control

law has been presented in [7] and [8], where a dynamic

relationship between external forces, specified in terms of

Cartesian space coordinates, has been provided. A nonlinear

adaptive impedance controller is proposed in [9] allowing the

control of the manipulator’s end-effector Cartesian impedance

to have a stable interaction. In [10], a multi-level impedance

control scheme is composed of a trajectory generator and

an impedance filter that modifies the trajectory to achieve a

complaint behaviour in the task space.

The interaction of a robot arm with a rigid object of known

geometry and unknown (time-varying) pose is considered

in [11]. An algorithm for the pose estimation of the object has

been proposed, based on visual data provided by a camera as

well as on forces and moments measured during the interaction

with the environment. Differently from what is proposed in

this paper, visual and force control are not simultaneously

employed in a unique control law to achieve an impedance

behaviour.

In this paper, a UAM equipped with a dual-arm robot system

is considered. A camera is mounted in one hand, while the

other hand is endowed with a wrist force/torque sensor and

holds an object (peg) to be mounted in a structure (hole) fixed

on the ground. The peg-in-hole is just an explanatory case

study: the approach can be in principle extended to other tasks.

Novel visual-impedance control laws have been designed in a

common control framework: two first-order impedance control

laws based on the transpose and the inverse of the system

Jacobian matrix are proposed together with a complete second-

order visual-impedance control law. Visual information is

employed to coordinate the camera motion, fixed in one hand

of the robot, with the assigned task executed with the second

arm carrying an object. In an innovative way, for each control

law a suitable visual error is defined directly in the image

plane generating an elastic wrench component to nullify the

pose error with a compliant interaction behaviour. Simulations

bolster the effectiveness of the proposed techniques.

II. MODELING

Figure 1 shows an example of the addressed system. This

section describes the (differential) kinematics and the dynamic

model of a dual-arm UAM. Finally, the camera model and its

differential kinematics are presented.
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Fig. 1. Dual-arm UAM and corresponding reference frames.

A. Kinematic model

The reference frames adopted to model the proposed system

are shown in Figure 1. The inertial reference frame has the

z-axis upward and is labeled with Σi and, without loss of

generality, is coincident with the reference frame Σt attached

to the target fixed at the ground.

The reference frame Σb is fixed at the center of mass of the

vehicle base and has the z-axis downward. The position and

orientation of Σb with respect to Σi are denoted by ob ∈ R
3

and Rb(φb) ∈ SO(3), respectively, where φb contains the

ZYX Euler angles corresponding to the rotation matrix Rb.

The two attached robotic manipulators are made of a

succession of links and actuated joints, whose positions are

described through the joint vectors ̺c ∈ R
nc and ̺o ∈ R

no ,

respectively. A camera is mounted on one arm of the UAM,

and its reference frame Σc is coincident with the corresponding

end-effector reference frame, with the z-axis (i.e., the optical

axis) coincident with the outgoing approaching axis. The

pose (position and orientation) of Σc with respect to Σb is

ob
c(̺c) ∈ R

3 and Rb
c(̺c) ∈ SO(3), respectively. The second

arm carries an object with a reference frame Σo supposed to

be coincident with its end-effector reference frame. Similarly,

the corresponding position and orientation of Σo with respect

to Σb are ob
o(̺o) ∈ R

3 and Rb
o(̺o) ∈ SO(3), respectively.

Let ξ =
[

o⊤
b φ⊤

b ̺⊤
c ̺⊤

o

]⊤
∈ R

n be the generalized

vector of joint positions of the whole system, with n =
6+nc+no. If the orientation of the end-effectors of the robot

arms are expressed in terms of a nonsingular representation

employing quaternions qc ∈ R
4 and qo ∈ R

4, the Cartesian

pose of the camera and of the transported object can be repre-

sented through the pose vector x =
[

o⊤
c q⊤

c o⊤
o q⊤

o

]⊤
=

k(ξ) ∈ R
14, where k(·) is a nonlinear vectorial function.

B. Differential kinematic model

Let vb =
[

ȯ⊤
b ω⊤

b

]⊤
∈ R

6 be the twist collecting the

absolute linear ȯb and angular ωb velocities of Σb with respect

to Σi. By denoting with φ̇b the time derivative of φb, the

corresponding relation with ωb is

ωb = T b(φb)φ̇b, (1)

where T b ∈ R
3×3 is a transformation matrix depending on the

chosen family of Euler angles [12]. This matrix suffers of the

so called representation singularities, i.e., it becomes singular

for some isolated values of φb. For the ZYX Euler angles,

representation singularities appear if the z-axes of Σb and Σi

becomes orthogonal, which is never an useful configuration

for a UAM, which typically is in a quasi-stationary flight.

Let vb
c =

[

ȯb⊤
c ωb⊤

c

]⊤
be the twist of Σc with respect to

Σb, where ȯb
c ∈ R

3 and ωb
c ∈ R

3 are its linear and angular

velocity components, respectively. The mapping between vb
c

and the time derivative ˙̺ c of the joint positions of the

corresponding arm is given by

vb
c = Jb

c(̺c) ˙̺ c, (2)

where Jb
c ∈ R

6×nc is the so-called geometric Jacobian of the

robot arm fitted with the camera. In a similar way, the twist

of Σo with respect to Σb is

vb
o =

[

ȯb⊤
o ωb⊤

o

]⊤
= Jb

o(̺o) ˙̺ o, (3)

where Jb
o ∈ R

6×no is the geometric Jacobian of the robot arm

carrying the object.

The vector v =
[

v⊤
c v⊤

o

]⊤
can be considered if one

is interested to control only the arms’s end-effectors. The

corresponding differential kinematic equation is

v = J(ξ)ξ̇, (4)

where J = diag(R̄bJ
b
c, R̄bJ

b
o), with R̄b = diag(Rb,Rb),

is the new geometric Jacobian. In such a case, the intrinsic

redundancy of the system can be exploited to control the

behaviour of the vehicle base.

C. Dynamic model

The dynamic model of the UAM can be computed by

considering the Euler-Lagrange formulation [12]. The system

dynamics can be expressed as follows

B(ξ)ξ̈ +C(ξ, ξ̇)ξ̇ + g(ξ) = u− ue, (5)

where B ∈ R
n×n is the symmetric and positive definite inertia

matrix, C ∈ R
n×n represents centrifugal and Coriolis effects,

g ∈ R
n is the vector of gravitational terms, u ∈ R

n is the

input vector, and ue = J⊤(ξ)he ∈ R
n shapes the effects of

generalized external wrench he =
[

0
⊤
6 h⊤

o

]⊤
at joint level,

with ho ∈ R
6 the external wrench acting on the arm carrying

the object, and 0× a null vector of × elements. See [7], [8]

for more details in case of a single-arm UAM.

By initially neglecting aerodynamic effects, which are very

complex to be explicitly modeled [13], the vector u can be

rewritten as follows

u = MNf = Gf , (6)

where G = MN , f =
[

f⊤
b τ⊤

c τ⊤
o

]⊤
, with f b ∈ R

4 the

vector of the input forces provided by the quadrotor propellers,
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and τ c ∈ R
nc and τ o ∈ R

no the robot manipulators joint

torques, M = diag(Rb,T
⊤
b Rb, Inc+no

) ∈ R
n×n, N =

diag(Ω, Inc+no
) ∈ R

n×4+nc+no , with the constant matrix

Ω ∈ R
6×4 described in [7] and Iα ∈ R

α×α the identity

matrix. Since G⊤G is invertible except for the representation

singularities, equation (6) can be inverted yielding f = G†u,

where the symbol † denotes the pseudo-inverse of a matrix.

D. Camera model

The pin-hole camera model is considered. Let pc =
[

xc yc zc
]⊤

∈ R
3 be the position of an observed point in

Σc. The corresponding projection onto the normalized image

plane —the plane at a distance of 1m from Σc along the optical

axis— is called point image feature and can be computed as

follows

s =

[

X

Y

]

=
1

zc

[

xc

yc

]

, (7)

where X and Y are the coordinates of s.

E. Differential kinematics of the target’s image features

Let the fixed target be endowed with a set of mt visible fea-

ture points whose position in Σt are pt
t,i, with i = 1, . . . ,mt.

Let st,i =
[

Xt,i Yt,i

]T
∈ R

2 be the image feature vector

corresponding to the i-th target point. The time variation of

st,i is only affected by the camera motion [14]:

ṡt,i =

[

Ẋt,i

Ẏt,i

]

= Lt,iR̄
⊤

c vc = J t,ivc, (8)

where

Lt,i =

[

− 1

zc
t,i

0
Xt,i

zc
t,i

Xt,iYt,i −1−X2
t,i Yt,i

0 − 1

zc
t,i

Yt,i

zc
t,i

1 + Y 2
t,i −Xt,iYt,i −Xt,i

]

,

(9)

with zct,i the third component of pc
t,i = Rc

tp
t
t,i, with Rc

t ∈
SO(3) the rotation matrix between Σt and Σc, and R̄c =
diag(Rc,Rc).

F. Differential kinematics of the object’s image features

Suppose that the object carried by the robot arm has attached

mo visible feature points, and let po
o,j , with j = 1, . . . ,mo,

the fixed position of the j-th points with respect to Σo. The

corresponding image feature vector so,j =
[

Xo,j Yo,j

]T
∈

R
2 can be measured either in the image plane of the camera

carried by the other arm, or through the robot arm kinematics.

The former case is more robust with respect to calibration

error of the system kinematics, while the latter case relaxes

the field-of-view constraint. The time derivative of so,j is

ṡo,j =

[

Ẋo,j

Ẏo,j

]

= Lo,j ṗ
c
o,j , (10)

where

Lo,j =
1

zco,j

[

1 0 −Xo,j

0 1 −Yo,j

]

. (11)

Being po
o,j constant in Σo, its time derivative in Σc depends

only from the velocity of Σo with respect to Σc as follows

ṗc
o,j =

[

I3 −S(Rc
op

o
o,j)

]

R̄
⊤

c (vo − vc), (12)

where S(·) ∈ R
3×3 is the skew-symmetric matrix representing

the vectorial product. Substituting (12) and (11) into (10)

yields

ṡo,j = Jo,j(vo − vc). (13)

III. CONTROL LAW

The block diagram of the proposed control scheme has a

cascade structure (see Fig. 2) with an inner loop for the mo-

tion control and an external loop implementing the proposed

visual-impedance control laws.

A. Cartesian motion control

In this section the tracking of the pose of the two end-

effectors trajectories is addressed. The dynamic model (5) is

represented by a set of n second-order coupled and nonlinear

differential equations relating the generalized joint positions,

velocities and accelerations to the propellers forces, the robot-

arms joint torques, and the end-effector wrench. A well-

known strategy to control such a mechanical system is the

inverse dynamics control, which is aimed at linearizing and

decoupling the UAM dynamics via feedback. Nonlinearities

such as Coriolis and centrifugal forces, friction torques, and

gravity generalized forces can be cancelled by adding these

terms to the control input, while decoupling can be achieved

by weighting the control input through the inertia matrix.

According to this dynamic model-based compensation, the

generalized input force is chosen as

u = B(ξ)α+C(ξ, ξ̇)ξ̇ + g(ξ) + J⊤(ξ)he, (14)

where α ∈ R
n constitutes the new control input to be properly

designed. Folding (14) into (5), and taking into account that

B(ξ) is never singular, yields

ξ̈ = α, (15)

which is a linear and decoupled system, where α represents a

resolved acceleration input of the generalized joint variables.

Equation (15) has been obtained under the assumption of

perfect compensation of the terms in (5). This relies on the

availability of an accurate dynamic model. In case of imperfect

compensation, a mismatch occurs causing the presence of a

disturbance term in (15), i.e. ξ̈ = α − δ, where δ ∈ R
n

is mainly due to unmodeled dynamics, aerodynamics distur-

bances, and parameter uncertainties. An active compensation

of such a term can be achieved by considering the momentum-

based estimator proposed in [1], [15], [16] and it will thus not

be considered in the following of this paper.

Since Equation (15) contains ξ̈, it is appropriate to address

the time derivative of (4),

v̇ = J(ξ)ξ̈ + J̇(ξ)ξ̇, (16)

which provides the relationship between the joint accelerations

and the end-effectors linear and angular accelerations. Hence,

the new control input α in (15) can be chosen as

α = J†(ξ)
(

a− J̇(ξ)ξ̇
)

+αn, (17)
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Fig. 2. Visual-impedance control scheme.

where αn ∈ R
n denotes a generalized joint acceleration

vector lying in the null space of J(ξ) which is available for

redundancy resolution. In view of (16), this leads to

v̇ = a, (18)

where a ∈ R
12 is a resolved acceleration in terms of

end-effector variables. Deriving (17), a UAM moving in a

singularity-free region of the robot arms’s workspace is con-

sidered to compute the pseudo-inverse of the Jacobian. In case

of presence of disturbances, Eq. (18) shall be modified into

v̇ = a− J(ξ)δ̂, where δ̂ is the estimated disturbance.

Let xd =
[

o⊤
c,d q⊤

c,d o⊤
o,d q⊤

o,d

]⊤
∈ R

14 be the de-

sired pose of Σc and Σo in Σi. The desired orientations

are expressed by using the unit quaternions corresponding

to the desired rotation matrices Rc,d and Ro,d. Moreover,

let vd =
[

ȯ⊤
c,d ω⊤

c,d ȯ⊤
o,d ω⊤

o,d

]⊤

∈ R
12 and v̇d be the

corresponding desired velocity and acceleration, respectively.

A pose error between the desired and the actual arms end-

effectors pose can be defined as x̃ =
[

õ⊤
c ǫ̃⊤c õ⊤

o ǫ̃⊤o
]⊤

∈
R

12, where õc = oc,d − oc, õo = oo,d − oo, and ǫ̃c ∈ R
3

and ǫ̃o ∈ R
3 are the vectorial parts of the quaternions

corresponding to the rotation matrices R⊤
c,dRc and R⊤

o,dRo,

respectively. Hence, the resolved acceleration is chosen as

a = v̇d +KDṽ +KP x̃, (19)

where ṽ = vd − v, and KD and KP are suitable positive-

definite gain matrices. Substituting (19) in (18) gives the

closed-loop dynamic behaviour of the error

˙̃v +KDṽ +KP x̃ = 0. (20)

For the stability proof of (20) see [17].

B. Redundancy exploitation

The term αn in (17) is chosen to fully exploit the intrinsic

redundancy of the UAM. Three secondary tasks have to

be considered: 1) joint limits avoidance; 2) manipulability

maximization; 3) vertical alignment of the center of gravity

of the robot arms. More info can be found in [7] for the

general formulation of αn, and in [18] for the definition of

these secondary tasks.

C. Image-based visual-impedance control

Assuming that at least four coplanar, but not collinear,

image features are employed for both the target structure

on the ground and the carried object, the poses of Σt and

Σo are univocally determined by the image projection st =
[

s⊤t,1 · · · s⊤t,mt

]⊤
and so =

[

s⊤o,1 · · · s⊤o,mo

]⊤
of the

corresponding image features [19]. It is also assumed that

mt = mo = m, with m ≥ 4, and st = so when the

desired relative pose between Σt and Σo is reached, e.g.,

when the object is perfectly plugged into the target. This

assumption can always be guaranteed if the image features so
are virtualized through the direct kinematics of the robot, as

explained in Section II-F. In order to make the UAM capable

of autonomously positioning the carried object on the target

structure, the following image error is proposed

s̃ = so − st. (21)

The control objective is the nullification of s̃ and the achieve-

ment of a desired behaviour of the interaction wrench between

the object and the target. Differentiating (21) and taking into
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account (8) and (13), yields

(22)

˙̃s = ṡo − ṡt

= Jo(vo − vc)− J tvc

= Jovo − (J t + Jo)vc,

= Jovo − Jcvc,

where Jo =
[

J⊤
o,1 · · · J⊤

o,m

]⊤
∈ R

2m×6, J t =
[

J⊤
t,1 · · · J⊤

t,m

]⊤
∈ R

2m×6, and Jc = J t + Jo.

In the proposed control architecture shown in Fig. 2, the

Cartesian motion control action is purposefully made stiff so

as to enhance disturbance rejection but, rather than ensuring

tracking of the desired end-effectors pose, it shall ensure track-

ing of a reference pose resulting from the visual-impedance

control action (i.e., compliant reference frame). Hence, it is

worth computing the reference trajectory specified by oo,d,

qo,d and vo,d taking in account both the interaction wrench

(compliant behaviour) and the visual error (positioning task).

1) First-order image-based visual-interaction control law

based on the system Jacobian-matrix transpose (FoJt): The

proposed image-based visual-interaction control law is chosen

so as to enforce an equivalent virtual damper-spring behavior

for the pose displacement driven by the visual error in the

image plane when the object exerts a wrench ho on the

environment. Consider the following interaction equation

Dovo,d + σ = ho, (23)

where Do is positive matrix corresponding to a virtual dump-

ing, and σ ∈ R
6 is a terms to be designed for nullifying the

visual error. Consider the Lyapunov function candidate

V (s̃) =
1

2
s̃⊤kss̃. (24)

The time derivative of (24) is

(25)

V̇ = s̃⊤ks ˙̃s

= s̃⊤ks (Jovo − Jcvc)

= s̃⊤ks
(

JoD
−1
o (ho − σ)− Jcvc

)

,

where, with a small abuse of notation, we used vo in reason

of vo,d. The following control law is thus designed

σ = Do

(

KJ⊤
o kss̃− J†

oJcvc

)

, (26)

where K is positive definite matrix and ks > 0 a positive

gain. Replacing (26) in (25) yields

V̇ = s̃⊤ksJoD
−1
o ho − s̃⊤ksJoKJ⊤

o kss̃. (27)

In absence of interaction (ho = 0), for any trajectory, the

Lyapunov function decreases as long as s̃ 6= 0, i.e., the

system (23) is asymptotically stable. The system then reaches

an equilibrium state determined by J⊤
o kss̃ = 0. From (21)

it can be recognized that, under the assumption of full-rank

Jacobian Jo, it is s̃ = so−st = 0, i.e., the sought result. When

N (J⊤
o ) 6= ∅, the function (27) is only negative semi-definite,

since V̇ = 0 for s̃ 6= 0 with kss̃ ∈ N (J⊤
o ). In this case the

algorithm can get stuck. However, this situation occurs only

if the end-effector cannot move in the direction required to

nullify the visual error from the current robot configuration.

These robot configurations correspond to kinematic singular-

ities that can be generated, for example, when some links

are aligned. However, for a redundant sistem, like a UAM,

singular configurations can be actively avoided by introducing

a specific secondary task via term αn term in (17) (see [12],

[20]).

In case of interaction, replacing (26) in (23) yields

Dovo,d +Ko∆xs = ho, (28)

where Ko = DoK is a Cartesian stiffness matrix, and ∆xs =
J⊤

o kss̃ − K−1J†
oJcvc represents the Cartesian offset of a

virtual spring driven by the error in the image plane s̃ purged

of the apparent visual error generated by the camera motion.

At the equilibrium, it is

ho = KoJ
⊤
o kss̃, (29)

where J⊤
o maps the image error to a Cartesian offset.

2) First-order image-based visual-interaction control law

based on the system Jacobian-matrix inverse (FoJi): Consid-

ering (25), the following control input is chosen

σ = Do

(

KJ†
okss̃− J†

oJcvc

)

. (30)

Replacing (30) in (25) yields

V̇ = s̃⊤ksJoD
−1
o ho − s̃⊤ksJoKJ†

okss̃. (31)

In absence of interaction (ho = 0) and singularities in Jo, the

Lyapunov function decreases as long as s̃ 6= 0, i.e., the system

is asymptotically stable and reaches the desired equilibrium

posture with s̃ = 0.

In case of interaction, replacing (30) in (23) yields (28) with

∆xs = J†
okss̃ − K−1J†

oJcvc. The gain ks determines the

convergence rate of the visual error, while through the matrices

K and Do it is possible to regulate the desired interaction

compliance in the Cartesian space.
3) Second-order visual-impedance control law (SoVI):

Consider the following interaction equation

Mov̇o,d +Dovo,d +KJ⊤
o (kss̃+ Jcvc) = ho, (32)

where Mo, Do, and K are symmetric positive matrices

corresponding to the virtual mass, dumping, and stiffness,

respectively. Consider the positive definite Lyapunov function

candidate

V (s̃,vo) =
1

2
s̃⊤kss̃+

1

2
v⊤
o K

−1Movo. (33)

The time derivative of (33) is

V̇ = ˙̃s⊤kss̃+ v⊤
o K

−1Mov̇o

=
(

v⊤
o J

⊤
o − v⊤

c J
⊤
c

)

kss̃

+ v⊤
o K

−1
(

ho −Dovo −KJ⊤
o (kss̃+ Jcvc)

)

= v⊤
o K

−1ho − v⊤
o K

−1Dovo + v⊤
c J

⊤
c (kss̃− Jovo) .

(34)

When the camera stops and in absence of interaction, the

Lyapunov function decreases as long as vo 6= 0, and s̃ = 0

due to (32). In case of interaction with the environment, the

system reaches the equilibrium posture determined by (32):

ho = KJ⊤
o kss̃. (35)
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D. Eye-hand motion coordination

The camera motion is commanded in a decoupled way with

respect to the object motion, but the corresponding motion is

taken into account as shown in (26), (30), and (32). The desired

velocity command vc is generated through two concurrent

objectives: 1) push the centroid of the image features in the

center of the image; 2) maximize the image feature expansion

in the image by generating an attractive field towards the

image limits, which is counterbalanced by a repulsive barrier

function, which is activated when an image feature becomes

too close to the image borders. Details are omitted for brevity.

IV. SIMULATION

The proposed control laws have been tested in simulation

by using V-Rep and Matlab. The former simulates the system

dynamics and the physical interaction with the environment.

The latter implements the proposed cascade control laws. The

evolution of the two environments is interlocked ensuring a

proper time synchronization, with the control loop running at

5 ms and a camera frame rate of 25 Hz.

An X8 drone is endowed with two KINOVA MICO2 6-DoF

robot arms, as shown in Fig. 1. A camera is attached to the

left arm, while a peg (conical pyramid) is attached through

a wrist force sensor to the right arm. A hole is fixed on the

ground. The goal consists in inserting the peg into a fixed

hole starting from an assigned initial configuration using only

visual and force measurements.

Four point image features fixed with the hole are considered

in a square configuration, while four virtual image features

are generated by using the robot-arm direct kinematics. The

virtual image features of the peg are generated in a way to

be coincident with the hole image features when the peg is

virtually inserted 2 cm beyond the end along the vertical axis

(z-axis) and 2 degrees around the y-axis the corresponding

physical limits. In this way it is simulated an error in the

desired relative assembling configuration, so as to test the

effectiveness of the proposed control schemes also at the

steady state. In fact, this means that the visual error cannot

reach zero and, without a proper interaction control law, a

high interaction force might be generated.

Both visual and force sensors have been characterized with

an additive white Gaussian noise to a magnitude inspired by

real instruments (2 pixels and 2 N/0.05 Nm, respectively). The

UAV low-level control law has been tuned in a way to achieve

an attitude settling time of 1 s and an overshoot less than

20 % (3 s for the position control without overshoot), while

the settling time of the position control of the robot-arm joints

is 0.5 s.

The control laws have been tested comparatively by tuning

control gains to achieve a similar settling time and residual

force at steady state:

• FoJt: ks = 0.02, K = diag(0.1, 0.1, 0.4, 10, 10, 15),
Do = diag(100, 100, 800, 25, 25, 50).

• FoJi: ks = 0.01, K = diag(5, 5, 30, 15, 15, 25),
Do = diag(250, 250, 2000, 15, 15, 25).

• SoVI: ks = 1, K = diag(1, 1, 5.5, 4, 4, 2),
Mo = diag(1, 1, 5, 0.5, 0.5, 0.25),
Do = diag(100, 100, 250, 2, 2, 1).
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Fig. 3. Results achieved with the FoJt control law.

The results achieved with the FoJt control law are shown

in Fig. 3. The motion of the image features in the image

plane are shown in Fig. 3(a), with solid lines the hole’s

features and with dotted lines the peg’s features. The cross

symbols indicate the final positions of each image feature,

while the circle symbols indicate the initial positions. One

can notice that in the final configuration the image features

are close to the image borders (solid black line) by keeping

a safe distance (red dotted line) thanks to the adopted barrier

function. In this way, the observation of the object features is

optimized. As expected, the final configuration does not nullify

the visual error, as it is more clearly shown in Fig. 3(b). The

interaction force and moment are shown in Figs. 3(e) and 3(f),

respectively (red, green, and blue is the adopted sequence of

color for the x, y, and z components). One can notice a peak

at about 5 s, when the peg collides with the hole border due

to the initial position error and to the nonlinear mapping of

the visual error to the Cartesian motion. Nevertheless, in few

seconds the peg moves towards the hole and falls inside it.

At the steady state, a final interaction force of about 10 N

along the z-axis exists due to the assigned offset of 2 cm.

Similarly for the residual moments due to the assigned offset

of 2 degrees. In fact, Figs. 3(c) and 3(d) show the position and

orientation error (angle-axis representation), respectively, with

respect to the desired relative pose of the peg with respect to

the hole. One can notice, for example, how a residual error of

2 cm in position along the z-axis persists as expected. Despite

this error in the reference pose, the interaction force remains
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limited and stable. Similar consideration can be made for the

interaction moment.
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Fig. 4. Camera task errors.

The errors of the tasks employed for the camera motion

control are shown in Fig. 4. Figure 4(a) shows the visual

error of the image features center with respect to the image

center, while the distance of the image features components

with respect to the image borders is shown in Fig. 4(b). Red

dotted lines in Fig. 3(a) represent the chosen safe distance

from the borders. In both cases a smooth nullification of the

errors is archived.
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Fig. 5. Results achieved with the FoJi control law.

The results achieved with the FoJi control law are shown

in Fig. 5. The system behaviour is close to the previous

one but with a higher intrinsic stiffness. One can notice that

the impact on the border of the hole determines a higher

force, while the steady state interaction force is similar to

the previous case. With the tuned control gains it has not

been possible achieving a smoother behaviour during the initial

impact without affecting also the steady state.
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Fig. 6. Results achieved with the SoVI control law.

Finally, the SoVI control law provides the better results

overall, as shown in Fig. 6. Thanks to the increased number

of control gains which are available to tune the desired

behaviour, it has been possible to avoid the initial impact and

to achieve a smooth insertion of the peg into the hole. With this

control modality, the tuning phase is easier due to the physical

meaning of most of the control gains. In fact, only the virtual

spring has a nonlinear coupling with the visual error, while

the remaining parameters (mass and damping) are expressed

directly in the Cartesian space.

A comparison between the proposed methods is shown

in Fig. 7. The achieved behaviours are similar, thanks to a

suitable tuning phase, but the SoVI approach allows to better

control the Cartesian motion avoiding the impact with the

hall border. Moreover, the FoJi approach is more sensible to

force/moment noise and, in general, it requires more time to

be properly tuned.

V. CONCLUSION AND FUTURE WORK

Three novel image-based visual-impedance control laws

suitably designed for dual-arm UAMs have been presented

and tested through simulations: first-order interaction equa-

tions based on system Jacobian-matrix transpose and inverse,

and a second-order visual-impedance control law. Differently
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Fig. 7. Comparison of the achieved results (in norm): FoJt in red, FoJi in
green, and SoVI in blue.

from other approaches, suitable visual errors have been de-

signed through the image-based paradigm generating an elastic

wrench component. Visual measures are also employed to

coordinate the eye-in-hand camera motion with the execution

of the manipulation task performed with the second arm

carrying an object. Simulation results confirm the effectiveness

of the proposed solutions.

Real experiments will be carried out as future work as

soon as the experimental setup will be ready. At that time,

suitable visual elaboration algorithm capable to cope with

real environment and textures will be considered. Moreover,

the possibility of increasing the update-rate of the visual

measurements through a prediction based on a Kalman filter

implementation with IMU and joint data will be investigated.
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