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Abstract: This paper presents a benchmarking study of the water and wastewater industry in Italy.
A three-stage modeling approach was implemented to measure the efficiency of 53 utility operators.
This approach is based on the implementation of network and conventional data envelopment
analysis (DEA) to model the production process of the water service utility operators. In comparison
to the conventional black-box or one-stage production model generally adopted in previous studies,
the proposed approach provides information relative to the different efficiency components of the
stages and blocks of the water service production process and its overall efficiency. Further, by shifting
the efficiency analysis to a two-dimensional performance space, i.e., resource and market-efficiency,
it offers a more comprehensive view of the water service industry and allows accounting for different
business goals at the same time and for an investigation of industry trade-offs. Results show that the
operators’ efficiencies in the Italian water service industry are generally variable and low. There are
no water service utilities which are 100% efficient from the resource-efficiency perspective, and the
maximum efficiency score is 0.545. Efficiency measurements suggest that there is a general orientation
of the Italian water industry to not invest in upgrading and improving the infrastructure assets, and
achieving an acceptable efficiency in the operations is critical to delivering water services to market
in an efficient way. Only one utility operator is 100% efficient from the market-efficiency perspective.
The low tariffs adopted by the water service operators do not allow the gaining of satisfactory service
remuneration and the achievement of long-term business sustainability. The joint analysis of the
resource and market efficiency scores indicates that there is a trade-off between the corresponding
business goals.
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1. Background

Recently, the sustainable management of water resources has become an important policy issue in
Europe. The access to clean and good-quality drinking water and adequate sanitation service is of
primary importance to ensure human well-being, protection of public health and ecosystems, energy
production, industry and agriculture development, and economic growth. Hence, any disruption in
the supply of water and wastewater services and scarcity of water resources have negative impacts on
the quality of human life and economic activity [1].

The provision of water and wastewater services requires considerable investment to comply with
the European Union Urban Waste Water Treatment and Drinking Water directives and the various
national laws. Thus, in the near future, the main water management challenges in Europe will be the
operations, maintenance, upgrading, and renovation of the infrastructure. This implies that water and
wastewater services should be managed in an economically and environmentally sustainable fashion.
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The water industry plays an important role by establishing and operating sustainable and
resource-efficient water supply and wastewater treatment systems. Because of its nature, the water
and wastewater service industry often has the characteristic of a monopolistic market in a certain
territory. Hence, to ensure that the service is provided to consumers meeting quality, equity and
cost requirements, the industry is subject to regulation. Water and wastewater services are generally
supplied to both citizens and businesses by water utilities. In some cases, these utilities are run by
private companies that operate the infrastructure assets under a concession trusted by the government
or a public authority. In other cases, they are run by public–private partnership (PPP) [2] companies or
by companies owned only by the public sector. Finally, some utilities are run by public authorities or
local municipalities, or water and wastewater services are provided directly as a municipal service.
In all situations, the infrastructure assets can be publicly or privately owned.

In Europe, water utilities must carry out continuous and considerable investment to replace,
renovate and upgrade the drinking water and wastewater infrastructure and increase the efficiency
of resource utilization to meet the EU directives and national legislation requirements and secure
water delivery for future generations. According to recent estimates, about 640 billion euros per year
until 2030 are necessary to develop or keep in operation the global water infrastructure, with about
20% of this needed in Europe alone [3,4]. Investments in the industry generally have long payback
times and low ROI rates [5]. Furthermore, dealing with conflicting business, economic and social
goals often makes investment decision-making and planning a difficult task for utility managers
and policy makers. Water infrastructure investment requires huge flows of financial resources to
repay capital expenditure, maintenance and operational costs. However, keeping water tariffs low to
account for affordability without discriminating among consumer segments undermines the financial
sustainability of the service over time. Indeed, the lack of sufficient funds necessary to invest has
as a consequence the deterioration of the existing infrastructure and the impossibility of extending
and improving the water and wastewater network, and a general decrease of the water and service
quality. The low quality of the service has a negative impact on the willingness to pay of the consumers,
and forces people unable to benefit from the service to pay more to use alternative sources for water
services. Finally, the water utilities will get reduced revenue flows to cover the capital and operational
costs of infrastructure investment. Water losses in the aqueduct network and a large difference between
inflowing and outflowing water are a visible effect of the age of the infrastructure and bad maintenance.
Even increasing water abstraction from existing or new sources to meet demand that exceeds supply
may not be a viable solution to improve service quality and deal with water shortage. Increasing
the amount of water abstracted and introduced into the aqueduct network implies increasing the
consumption of further resources, particularly energy.

Thus, increasing the efficiency of water services is a primary goal to achieve for water utilities to
ensure the sustainability of water supply. For this reason, benchmarking and efficiency analyses have
become an important business practice in the water service industry, useful both to the utility operating
companies and policy makers. This paper presents an efficiency study of the water and wastewater
industry in Italy, adopting a hybrid three-stage modeling approach to measure the efficiency of the
water service operators at different stages of the value chain of their production process, within a
multiple-goal/multiple-efficiency perspective. Specifically, this approach shifts the efficiency analysis
to a two-dimensional performance space, i.e., resource and market-efficiency, and considers the
different efficiency components of the production process, offering a more comprehensive view of the
water service industry efficiency. Additionally, it allows accounting for different business goals of the
water operator at the same time and an investigation of industry trade-offs. The approach combines
network and conventional data envelopment analysis (DEA) to model the production process of the
water utility operator. The proposed approach is implemented to calculate the efficiency of 53 Italian
water and wastewater service operators. This approach is particularly tailored to conduct efficiency
studies in sectors such as the Italian water services industry. In Italy, there has for a long time been an
intense discussion about the actual possibility of reconciling the financial sustainability, affordability,
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reliability and quality of provision of the water and wastewater services, currently conceived as a
universal service, on the one side, and the present structure of the industry and the tariff scheme
imposed to the market by the regulating authority on the other side.

The paper unfolds as follows. Section 2 presents a literature review on benchmarking and
performance analysis in the water and wastewater services that adopts DEA as a nonparametric
technique to model and measure efficiency. Section 3 illustrates the three-stage water utility operator
production model. Section 4 introduces the DEA method, while Section 5 presents the network and
conventional DEA models utilized in the paper. Section 6 provides information relative to sample,
data and variables used to specify DEA models in the Italian water services industry. Finally, results of
the study are reported in Section 7 and conclusions, limitations and further extensions of the study are
discussed in Section 8.

2. Literature Review

In recent years, several scholars have undertaken studies on the water supply and wastewater
industry efficiency adopting DEA [6]. Studies differ with respect to DEA model specification, aims,
country of focus, and the scope of the analysis. Notwithstanding this large variety, literature
contributions can be grouped into three main categories: (a) measurement of industry efficiency
in specific countries and/or international comparison; (b) investigation of the factors that influence the
efficiency measurements; (c) joint measurement of operational and environmental efficiencies. Recent
contributions are presented as follows.

2.1. Measurement of Industry Efficiency in Specific Countries or International Efficiency Comparison

Alsharif et al. [7] measure the efficiency of water usage in a sample of municipalities located
in the Palestinian Territories (West Bank and the Gaza Strip) using data relative to the period
1999–2002. They find that water use efficiency was lower in the Gaza Strip than in the West Bank.
In addition, the examination of the size of slacks in the DEA model indicates that water loss is the
major source of inefficiency. Finally, they find that the efficiency scores are scarcely influenced by
the municipality size. Corton and Berg [8] analyze the relative efficiency of water utilities in six
countries in the Central America region by implementing DEA and a stochastic cost frontier analysis
covering the period 2002–2005. Cunha and De Witte [9] adopt non-parametric free-disposal hull (FDH)
analysis to analyze the Portuguese water market structure, utilizing data relative to the year 2005.
Specifically, scholars focus their attention on scale and scope economies. Results from their study
support the idea of a monopolistic industry, in which scale economies determine the achievement of
acceptable efficiency rates, while scope economies are absent. They also identify the optimal scale
of the utilities—between 160,000 and 180,000 inhabitants. Romano and Guerrini [10] adopt DEA
to evaluate the cost-efficiency of 43 water utilities in Italy. By grouping utilities into homogeneous
clusters and using non-parametric statistical analysis, they find that the ownership structure, size and
geographical location have an influence on the efficiency of water utilities. Singh et al. [11] employ an
input-oriented variable returns to scale DEA model to obtain an index of the sustainability–efficiency
of 35 North Indian urban water utilities located in two union territories (Chandigarh and Delhi) and
three states (Haryana, Punjab and Uttar Pradesh). Criteria considered for assessing sustainability of
water services are service sufficiency, service reliability, resource conservation, staff rationalization,
and business viability. Findings indicate that most of the utilities are low-performing and that there is
room for significant improvement with respect to operation and maintenance costs, human resource,
and water losses. Abbot et al. [12] apply the Malmquist DEA to determine the different levels of
productivity and efficiency improvement of the water and wastewater sectors of Australia’s major
urban centers since the mid of 1990s. They find that the structural reform determined modest but
positive productivity gains. However, scholars underline the necessity to take into account important
exogenous factors that may influence the productivity rates. Da Cruz et al. [13] carried out an
international benchmarking study comparing the efficiency measurements of 33 Italian utilities and 55



Sustainability 2018, 10, 919 4 of 22

Portuguese utilities that provide drinking water and wastewater services. Scholars adopt two DEA
model specifications and assume both constant and variable returns to scale. Additionally, they also
explore the impact of the governance structure on efficiency. Results do not show any statistical
evidence of a significant difference between the efficiencies of Portuguese and Italian utilities, while
public utilities are more efficient than private utilities. Da Cruz et al. [14] develop a shared-input
DEA model to obtain joint and separate measurements of the cost-efficiencies of the drinking water
and wastewater services provided by water utilities. The results indicate that a single efficiency
measure may be unable to provide enough information necessary to effectively monitor multi-utilities.
Molinos-Senante et al. [15] apply the directional distance function and the Luenberger productivity
indicator to evaluate the productivity growth of 22 water companies in England and Wales between
2001 and 2008. The proposed nonparametric model allows accounting for both input contractions
and output expansions. Results show that the primary determinant of the productivity of the water
companies was the negative shift of the production frontier. Deng et al. [16] measure water use and
sewage service efficiency in 31 provinces in China between 2004 and 2013 by adopting a slack-based
measure (SBM)-DEA model specification. Panel data analysis is adopted to investigate what factors
influence water use efficiency. Specifically, scholars find that efficiency of water usage is higher in
more developed provinces, while inefficiencies of labor and water inputs are larger than that of capital
input. Additionally, water consumption per capita and added value in agriculture have a negative
impact on water resource use efficiency.

2.2. Investigation of the Factors That Influence the Efficiency Measurements

Abbot and Cohen [17] conduct a literature review considering the empirical studies that measured
the level of efficiency and productivity in the water industry. In particular, they focus on the key
structural findings which emerged from the empirical studies, paying greater attention to the economies
of scale and scope, public vs. private ownership, and the effect of industry regulation. Byrnes et al. [18]
implement DEA to evaluate the relative technical efficiency and productivity of 52 water utilities
in regional New South Wales (NSW) and Victoria over a four-year period, 2000–2004. Further, they
measure the effect of some exogenous variables, i.e., governance arrangements, network characteristics
and the consequence of urban water policy instruments on efficiency and productivity. Results show
that the size of the utilities influences their efficiency, whereas the universal policy of water restrictions
has a negative impact on efficiency. Carvalho and Marques [19] evaluate the impact of exogenous
variables on the efficiency of 66 Portuguese water utilities operating between 2002 and 2008 by applying
the robust conditional order-m nonparametric analysis. Research findings suggest that some utilities
are largely inefficient, and there are several exogenous variables that may substantially influence
efficiency. Such variables include regulation, ownership, customer density, water source, peak factor
and number of residential customers. Mbuvi et al. [20] use a step-wise DEA approach based on a
double bootstrap procedure to obtain robust estimates of efficiencies of a sample of African drinking
water utilities. In the first step, scholars compute the utilities’ technical efficiencies. In the second step,
they assess the utilities’ effectiveness in meeting customer demand for water services. In the final
step, the difference between inefficiency and ineffectiveness measurements is decomposed. They also
investigate different types of determinants of inefficiencies and ineffectiveness. Lo Storto [21] measures
the efficiency of the Italian water service industry. The scholar employs a two-stage DEA procedure to
evaluate the influence that the typologies of concessionaires and contracts to provide water services
have on efficiency. In the first stage of the procedure, the operational efficiency of the water service
utilities is computed by applying DEA under the assumption of variable returns to scale including
both physical and financial inputs and outputs. In the second stage, bootstrapped DEA efficiencies are
estimated and Tobit regression is performed to evaluate the effect that some context factors have on the
efficiency of water utility operators. Results indicate that the Italian water service industry presents
operational inefficiencies, and the low efficiency may be determined by scale and agglomeration
economies. Moreover, the concessionaire typology and its geographical location influence efficiency.
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Lo Storto [22] performs a benchmarking analysis of the Italian water industry, considering the ATO
(a geographical area circumscribed by law, where water service is provided by one or more utilities)
as the research unit. Particularly, he employs DEA to compute the efficiency of 38 ATOs and carries
out stepwise regression to evaluate the effect of the contract typology on the ATOs’ operational
efficiencies. The scholar finds that operational efficiency increases in the ATOs in which the water
service supply concession contract is consistent with the new legislative framework or in the ATOs in
which service is provided by a private equity owned or by PPP operators. Chen et al. [23] use DEA to
measure the performance of domestic water management in China. Scholars compare the efficiencies
of 22 counties in Taiwan during 2009–2011, distinguishing between urban and rural regions. They also
implement Tobit regression to find factors that affect efficiency. Results from DEA indicate that urban
and rural regions differ with respect to water efficiency. The output of the regression analysis suggests
that the extent rate of sewerage systems, the volunteer participation rate and the education level
influence management performance. Marques et al. [24] conduct an extensive benchmarking study
of the drinking water industry in Japan applying data envelopment analysis to measure efficiency
of 1144 utilities considering 5538 observations relative to the period 2004–2007. Scholars adopt both
constant and variable returns to scale assumptions. Findings show that the average level of inefficiency
is 57% under the assumption of constant return to scale model, but the average inefficiency decreases
to 24% assuming variable return to scale. The study also explores factors that influence efficiency:
region, prefecture, ownership/governance, water source, vertical integration (purchased or produced
alone), water or integrated system, production, treatment, transport and distribution of water), peak
factor, per capita consumption, customer density, water losses, monthly water charge, outsourcing,
subsidies, gross prefecture product, and time.

2.3. Joint Measurement of Operational and Environmental Efficiencies

Bian et al. [25] develop a DEA-based approach applying network DEA and environmental
DEA to measure the efficiencies of 26 regional urban water use and wastewater decontamination
systems in mainland China. Data relative to 2009 are utilized in the study. In the proposed approach,
the urban water system is decomposed into two sub-systems, one related to the use of drinking
water and the other to wastewater decontamination. Two efficiencies for the two sub-systems are
calculated, while the overall efficiency is measured as the average of the two sub-system efficiencies.
This approach allows the identification of inefficiencies determined by the interaction between the two
sub-systems. Wang et al. [26] employ a slacks-based measure DEA model to evaluate the efficiency of
water usage, the potential for water saving, reduction potentials of pollutants and related abatement
costs in the interval 2009–2010 in China regional industrial systems. Findings indicate that potential
for water consumption and pollutant discharge reduction is high, although there are geographical
disparities. Moreover, while efficiency in water usage increased from 2009 to 2010, costs necessary
to abate pollutants decreased. Ananda and Hampf [27] employ the global Malmquist–Luenberger
productivity index to compute the productivity trend in the Australian urban water sector accounting
for undesirable outputs. Scholars use a panel data set covering the time window from 2006 to
2011. Their study suggests that the productivity scores are significantly affected by the inclusion in
the analysis of greenhouse gas emissions. Particularly, not including undesirable outputs provides
unrealistic measurements that overstate the productivity growth.

This review shows that the “black-box” modeling approach is often used by scholars to model the
water utility production process and rarely (only one paper in this review, i.e., [25]) is it decomposed
into sub-processes. Opening the black-box of the production process has two major strengths as it
allows calculating more robust efficiency measurements, one for each sub-process and for the global
process, and for dealing with different and conflicting goals. The study presented in this paper
contributes to literature consistently with this view.
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3. The Water Service Utility Operator Production Model

The production technology of the water service utility operator is modeled adopting a three-stage
production process including the following interlinked sub-processes: (1) cost, (2) operations,
and (3) revenue. In such a model, the outputs from the first production stage (z1, z2, and z3) become
the inputs to the second production stage and the outputs of this stage are the inputs (y1 and y2, or
alternatively, x4 and x5) to the final production stage (see Figure 1).

At the first stage of the model, the water management operators have to meet the costs of running
and maintaining the water service infrastructure (i.e., the aqueduct and sewerage network, and the
wastewater treatment facilities). Hence, the consumption of financial resources keeps available and
functional the infrastructure assets. These costs include operations management and maintenance
costs, the cost of labor and depreciation and are the inputs of the first sub-process, whereas the
managed infrastructure assets are the corresponding outputs. From a cost perspective, efficiency
increases when the water utility operator is able perform the daily operations and maintenance by
spending the minimum cost.

At the next stage, the operators utilize the infrastructure to provide the customer market with
the water service. Two outputs are relevant at this stage: the number of connection to service and the
number of municipalities where the service is delivered. From the operator point of view, efficiency
increases when the same number of connections and/or municipalities can benefit from the water
service by utilizing a physical infrastructure having a reduced capacity with respect to the network
length and the number of wastewater treatment plants. This view is consistent with a general behavior
of companies managing the water infrastructure that are reluctant to make additional investment as
this reduces profit.

Figure 1. The water services production model.

At the final stage, the water service operator earns income from distributing and selling drinking
water and sewerage services to the final customers. Inputs of this transformation process are the
number of connections and the number of municipalities in which the water services are delivered,
while the output is the revenue generated from the service. Efficiency at this stage is measured as
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the ratio of the revenue to the market size in terms of number of users and municipalities served.
From the perspective of the operator, the higher the revenue for a given market size, the higher the
efficiency achieved.

This multi-stage production model of the water services shows how different financial and
physical resources are sequentially converted to produce outputs in greater detail than the conventional
black-box or one-stage production model generally adopted in previous studies. Indeed, the model
calculates the efficiencies of the water service operators combining the economic and technical
perspectives. As Cherchye and Post [28] (p. 424) emphasize “[...] Firms may succeed in minimizing
relatively inexpensive inputs and maximizing inexpensive outputs. In many cases, substituting
expensive inputs by inexpensive ones and substituting inexpensive outputs by expensive ones, even
in a technically inefficient way, can improve economic performance. To increase the power of the
efficiency measurement tools, one can bring in additional price information [...]”. Hence, it is more
effective to measure efficiency and identify causes of inefficiencies by adopting a multiple-perspective
view of performance [29].

Additionally, this model helps with dealing with the practical issue of the distinction between
inputs and outputs, mitigating the distortion of the efficiency analysis due to incorrect labeling of
the variables. As the business goals of the water service operators differ at the various stages of the
production model and efficiency is measured either in terms of input reduction or output increase,
a single DEA model cannot be effectively implemented. Therefore, the water service production model
is purposefully split into two blocks: the first one in which the operator is focused on a resource usage
reduction goal (i.e., input orientation, block B-I) that includes stages 1 and 2, and the second one
having a focus on a market revenue increase goal (i.e., output orientation, block B-II) including stage 3.
Hence, the efficiency analysis is conducted on a two-dimensional space, i.e., resource-efficiency and
revenue or market-efficiency, rather than along one single dimension.

In this framework, the efficiencies of the two blocks are measured separately and independently
as in [30]. As the two blocks have different business goals, to calculate their efficiencies separately
allows us to purposefully identify potential trade-offs between the two related efficiency measurements.
This modeling approach is consistent with the aim of the study, which is more interested in investigating
trade-offs rather than obtaining an overall efficiency of the water utility and identifying benchmarks.
According to the characteristics of the two blocks, the water service operators’ efficiencies were
calculated by implementing two different DEA models, i.e., network DEA (NDEA) in block B-I and
conventional DEA in block B-II. Both methods are illustrated in Section 5.

4. DEA Method

Since its introduction, DEA has been extensively employed in economic analysis to calculate
measures of efficiencies in various situations and industries, such as transportation [29,31,32], government
and public sector [33–35], public utilities [21,22,36–38], healthcare [39–41], education [42,43], banking
and finance [44,45], energy and environmental studies [46–52], manufacturing and information
technology [53–56].

Differently from the typical statistical (parametric) techniques that are characterized as being
“central-tendency” techniques, DEA is an “extreme-point” technique, in which each unit under
evaluation is compared with the best units in the sample.

Compared with parametric techniques, DEA has several strengths [57]. Particularly,

• It makes no underlying assumption about the form of the production function adopted to model
the relationship between inputs and outputs;

• It does not need any information about the relative importance among outputs or inputs;
• It allows consideration of multiple inputs and outputs simultaneously;
• It does not require any prior assumption about the distribution of the sample containing the units

to evaluate.
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Consider a production unit that consumes m inputs to produce s outputs. All technically feasible
combinations of inputs and outputs can be represented by the production possibility set PPS as follows:

PPS =
{
(x, y) ∈ <m+s

+ |x can produce y
}

(1)

where x ≡ (x1, ..., xm)T∈<+
m and y ≡ (y1, ..., ys)T∈<+

s denote a non-zero input vector and a non-zero
output vector, respectively, whereas n is the total number of units to evaluate.

A unit k is technically feasible if any input–output combination is placed on the boundary of
the PPS. In this case, the production of any output cannot be increased without decreasing the
production of another output or increasing the utilization of the input (s). Similarly, the usage of
any input cannot be reduced without increasing the utilization of another input or decreasing the
amount of one of the outputs produced. The relative efficiency of a unit (hereafter denominated as
decision-making unit and abbreviated as DMU) is defined as the ratio of the weighted outputs to the
weighted inputs. In practice, there is no complete knowledge of the PPS because information relative
to input–output combinations is limited to the set of n units. Hence, in order to estimate efficiency
from observed data, DEA constructs an efficient frontier from the linear combination of the technically
efficient DMUs. For each DMU k, DEA chooses the weights of the input and output vectors that
maximize its ratio of weighted outputs to weighted inputs subject to the constraint that the DMU k
weights should not allow any DMU to achieve an efficiency greater than unity.

5. DEA Models

5.1. Service Delivery to Market

Consider n DMUs which have the same production process that can be split into two sub-processes.
Hence, for each DMU, the production process is performed in two stages. Suppose each DMU
j (j = 1, ..., n) has m inputs xij (i = 1, ..., m) to the first stage and q outputs zpj (p = 1, ..., q) from this stage.
These q outputs behave as intermediate products as they are inputs to the second stage. The outputs
from the second stage are yrj (r = 1, ..., s).

Under the assumption of constant returns to scale and input orientation, in order to calculate
the efficiencies of DMU k relative to the overall production process and to the sub-processes at
stages 1 and 2, Kao and Huang [58] propose the following linear program that takes into account the
relationship between the sub-processes:

θk = max
s
∑

r=1
uryrk

s.t.
m
∑

i=1
vixik = 1

s
∑

r=1
uryrj −

m
∑

i=1
vixij ≤ 0 j = 1, ..., n

q
∑

p=1
wpzpj −

m
∑

i=1
vixij ≤ 0 j = 1, ..., n

s
∑

r=1
uryrj −

q
∑

p=1
wpzpj ≤ 0 j = 1, ..., n

ur, vi, wp ≥ ε, r = 1, ..., s, i = 1, ..., m, p = 1, ..., qε is a small non-Archimedean number

(2)

In this model, the multipliers associated with the intermediate product zpj are the same by
assumption, no matter if it acts as an output or input.

After calculating the optimal multipliers u*
r, v*

i, and w*
p, the efficiencies relative to the overall

production process θk and the sub-processes 1 and 2, θ1
k θ2

k, are obtained as follows:
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θk =
s

∑
r=1

u∗r yrk θ1
k =

q
∑

p=1
w∗pzpk

m
∑

i=1
v∗i xik

θ2
k =

s
∑

r=1
u∗r yrk

q
∑

p=1
w∗pzpk

, where θk = θ1
k × θ2

k (3)

5.2. Revenue Generation from Service Delivery

Consider n DMUs having the same production process performed in one stage only. Each DMU
uses m inputs xij (i = 1, ..., m) and s outputs yrj (r = 1, ..., s). Assuming constant returns to scale and
output orientation, the relative efficiency of DMU k can be computed by solving the following linear
program [59]

θk = min
m
∑

i=1
vixik

s.t.
s
∑

r=1
uryrk = 1

s
∑

r=1
uryrj −

m
∑

i=1
vixij ≥ 0 j = 1, ..., n

ur, vi ≥ ε, r = 1, ..., s, i = 1, ..., m, ε is a small non-Archimedean number

(4)

6. The Empirical Study Setting

6.1. The Water Industry in Italy

Until the middle of the 1990s, the Italian water and wastewater industry was extremely
fragmented, including 7826 utilities—about one for each municipality—that were operated mostly
by municipally-owned companies. Private operators made up less than the 4% of the industry [21].
There was no regulating body in the industry, and consequently the municipalities often had the
double and conflicting roles of service providers and market regulators. The quality of service was
low, particularly in the southern part of the country, with frequent disruption. Investment to upgrade
the infrastructure was scarce and financed by means of government subsidies.

In 1994 Law No. 36/1994 (the so-called Galli Law) started an in-depth restructuring process of
the water supply and wastewater industry, introducing significant changes. Particularly, important
innovations were the adoption of principles of industrial management in the production process of the
water utilities; the provision of water and wastewater services within an extended geographical area
(the ATO, or territorial optimal area); the selection of water utility operators through market-based
mechanisms able to stimulate competition among companies; the introduction of a method to calculate
service tariffs based on the full cost recovery; and the regulation of the industry carried on by a public
authority. The Galli Law was not enforced for many years for several reasons, i.e., a diffused prejudice
and reluctance to open the local water markets to private companies, a diffused administrative and
political inertia to transfer duties, decision-making power and responsibilities to a reduced number
of entities (the ATO Authorities, in total 93 planned units) from the 8000 municipalities, the lack of
technical and planning capabilities of many local governments unable to manage the complex public
tendering procedure to award the water service [21,60].

In April 2006, the Italian Government issued the Decree No. 152/2006 (denominated “the
Environmental Code”) with the aim of organizing the national environmental legislation more
effectively. This decree established a more comprehensive framework in which Law No. 36/1994 was
absorbed. Although no relevant changes occurred in the industry, Decree No. 152/2006 introduced
new standards to organize the water services and defined the responsibilities of the main actors with
greater detail. Law No. 191/2009 (the Annual Public Finance Law) and Law No. 42/2010 formally
abolished the local Authorities to reduce public expenditure with the transfer of the ATO Authority
responsibilities and tasks to new independent regulating bodies created by the regional governments.
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In May 2011 the so-called “Decreto Sviluppo” (development decree) issued by the Government
established the National Water Agency, having the main task of defining a common tariff scheme to be
used in all ATOs. The Agency was incorporated into the National Authority for the Electricity and
Gas market regulation creating the new Authority for the Regulation of the Electricity, Gas and Water
markets (AEEGSI) in compliance with Law No. 214/2011.

Since 2006, there was a great political pressure to promote privatization in the service industries,
particularly through the Ronchi Decree of November 2009 (Decree No. 166/2009). However, the public
national consultation by means of the referendum held in 2011 overturned both Art. 15 of the Ronchi
Decree that had established “equal treatment and no discrimination” for the privately-owned water
service operators wishing to enter the industry, encouraged to buy up to 70% of any listed public water
company, and Art. 154 of Decree No. 152/2006 which had established that the private operators could
charge as much as necessary to have an acceptable return on invested capital and profit.

After more than twenty years from the Galli Law, the reform had certainly an important impact
on the structure of the water and wastewater services industry. At the beginning of 2009, the number
of water service operators—municipal departments, in-house entities, and specialized firms—was
3351, and 114 of them were concessionaries having the responsibility for providing the integrated
water service (transmission and distribution of drinking water, wastewater collection and treatment,
and sometimes abduction). In 1999, before the Galli reform, this number was 7826 and water services
were fundamentally provided by municipal departments [61,62].

However, the reform goals have not been completely achieved. Indeed, the industry is still
characterized by the presence of a great variety of water service providers, i.e., small and large public
companies that operate with the in-house rule as a reference, large multinational companies, local
public-private equity companies or fully private equity companies, and a complex and variegated
contractual setting. Additionally, due to low tariffs and market uncertainty, which do not attract
private capital, the investment and efficiency levels remain low, jeopardizing service quality.

6.2. Data and Variables

Data relative to the infrastructure assets managed by them were collected from the technical
reports released yearly by the National Supervision Commission for Water Services [63,64] and
the ANEA Foundation [65,66], the management report related to the annual financial statements,
and websites of the companies. The financial statements and websites of water service operators
provided cost and market data. The whole set of data refers to fiscal year 2011. The sample contains
fifty-three operators that provide water and wastewater services in Italy, including thirty-two operators
designated as “only public”, and twenty-one operators designated as “private/mixed private–public”.
Particularly, companies whose capital is fully owned by regional or municipal administrations and
offer the water and wastewater services “in-house” (i.e., not selected by competitive tender) belong to
the first group, while mixed private–public equity operators in which the private partner was selected
by a public tendering procedure or full private equity operators chosen by public tender are part of the
second group (see Table A1 in Appendix A).

Table 1 reports the list of variables considered in the study and main statistics. Because the results
of DEA implementation are sensitive to inputs and outputs selected to specify models, variables
were carefully chosen accounting for indications from similar papers and conducting preliminary
data analysis. Furthermore, as is common in such kind of studies, the choice of inputs and outputs
necessary to model the two blocks of the production function was largely influenced by the availability
of open data and the purpose of the study.

For each operator, the following data were collected: operations and maintenance costs (x1); labor
cost (x2); infrastructure depreciation (x3); number of connections to service (x4 and y1); number of
municipalities served by service (x5 and y2); aqueduct network length (z1); sewerage network length
(z2); number of depuration plants (z3); revenue from delivering service to customers (y3). Figures
indicate a great variance in the sample as operators differ to a large extent with respect to the size of
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their operations, costs and managed infrastructure. For instance, the mean length of the aqueduct
network is 3678 km, whereas the minimum and maximum lengths are 240 km and 21,000 km. Data
relative to the other variables confirm this significant variance in sample.

Since preliminary data analysis showed high correlations between variables, problem dimensionality
was reduced employing the method proposed by Daraio and Simar [67]. Particularly, scholars suggest
implement principal component analysis (PCA) and use eigenvalues to extract one main factor from high
correlated variables and eigenvectors as weights to aggregate individual variables.

Table 1. Original inputs, outputs and intermediate links relative to the pooled sample.

Model Variable Type Description Unit Mean St.Dev. Max Min

B-I x1 Input Operations and
maintenance cost € 31,716,377 40,889,761 215,414,401 2,130,688

B-I x2 Input Labor cost € 14,064,854 17,164,065 85,703,981 555,978

B-I x3 Input Depreciation € 11,589,867 19,242,145 98,939,044 327,970

B-II x4 Input Connections Number 181,359 177,557 998,000 5013

B-II x5 Input Municipalities Number 64 71,962,572 377 3

B-I z1 Intermediate Aqueduct
network length km 3678 3823 21,000 240

B-I z2 Intermediate Sewerage
network length km 1863 2188 11,000 0

B-I z3 Intermediate Depuration plants Number 92 110 490 0

B-I y1 Output Connections Number 181,359 177,557 998,000 5013

B-I y2 Output Municipalities Number 64 71 377 3

B-II y3 Output Revenue € 61,472,007 84,196,945 442,338,545 4,167,788

Table 2 displays inputs, outputs and intermediate variables after data reduction. First, measurements
of variables were divided by their means to normalize original variables, and next PCA was performed
for every block of the multi-stage model considering homogeneous sets of variables (i.e., either inputs
or outputs) each time. This method allowed reducing the total number of variables to 5, by merging 7
original variables into 3 new variables, i.e., variables x[1,2,3], x[4,5], and z[1,2] respectively measuring
the overall production cost, the network length, and the market size. A measure of the extracted
factor inertia higher than 80% was considered acceptable for the aggregation of original variables as
suggested by literature [67,68].

Table 2. Inputs, outputs, and intermediate links after data reduction.

Original Variable New Variable

Name Description Eigenvectors Eigenvalue %Inertia Name

x1
Service cost

0.578
2.834 94.44% x[1,2,3]x2 0.578

x3 0.575

x4 (and y1)
Market

0.707
1.688 84.42%

x[4,5] and
x5 (and y2) 0.707 y[1,2]

z1 Network infrastructure Length 0.701
1.931 96.50% z[1,2]z2 0.701

z3 - - - - z3

y3 - - - - y3

To improve the quality of the data set, the procedure suggested by Wilson [69,70] was adopted to
detect outliers. To this aim, two conventional DEA models were run to calculate operators’ efficiencies.
The first model adopted input-orientation and was specified utilizing variables x[1,2,3] and x[4,5] as
input and output, respectively. The second model adopted output-orientation and included variables
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x[4,5] and y3 as input and output. As the scholar suggests, if the exclusion of a specific DMU from
the dataset has a significant effect on the efficiency measurements of the remaining DMUs, that DMU
might be a potential outlier. Additionally, the DEA super-efficiency measures were calculated for
all the operators to conduct a more in-depth outlier analysis [71]. This analysis did not identify
critical outliers.

7. Analysis of Results

7.1. Efficiency Measurements

Results of the efficiency analysis are available in Table 3. Particularly, four efficiency scores are
displayed, i.e., three for model B-I (both efficiencies at stages 1 and 2, and the total efficiency) and
one for model B-II. In model B-I, there are no water service utilities which are 100% efficient from
the “service delivery/resource usage” perspective as the maximum efficiency measurement is 0.545.
Only two water services operators achieve 100% efficiency at stage 1, IWC-Acquedotto Valtiglione and
IWC45-Acquedotto Lucano SpA, although five utilities are very close to the efficient frontier enveloped
by model B-I at this stage (IWC13, IWC25, IWC30, IWC40, and IWC47) whose efficiencies are between
0.812 and 0.984. According to the features of model B-I at stage 1, these operators are cost-efficient
being able to save financial resources when they carry on production operations to deliver the water
services to users. The mean efficiency at stage 1 is 0.550. At stage 2 in model B-I, there is only one
water service operator that is 100% efficient (IWC49-Padania Acque Gestioni SpA).

Table 3. The water services operators’ efficiencies. DMU: decision-making unit.

DMU
Model B-I

Model B-II DMU
Model B-I

Model B-II
Total Stage 1 Stage 2 Total Stage 1 Stage 2

IWC1 0.121 0.526 0.230 0.164 IWC30 0.251 0.856 0.293 0.114
IWC2 0.181 0.634 0.286 0.190 IWC31 0.118 0.512 0.230 0.230
IWC3 0.118 0.438 0.270 0.193 IWC32 0.168 0.447 0.376 0.162
IWC4 0.093 0.751 0.124 0.302 IWC33 0.108 0.621 0.174 0.230
IWC5 0.220 0.619 0.355 0.170 IWC34 0.112 0.582 0.193 0.271
IWC6 0.086 0.263 0.325 0.293 IWC35 0.028 0.223 0.124 0.896
IWC7 0.282 0.569 0.496 0.089 IWC36 0.102 0.611 0.168 0.221
IWC8 0.142 0.512 0.278 0.216 IWC37 0.066 0.288 0.231 0.316
IWC9 0.059 0.356 0.165 0.362 IWC38 0.072 0.652 0.111 0.310
IWC10 0.040 0.427 0.095 0.553 IWC39 0.104 0.642 0.162 0.220
IWC11 0.085 0.535 0.159 0.299 IWC40 0.140 0.903 0.155 0.129
IWC12 0.078 0.745 0.104 0.314 IWC41 0.095 0.476 0.200 0.170
IWC13 0.090 0.888 0.101 0.292 IWC42 0.137 0.670 0.204 0.105
IWC14 0.120 0.686 0.176 0.257 IWC43 0.125 0.274 0.457 0.199
IWC15 0.065 0.278 0.234 0.383 IWC44 0.125 0.757 0.165 0.213
IWC16 0.077 0.243 0.318 0.237 IWC45 0.153 1.000 0.153 0.132
IWC17 0.207 0.371 0.557 0.139 IWC46 0.184 0.604 0.304 0.131
IWC18 0.083 0.406 0.205 0.370 IWC47 0.203 0.984 0.206 0.111
IWC19 0.227 0.600 0.378 0.122 IWC48 0.147 0.686 0.215 0.214
IWC20 0.028 0.204 0.138 0.903 IWC49 0.545 0.545 1.000 0.045
IWC21 0.059 0.525 0.113 0.457 IWC50 0.043 0.078 0.552 0.525
IWC22 0.212 0.644 0.329 0.103 IWC51 0.020 0.106 0.186 1.000
IWC23 0.130 0.752 0.173 0.195 IWC52 0.126 0.565 0.223 0.178
IWC24 0.170 0.619 0.274 0.142 IWC53 0.065 0.402 0.161 0.367
IWC25 0.140 0.812 0.172 0.162
IWC26 0.149 0.455 0.328 0.160 Mean 0.132 0.550 0.252 0.270
IWC27 0.072 0.425 0.170 0.346 St.dev 0.087 0.220 0.152 0.197
IWC28 0.334 1.000 0.334 0.074 Max 0.545 1.000 1.000 1.000
IWC29 0.094 0.385 0.244 0.315 min 0.020 0.078 0.095 0.045

Unlike for stage 1, the mean efficiency is very low—0.252—indicating that, in this production
stage of model B-I, many utilities are very inefficient. Hence, the operations stage is the more critical
one in the delivery of water services to market. Further, the higher efficiency at stage 1 (cost-related



Sustainability 2018, 10, 919 13 of 22

efficiency) is confirming the general orientation of the Italian water industry to not invest for upgrading
and improving the infrastructure. Finally, in model B-II one operator is placed on the efficient frontier
(IWC51-Amap SpA), whereas IWC20 (Acea ATO 2 SpA) and IWC35 (Acque del Chiampo SpA) are both
very efficient as their efficiency scores are 0.903 and 0.896 respectively. Model B-II is characterized by a
diffused low efficiency. These findings seem to support the idea that tariffs in the Italian water service
industry are too low to ensure an acceptable water service remuneration and long-term business
sustainability for the operators. Both model B-I and model B-II present a significant discriminating
capability because a very small number of water utilities are fully efficient. In the two blocks of the
water service production process, efficiency measurements are generally variable as the standard
deviation measures show (see Table 3), particularly at stage 2 in model B-I and in model B-II. The high
difference between the minimum and maximum efficiency scores further highlights such variability in
the efficiency measurements.

7.2. The Relationship between Efficiencies

Table 4 displays correlation values and difference comparison between efficiency measurements
calculated for the blocks and stages of the water services production process. To have a more reliable
and extensive assessment, correlation analysis and tests were performed under different assumptions,
i.e., normal and not-normal distributions of the efficiency scores.

Table 4. Correlations and difference comparison between water service providers’ efficiency measurements.

Efficiencies
Correlations Difference Comparisons

Pearson Spearman’s
Rank T Test Mean

Difference
Mann–Whitney

U Test

model B-I vs. model B-II −0.638 *** −0.940 *** −3.831 *** −0.138 555.000 ***
model B-I (stage1) vs. model B-II −0.605 *** −0.563 *** 5.458 *** 0.280 2390.000 ***
model B-I (stage2) vs. model B-II −0.341 * −0.525 *** −0.439 −0.017 1408.500

model B-I (stage1) vs. model B-I (stage2) −0.205 −0.231 * 7.427 *** 0.298 2463.000 ***

Note: *** prob. ≤ 0.01, ** prob. ≤ 0.05, * prob. ≤ 0.10.

Both Pearson and Spearman’s rank correlations have negative signs, indicating that the efficiency
measurements calculated either at the different stages or at block 1 and 2 of the production model have
opposite behaviors, and, consequently, trade-offs may be important. With respect to the relationship
between efficiencies of model B-I and model B-II, the size of the Pearson correlation (−0.638) points
out that there is a strong but reverse relationship between them. However, as the Spearman’s rank
correlation is higher than the Person correlation and very close to −1, the relationship between
efficiencies is not linear and not-monotonic (i.e., when model B-I efficiency increases, model B-II
efficiency decreases, and vice versa). Likewise, the Spearman’s rank correlation is higher than the
Pearson correlation in the relationship between model B-I (stage 2) and model B-II efficiencies, although
having a lower intensity. The correlations between efficiencies of model B-I at stage 1 and efficiencies
of model B-II are less intense [72]. Considering the efficiencies at stages 1 and 2 in the first block of the
water service production model, correlations are low and not statistically significant.

The T test confirms that mean differences are statistically significant, except for the efficiencies
calculated in model B-I at stage 2 and efficiencies in model B-II. Particularly, on average the total
efficiency of the water service utilities in block 1 of the production model is lower than their efficiency
in block 2 and, in block 1, efficiency at stage 2 is lower than efficiency at stage 1. The more robust
Mann–Whitney U Test supports these findings.

Results relative to correlations and difference comparison between efficiencies of the water service
providers seem to suggest that cost and operations efficiency on the one side, and market or revenue
efficiency on the other side, may not be compatible business goals.

As the sample includes different typologies of water service operators, the impact of company
ownership on efficiencies was also examined. The output of this analysis is reported in Tables 5
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and 6. The utility operators have been divided into two groups, depending on the company equity
nature. Specifically, the first group contains 21 utility operators classified as either private or mixed
private–public companies, and the second group includes 32 operators classified as only public
companies. The first group is denominated “PRI”, while the second group is denominated “PUB”.
Table 5 shows main statistics for both groups. The Mann–Whitney U Test was performed to test
differences between group efficiency distributions (see Table 6). Figures indicate that the two groups
differ only with respect to the operator efficiency calculated in model B-II.

Table 5. Statistics relative to private–public (PRI) and public (PUB) groups.

Efficiencies
PRI PUB

Mean Median St.Dev Mean Median St.Dev

Model B-I 0.117 0.090 0.068 0.142 0.126 0.097
Model B-I (stage 1) 0.504 0.525 0.183 0.581 0.608 0.239
Model B-I (stage 2) 0.243 0.230 0.129 0.258 0.205 0.167

Model B-II 0.300 0.292 0.179 0.250 0.197 0.208

Table 6. Differences between PRI and PUB groups (Mann–Whitney U Test Statistic test).

Efficiencies
Sum of Ranks

Mann–Whitney U Test Prob.
PRI PUB

Model B-I 497.000 933.500 266.500 0.206
Model B-I (stage 1) 488.500 942.500 257.500 0.153
Model B-I (stage 2) 550.500 880.500 319.500 0.764

Model B-II 666.500 764.500 435.500 0.070

Figures 2–4 display the scatter plots of the model B-II efficiencies versus the model B-I efficiencies.
Specifically, the scatter diagrams plot the efficiencies of the two blocks of the water service production
model for the pooled sample and the sample groups PRI and PUB. These plots allow investigating
more effectively the relationship between efficiencies and, finally, detecting trade-offs between different
performance dimensions and business goals.

Figure 2. Model B-II vs. model B-I efficiencies scatter plot (pooled sample).

All scatter plots provide evidence of what emerged from Table 4. There is a strong negative
correlation between efficiency scores. Regression analysis was implemented to fit the data.
An exponential regression model proved to fit data much better in the case of the pooled sample and
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individual groups. Although the R-squared measurement is very high, varying from 0.92 to 0.94, the
fitted line plot shows that the exponential regression line systematically under- and over-predicts
the efficiency data at different points along the curve. However, the exponential model provided the
best fit in comparison to other models. Results suggest that achieving high efficiency in the “service
delivery to market” block of the water service production model is not compatible with achieving high
efficiency in the “revenue generation” block and vice versa. Hence, given this structure of the industry
and the tariff scheme a severe trade-off exists between the resource-efficiency and market-efficiency
business goals of the water service operator. That is independent of the type of ownership.

Figure 3. Model B-II vs. model B-II efficiencies scatter plot (PRI group).

Figure 4. Model B-II vs. model B-I efficiencies scatter plot (PUB group).

8. Discussion and Conclusions

Efficiency analysis plays an important role for achieving sustainable development in the water
and wastewater industry, particularly because several conflicting business and social goals must be
taken into account and, sometimes, there might be scarcity of water and funds. To gain a more in-depth
understanding of the performance level of the industry may help both water utilities’ managers to
formulate more effective strategic plans and policy makers to design industry policies.

This study contributes to literature on the benchmarking and measurement of efficiency in the
drinking water and wastewater industry by proposing a hybrid three-stage modeling approach of
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the water service operator production process. This modeling approach is based on the combined
implementation of network DEA and conventional DEA. As this modeling approach of the water
service utility production process shows how different financial and physical resources are sequentially
converted to produce outputs in greater detail in comparison to the conventional black-box or one-stage
production model generally adopted in previous studies, it provides important information relative to
different efficiency components and the overall efficiency. This approach shifts the efficiency analysis
to a two-dimensional performance space, i.e., resource and market related efficiencies, offering a more
comprehensive view of the water service industry.

The modeling approach is utilized to estimate the efficiency of the water and wastewater service
in Italy. A sample containing 53 operators that provide drinking water and wastewater services in
Italy is used in the efficiency study. Results show that efficiency measurements are generally variable
and low. There are no water service utilities which are 100% efficient from the “service delivery or
resource usage efficiency” perspective as the maximum efficiency score calculated by DEA is 0.545.
The examination of the efficiency components at the two stages of the first block of the water service
production model indicates that there is a general orientation of the Italian water industry to not invest
to upgrade and improve the infrastructure assets and the operations stage is critical in the provision of
water services to market. Only one utility operator is 100% efficient from the “revenue generation from
service or market-efficiency” perspective, even though two operators achieve high efficiency and are
indeed very close to the efficiency frontier. Tariffs adopted by the water service operators in Italy do
not allow them to get acceptable service remuneration and achieve long-term business sustainability.

Even though findings from the study provide useful insights relative to efficiencies and trade-offs
between business goals linked to the specific nature of the Italian water and wastewater service industry
and are not generalizable, the modeling approach can be easily extended to other countries and other
industries. By modeling the production process of the utility operators adopting a three-stage network
structure, this approach provides a more comprehensive and flexible performance measurement
framework for monitoring efficiency. Variables can be added to the model to account for the particular
characteristics of the industry. Furthermore, by using a two-dimension performance measurement,
operational strengths and weaknesses can be more effectively identified to make informed decisions.

8.1. Implications for the Italian Water Services Industry

Findings have important managerial implications for the most inefficient utility operators as
they indicate how far they lag behind the best performers with respect to resource usage and
market-efficiencies. The best performers can be considered as the benchmarks to take into account to
improve the efficiency levels at the different stages of the production models supporting the managerial
decision-making process. Therefore, the most efficient management practices can be identified.
The adoption of such practices in the inefficient water utility operators would contribute to improve
their performance and, particularly, reduce operational costs and increase resource usage efficiency.

Given the present structure of the water services industry and the tariff scheme in Italy, the joint
analysis of the resource and market efficiencies suggests that there is a trade-off between these
efficiency measurements and the corresponding business goals. Choosing different forms of operator
ownership does not help to avoid such a trade-off. Indeed, results clearly underline the specificities and
contradictions of the water and wastewater service industry in Italy. The industry appears like being
locked in a vicious cycle where several forces move in the opposite direction and work against each
other, shaping its characteristics. These forces are the political and social pressure to keep service tariffs
low, the need to ensure service access and affordability to low-income families, the scarce willingness
and attitude of users to pay additional charges to cover increasing costs, the huge difference among the
ATOs with respect to availability and features of water sources and agglomeration of users, the lack of
public funds and the reluctance on the part of the private concessionaires to enter the market because
of industry uncertainty that hinder the renewal and improvement of the infrastructure network,
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the obsolescence of this latter and the necessity to improve the quality of service. These forces lead to a
low-performance of the industry and a trade-off between cost-efficiency and revenue efficiency goals.

According to the report published by the International Water Association [73], the Italian water
and wastewater services tariffs are the lowest in Europe. For instance, in 2013 the price of 1 cubic
meter of water was 0.60 Euro in Milan, 1.29 Euro in Bologna and 1.45 Euro in Turin, whereas it was
2.03 Euro in Madrid (Spain), 3.6 Euro in Bordeaux (France) and 3.52 Euro in London (UK). On average,
the typical Italian family composed of three people, spends about 0.85 Euro every day for both drinking
water and wastewater services [74].

The costs to deliver services and tariffs are linked together as the AEEGSI has established a
common rule to calculate the water and wastewater services in accordance to the full cost criterion
(i.e., covering investment and operational costs by means of tariff revenues). The low tariffs do not allow
collect sufficient revenues to carry on necessary investment to renew the infrastructure and improve
the quality of service, and sometimes they even negatively affect the financial viability of water utilities.
The industry is still suffering from several long-lasting operational issues such as high amounts
of water losses through leaks, high operational costs due to inefficiencies, and poor maintenance.
Particularly, high levels of water losses increase the amount of water flowing in the transmission
and distribution network that does not generate revenues, as it is not invoiced to consumers, and
increase operational costs of extra energy and purchased water. Water losses caused by ineffective
leakage control are about 32% on average but achieve higher rates in the south of Italy (more than
60% in Sicily) [74]. Tariffs and service quality are necessarily interrelated. The recent Blue Book report
indicates that in Italy about 11% of users do not receive wastewater depuration service [75]. The need
to meet EU regulations and standards relative to water quality further contribute to cost increase that
should be covered by tariffs. However, consequently to reduced revenues, the annual investment rate
remains low, about 32 Euros per capita against 100 Euros per capita in UK [74]. According to estimates
provided by the Blue Book report [75], every year, 80 Euros per capita (i.e., about 5 billion Euros) are
necessary to carry on investment to improve the service quality. Hence, increasing tariffs is necessary
to make the water service provision sustainable, efficient and of high quality.

8.2. Limitations and Future Research Streams

The implemented DEA models have utilized a radial measure to compute the relative efficiency
of water utilities, assuming proportional change of inputs and outputs, not allowing to deal with
inputs and outputs individually (i.e., either increasing or decreasing each of them at different rates).
This shortcoming can be avoided by utilizing a SBM DEA model [76,77].

Technical efficiency has been measured under the assumption of constant returns to scale. Hence,
the efficiency may be due to the input/output configuration as well as to the size of operations.
Under the assumption of constant returns to scale a given increase in inputs will determine an
equi-proportionate output increase. However, in the water and wastewater service industry, economies
of scale can be important and some efficiency improvement might be obtained by varying the scale
of operations. To take into account the impact of scale efficiency on the overall technical efficiency
measure, a modified network DEA model should be implemented [78].

The DEA models have not considered undesirable factors such as the unaccounted water as
data were not available for all water utilities. Therefore, the production technology of the water
utility operators has been modeled assuming the freely disposability of the outputs, excluding
that the production process might generate undesirable outputs which cannot be disposed without
bearing costs.

Efficiencies relative to block 1 and block 2 of the water utility production model have been
measured separately. Whereas this approach allows us to uncover inefficiencies related to conflicting
business goals, it does not consider the dual-role conflict of the outputs from the block 1 and inputs to
block 2 in the production model and the interaction between them. Thus, the proposed framework
is unable to calculate an overall efficiency of the overall production system of the water utility.
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Future research aimed at measuring the efficiency of the Italian water services industry might use a
non-oriented three-stage sequential network DEA model able to keep continuity of link flows across
all stages and compare results with what emerged from this study, see [76].

Although this study has considered heterogeneities due to the different forms of ownership
of the utility operators, additional research should be conducted by including heterogeneities in
the efficiency analysis ex-ante rather than ex-post, i.e., by using a meta-frontier efficiency analysis
approach [29]. Finally, this study has privileged the perspective of the water service operators, focusing
on the performance (both resource and market-efficiencies) of their production activities. A more
effective efficiency analysis of the water service market would benefit from applying complementary
perspectives involving different stakeholders, for instance, by measuring efficiency considering the
users and the financial investors’ perspectives.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. List of water services operators considered in the study.

DMU IWS Operator Type DMU IWS Operator Type

IWC1 ACEA ATO 5 SPA PRI IWC28 ACQUEDOTTO VALTIGLIONE SPA PUB

IWC2 ACQUAENNA PRI IWC29 ACQUEDOTTO DELLA PIANA SPA PUB

IWC3 ACQUE DI CALTANISSETTA SPA
(Caltaacque) PRI IWC30 UNIACQE SPA PUB

IWC4 SAI 8 SPA PRI IWC31 ACQUE VICENTINE SPA PUB

IWC5 GIRGENTI ACQUE SPA PRI IWC32 BAS SII SpA PUB

IWC6 Acque Toscane SpA PRI IWC33 POLESINE ACQUE SPA PUB

IWC7 SII del Biellese e Vercellese SPA PRI IWC34 ACQUE VERONESI SCARL PUB

IWC8 TEA ACQUE srl PRI IWC35 ACQUE DEL CHIAMPO SPA PUB

IWC9 ACQUE SPA PRI IWC36 IRISACQUA SRL PUB

IWC10 PUBLIACQUA SPA PRI IWC37 ACAM ACQUE SPA PUB

IWC11 NUOVE ACQUE SPA PRI IWC38 CADF SPA PUB

IWC12 ACQUEDOTTO DEL FIORA SPA PRI IWC39 GAIA SPA PUB

IWC13 UMBRA ACQUE SPA PRI IWC40 SOCIETA’ TENNACOLA SPA PUB

IWC14 S.I.I. SCPA—ato2 PRI IWC41 CIIP SPA PUB

IWC15 ACQUALATINA SPA PRI IWC42 GRAN SASSO ACQUA SPA PUB

IWC16 GORI SPA PRI IWC43 ACA SPA—azienda consortile
acquedottistica PUB

IWC17 GEAL SpA—Lucca PRI IWC44 RUZZO RETI SPA PUB

IWC18 IDROTIGULLIO SpA PRI IWC45 ACQUEDOTTO LUCANO SPA PUB

IWC19 AM.TER PRI IWC46 ABBANOA SPA PUB

IWC20 ACEA ATO 2 SPA PRI IWC47 ACDA PUB

IWC21 BRIANZACQUE SRL PRI IWC48 IDROLARIO PUB

IWC22 ALTO CALORE SERVIZI SPA PUB IWC49 PADANIA ACQUE GESTIONI SPA PUB

IWC23 ACQUEDOTTO POIANA SPA PUB IWC50 ARIN-ABC PUB

IWC24 ACQUA NOVARA VCO SPA PUB IWC51 AMAP spa-Palermo PUB

IWC25 CAFC SpA PUB IWC52 AMIACQUE SRL PUB

IWC26 SAL—SOCIETA’ ACQUA
LODIGIANA SpA PUB IWC53 AQP SPA PUB

IWC27 SOCIETA’ METROPOLITANA
ACQUE TORINO PUB
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