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Abstract In this paper we deal with radiation from heavy
quarks in the context of next-to-leading order calculations
matched to parton shower generators. A new algorithm for
radiation from massive quarks is presented that has con-
siderable advantages over the one previously employed.
We implement the algorithm in the framework of the
POWHEG-BOX, and compare it with the previous one in the
case of the hvq generator for bottom production in hadronic
collisions, and in the case of the bb4l generator for top pro-
duction and decay.

1 Introduction

The production and detection of bottom quarks play an
important rôle in various contexts in LHC physics. Letting
aside the very abundant direct production, that is exploited
for flavour physics studies, bottom is used to identify top
particles and to study their properties. Furthermore, it is the
dominant decay mode of the Higgs boson, that can be used
to study processes as the associate HV production [1,2] and
the large transverse momentum production [3]. In searches
for physics beyond the Standard Model, bottom also appears
often produced in association with new-physics objects.

Having a mass much larger than the typical hadronic
scales, bottom quark production is calculable in perturbative
QCD. In cases when the transverse momentum involved in
the production is large compared to its mass, as, for example,
in high-energy e+e− annihilation, or in production at large
transverse momentum in hadronic collisions, bottom can
behave as a light parton, and give rise to a hadronic jet. Tech-
niques for dealing with these regimes have been developed in
the past [4], and have been applied to the LHC case [5]. They
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allow for the computation of the transverse momentum spec-
trum of promptly produced b quarks at next-to-leading order
in QCD, including the resummation of large logarithms of
the ratio of the transverse momentum over the bottom mass
up to next-to-leading-logarithmic accuracy. These large log-
arithms can arise both from initial state radiation, when, for
instance, an incoming gluon splits into a bb̄ pair, with one of
the b undergoing a large-momentum-transfer collision with
a parton from the target, and from final state radiation. In
the last case, an outgoing gluon can split into a bb̄ pair, or a
directly produced b quark can emit a collinear gluon.

The large transverse momentum regime is treated consis-
tently at the leading logarithmic level in parton shower gen-
erators. At the most basic level, heavy flavours are treated
as light flavours, but with a shower cut-off scale of the order
of the heavy quark mass. However, considerable work has
been performed to better account for mass effects. In some
generators, this is achieved by suitable modifications of the
splitting kinematics and splitting kernels [6,7]. The Sherpa
dipole shower [8] makes use of the Catani-Seymour dipoles
for massive quarks [9]. The Catani-Seymour formalism is
also used in the DIRE shower [10]. In Ref. [11] a final state
dipole-antenna shower for massive fermions is proposed,
based upon the corresponding antenna subtraction formal-
ism of Ref. [12].

In next-to-leading order (NLO) calculations matched to
Shower generators (NLO+PS) for heavy flavour produc-
tion [13,14], one generally treats the heavy flavour as being
very heavy. The heavy quark mass thus acts as a cut-off
on collinear singularities, that are thus not resummed. This
approach has in fact proven to be quite viable in heavy flavour
production even at relatively large momentum transfer [5].
Consider, for example, heavy quark pair production in a
POWHEG framework. By neglecting collinear singularities
from heavy quarks, the only singular region that we have
to consider has to do with initial state radiation involving
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only light partons. Since the POWHEG procedure guaran-
tees that the matrix elements are given correctly for up to
one hard radiation, gluon splitting, flavour excitation and
radiation from the heavy flavour are included, so that the
logarithmically enhanced terms are correctly reproduced at
first order. Higher order leading logarithms, however, are not
treated correctly. In particular, there are reasons to give an
adequate treatment to final state radiation from a high trans-
verse momentum bottom quark. In fact, this radiation process
is intimately related to the physics of the bottom fragmen-
tation function, and may have important effects in processes
of considerable interest, like for example in top decay.

In the POWHEG-BOX framework, a facility for the treat-
ment of collinear radiation from a heavy particle was set up
in Ref. [15], in the framework of electroweak corrections to
W production. In that context, the purpose was to deal with
mass effects in the final state radiation of photon from the
lepton in W decays. The same framework is also appropriate
for describing radiation from heavy quarks. In particular, it
was adopted in Ref. [16], where the ttb_NLO_dec gener-
ator was introduced, and in Ref. [17] for the b_bbar_4l
generator, for dealing with radiation from bottom quarks in
top decays.

The purpose of the present paper is twofold: we present
a new algorithm for radiation from a heavy quark, that has
proven superior to the old one; furthermore we perform a
thorough investigation of the behaviour of this component of
the POWHEG generator, also by comparing the two methods,
both in the framework of bottom quarks generated in top
decay, and in inclusive bottom quark pair production. In the
last case, such a study was never carried out.

The paper is organized as follows: in Sect. 2 we describe
the new algorithm, in Sect. 3 we illustrate our phenomeno-
logical studies, and in Sect. 4 we give our conclusions.

2 Description of the new algorithm

2.1 The POWHEG mapping for the massive emitter case

Let us assume for definiteness to deal with a scattering pro-
cess involving n partons in the final state at lowest order in
perturbation theory. The generic point in the corresponding
Born phase space, referred also as Born configuration, will
be denoted with barred momenta

Φn = {k1, . . . , kn}. (1)

The corresponding phase space volume element is given by

dΦn =
n∏

i=1

d3ki

(2π)32k
0
i

(2π)4δ(4)

(
q −

n∑

i=1

ki

)
, (2)

Fig. 1 Kinematics for a real configuration: kn is the massive emitter,
kn+1 is the radiated parton. y denotes the cosine of the angle between
the two tri-vectors

where q is the total incoming 4-momentum.1 At Next-to-
Leading order (NLO), one must also include processes of
emission of one more real massless extra parton, resulting in
a n + 1-body kinematics which we will denote as

Φn = {k1, . . . , kn+1}. (3)

The singular regions of the real phase space are separated
by means of suitable projection operators; in each of them,
the radiated parton phase space is parametrised in terms of
the FKS variables [18] (the notations p and p for a generic
momentum p denote the tri-impulse and its modulus respec-
tively)

ξ = 2kn+1

q0 , y = kn · kn+1

knkn+1
, (4)

as shown in Fig. 1, where we have assumed that the emitter
and the FKS partons are respectively the n-th and the n + 1-
th parton. The rescaled energy ξ is related to the soft limit
(ξ → 0), and the variable y to the collinear one (y → ±1).
The definition of the azimuthal angle φ, in the POWHEG
framework, departs from the standard FKS definition. It is
taken as the polar angle of the splitting around the axis par-
allel to the momentum of the recoil system, in the rest frame
where q = (q0, 0).

In what follows, we will construct a one-to-one map from
a real configuration with radiation variables (ξ, y, φ) into a
Born one. This leads to a factorisation of the real phase space
in term of Born and radiation variables.

1 The system we are considering can be either the full final state, or the
system of decay products of a resonance, according to the origin of the
heavy quark.
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The mapping can be reduced to the case of the map from
a 3-body phase space into a 2-body one. Inserting into the
(n + 1)-body phase space volume element the identities

1 =
∫

d4krecδ
(4)

(
krec −

n−1∑

i=1

ki

)
(5)

and

1 =
∫

dM2
recδ(M

2
rec − k2

rec), (6)

the phase space is decomposed into a chain of two consecu-
tive processes. With reference to Fig. 1, they are: the decay of
a particle with momentum q into the 3-body system formed
by the emitter kn , the FKS-parton kn+1 and the “recoil” sys-
tem, with momentum and invariant mass

krec =
n−1∑

i=1

ki = q − kn − kn+1,

M2
rec = k2

rec, (7)

followed by the decay of the latter into the other n − 1 par-
ticles. In formula, we have

dΦn+1 = dΦ3dΦrec, (8)

where

dΦ3 = dM2
rec

2π

d3kn
2k0

n(2π)3

d3kn+1

2k0
n+1(2π)3

d3krec

2k0
rec(2π)3

×(2π)4δ(4)(q − kn − kn+1 − krec), (9)

dΦrec =
n−1∏

i=1

d3ki
2k0

i (2π)3
(2π)4δ(4)

(
krec −

n−1∑

i=1

ki

)
. (10)

We now focus on the 3-body process; under the action of the
mapping, the kn and kn+1 partons will be replaced by a single
parton with mass m and momentum kn . We define

k ≡ kn + kn+1, (11)

so that

krec = q − k �⇒ k0
rec = q0 − k0, krec = −k. (12)

We fix the transformation by demandingkn ‖ k. Care must be
taken to ensure the conservation of energy-momentum also
for the resulting Born configuration. This is accomplished by
performing a boost Λ in the direction k and defining

kn = q − Λkrec, (13)

We determine the velocity parameter β of the boost transfor-
mation from the mass-shell condition

k
2
n = (q − Λkrec)

2 = m2. (14)

We get

β = −4kreck
0
recq

2

(q2 − m2 + M2
rec)

2 + 4k2
recq

2

+ (q2 − m2 + M2
rec)

√
(q2 − m2 + M2

rec)
2 − 4M2

recq
2

(q2 − m2 + M2
rec)

2 + 4k2
recq

2
.

(15)

We define the other barred variables as

ki = Λki , i = 1, . . . , n − 1. (16)

Their mass relations are preserved by the boost transforma-
tion and, furthermore, we have

n∑

i=1

ki =
n−1∑

i=1

ki + kn

= q +
n−1∑

i=1

Λki − Λkrec

= q + Λ

( n−1∑

i

ki − krec

)
= q, (17)

which is the energy-momentum conservation for the Born
configuration.

2.2 Inverse map

We now detail the construction of the inverse map, which is
what is actually needed in the applications. Suppose that a
Born event has been generated, i.e. the barred variables ki
(i = 1, . . . , n) are given. Then, M2

rec is obtained inverting
Eq. (13):

M2
rec = (Λkrec)

2 = (q − kn)
2

= q2 + m2 − 2q0k
0
n . (18)

We want to attach to it a radiation described by the radiation
variables ξ, y and φ. For future convenience we introduce
the largest allowed value for ξ

ξmax ≡ 1 − (m + Mrec)
2

q2 . (19)

The energy of the radiated parton is

k0
n+1 = kn+1 = q0

2
ξ. (20)

Energy conservation requires that

q0 = k0
n+1 +

√
k2
n + m2 +

√
k2

rec + M2
rec, (21)

where

k2
rec = k2

n + k2
n+1 + 2knkn+1y. (22)
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We can solve Eq. (21) for kn in a standard way, by bringing
in turn each single square root on one side of the equation
and squaring both sides. By doing this we actually find the
solutions of all of the following equations

q0 = k0
n+1 ±

√
k2
n + m2 ±

√
k2

rec + M2
rec, (23)

for all possible combinations of the signs in front of the square
root. The solutions are given by

k(±)
n = −(2k

0
n − q0ξ)ξ y

(2 − ξ)2 − ξ2y2

± (2 − ξ)

√
(2k

0
n − q0ξ)2 − m2ξ2(1 − y2) − 4m2(1 − ξ)

(2 − ξ)2 − ξ2y2 .

(24)

In order for them to exist, the argument of the square root
must be positive. This leads to the bound

(q2 − m2 + m2y2)ξ2 − 4(q0k
0
n − m2)ξ + 4k

2
n > 0, (25)

with k
2
n = (k

0
n)

2 − m2. Equation (25) is satisfied if either
ξ > ξ(+)(y) or ξ < ξ(−)(y), with

ξ (±)(y) = 2
k

0
nq

0 − m2 ± m
√

(q0 − k
0
n)

2 − k
2
n y

2

q2 − m2 + m2y2 ,

= q2 − m2 − M2
rec ± 2m

√
M2

rec + k
2
n(1 − y2)

q2 − m2 + m2y2

= 4k
2
n

q2 − m2 − M2
rec ∓ 2m

√
M2

rec + k
2
n(1 − y2)

.

(26)

The last equality follows from the fact that

ξ (+)ξ (−) = 4k
2
n

q2 − m2 + m2y2 . (27)

We see that ξ (+) is a decreasing function of y2. Thus

ξ (+)(y) > ξ(+)(1) = 1 − (m − Mrec)
2

q2 > ξmax. (28)

that is larger than the maximum value allowed by energy
conservation. Thus, the corresponding k(±)

n values should be
the solutions of one among Eq. (23) where some minus signs
appear. On the other hand, ξ (−)(y) is an increasing function
of y2, so

ξ (−)(y) < ξ(−)(1) = 1 − (m + Mrec)
2

q2 , (29)

that is perfectly acceptable. Furthermore, in the ξ < ξ(−)(y)
case the value ξ = 0 is allowed, that lead to the solutions

k(±)
n = ±k

0
n satisfying Eq. (21) with the correct signs of the

square roots. Since the k(±)
n must always satisfy one of the

Fig. 2 Kinematic reconstruction of the real emission kinematics with
positive (left) and negative kn values. The angle θ is fixed by y = cos θ

Eq. (23), and since they are smooth function of both ξ and
y in their allowed range (that includes the ξ = 0 point), we
infer by continuity that they satisfy Eq. (23).

Up to now we have not imposed the positivity of kn . On
the other hand, negative kn values still have a physical inter-
pretation, as illustrated in Fig. 2. Thus, provided we interpret
negative values of kn according to the construction of Fig. 2,
we have two solutions of Eq. (21). They are however related,
since

k(+)
n (ξ, y) = −k(−)

n (ξ,−y). (30)

If we pick just one of them, we have a single-value map
from the underlying Born configuration and the radiation
variables ξ, y and φ to a real emission configuration. We pick
the solution k(+)

n (ξ, y), since for m = 0 it corresponds to the
usual solution in the massless case. Unlike in the massless
case, however, k(+)

n (ξ, y) is not always positive: it is negative
in the region

y > 0 , ξ > ξ(−)(0) = 2
k

0
n − m

q − m
= (q0 − m)2 − M2

rec

q0 (q0 − m)
.

(31)

For continuity, k(+)
n (ξ, y) vanishes on the boundary line

y > 0, ξ = ξ (−)(0) separating the positive and negative
regions. The points lying on this curve are degenerate and
correspond to the same real configuration with the emitter at
rest in the partonic centre-of-mass frame. Apart from them,
that constitute a set of zero measure, the map is well defined
and bijective. The inverse map is well defined also on the
boundary line y > 0, ξ = ξ (−)(0). This means that the cor-
responding jacobian vanishes on that curve. Then, the inverse
map can be safely used both for the integration of the real
differential cross section and for the generation of radiation.
In Fig. 3 we display the ξ, y kinematic region. We remark
that the negative k(+)

n (ξ, y) region includes neither soft nor
collinear singularities, since ξ is large, and since the angular
separation of the quark and the radiated gluon is larger than
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Fig. 3 Plot of the physical region in the ξ y plane. The shaded orange
region is where k(+)

n (ξ, y) is negative. It is physically equivalent to the
(positive) k(−)

n (ξ,−y) solution in the dark blue region. If we insisted
upon considering only positive kn solutions, the blue region would be
doubly covered, and the dark blue one would not be there

Fig. 4 Dalitz plot for the three-body phase space of the system com-
prising the heavy flavour, the radiated gluon and the recoiling system

π/2. From now on we will drop the suffix (−) and will use
ξ(y) and ξ(0) instead of ξ (−)(y) and ξ (−)(0).

In Fig. 4 we show the partition o the kinematic region rep-
resented in the more familiar Dalitz plane. Notice that in the
massless limit the physical region in the Dalitz plot devel-
ops an acute angle in the lower right, corner corresponding
to the gluon being anticollinear with the b quark. Thus, the
problematic region ξ > ξ(0) is not a singular one.

2.3 Full kinematic reconstruction of the real emission

So far, we have got the length of the tri-vectors kn and kn+1.
It is a standard kinematical problem to determine their direc-
tions in such a way that their sum k is parallel to kn . We do
not enter in further details about it.

The last step is to calculate the β parameter of the boost
transformation Λ, Eq. (15), and to boost “back” the other
barred momenta in the real event

ki = Λ−1ki , i = 1, . . . , n − 1. (32)

The above mapping allows us to write the (n+1)-body phase
space element in the factorized form

dΦn+1 = dΦraddΦn = J (ξ, y, φ)dξdydφdΦn, (33)

where we have expressed the radiation phase space in terms
of the FKS variables with the jacobian function J (ξ, y, φ)

taking into account the change of variables involved in the
transformation. In order to extract the jacobian, we have to
manipulate and compare the l.h.s and the r.h.s of Eq. (33).
Recalling Eq. (8), we perform the change of variables

kn → k − kn+1 (34)

in the three-body phase space, Eq. (9),

dΦ3 = dM2
rec

2π

d3k
2k0

n(2π)3

d3kn+1

2k0
n+1(2π)3

d3krec

2k0
rec(2π)3

×(2π)4δ(4)(q − k − krec) . (35)

In polar coordinates, we have

d3k = k2dkdΩ (36)

and, using as reference direction that of k,

d3kn+1

2k0
n+1(2π)3

= q2

(4π)3 ξdξd cos αdφ , (37)

where α is the angle between kn+1 and k and φ is the
azimuthal angle taking k as the reference direction. Hence

dΦn+1 = q2

(4π)3 ξdξd cos αdφ
k2dkdΩ

2k0
n(2π)3

dM2
rec

2π

× d3krec

2k0
rec(2π)3 (2π)4δ(4)(q − k − krec)dΦrec. (38)

On the other hand, following the same arguments that led to
Eq. (8), we can split the barred Born phase space into a two-
body phase space and the phase space of the system recoiling
against the emitting parton

dΦn = dM
2
rec

2π

d3kn

2k
0
n(2π)3

d3krec

2k
0
rec(2π)3

×(2π)4δ(4)(q − kn − krec)dΦrec. (39)

Since kn = q−Λkrec, the delta function in Eq. (39) constrains
the value of krec to be

krec = Λkrec. (40)
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Then, exploiting the Lorentz invariance of the phase space
element, we have

dM2
rec

2π

d3krec

2k0
rec(2π)3 (2π)4δ(4)(q − k − krec)dΦrec

= dM
2
rec

2π

d3krec

2k
0
rec(2π)3

(2π)4δ(4)(q − kn − krec)dΦrec,

(41)

where the r.h.s and the l.h.s are related by the boost transfor-
mation Λ. In particular, we observe that

Λ(q − k) = Λkrec = q − kn, (42)

so that the boost maps the argument of the delta function in
the r.h.s into that of the delta function in the l.h.s. Inserting
Eq. (38) and Eq. (39) into Eq. (33) and using Eq. (41), we
get

q2

(4π)3 ξdξ d cos α dφ
k2dkdΩ

2k0
n(2π)3

= J (ξ, y, φ)dξ dy dφ
d3kn

2k
0
n(2π)3

. (43)

By virtue of the mapping, the vectors k and kn are parallel
so that in polar coordinates their angular elements are equal,
dΩ = dΩn . Then, from Eq. (43) we have

q2

(4π)3 ξ
k2

k0
n

d cos α dk = J (ξ, y, φ)
k

2
n

k
0
n

dy dkn . (44)

and we are left with the computation of the jacobian of the
two-variable-transformation

J (2) =

∣∣∣∣∣∣∣∣

∂kn
∂k

∂y

∂k
∂kn

∂ cos α

∂y

∂ cos α

∣∣∣∣∣∣∣∣
. (45)

This transformation is implicitly defined by the relations

kn =
√
k2 + k2

n+1 − 2k kn+1 cos α,

y = k2 − k2
n − k2

n+1

2kn kn+1
,

M2
rec = (q0 − k0

n − kn+1)
2 − k2,

kn = λ1/2(q2, M2
rec,m

2)

2q0 ,

(46)

where λ is the kinematical Kallen function:

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. (47)

Applying the chain-rule for the derivative, it is straightfor-
ward to compute the jacobian. We get

J (2) = 1

k3
n

k2

kn

k
0
n

k0
n

[
k0
n(k

0
n − kn+1)

−m2(1 − kn+1/q
0)

]
(48)

The final expression for the full jacobian J is thus

J (ξ, y, φ) = q2

(4π)3 ξ
k3
n

kn

1

k0
n(k

0
n − kn+1) − m2(1 − kn+1/q

0)

= q2

(4π)3 ξ
k3
n

kn

2

k0
n(2k

0
n − q0ξ) − m2(2 − ξ)

(49)

Note that the denominator of J vanishes in two regions:

– when approaching the curve ξ = ξ(0) for y > 0, behav-
ing as ξ(0) − ξ

– when approaching the curve ξ = ξ(y), as
√

ξ(y) − ξ .

In the first case, the k3
n term in the numerator vanishes simul-

taneously as (ξ(0)−ξ)3. It follows that the jacobian vanishes
as J ∼ (ξ(0) − ξ)2 for ξ → ξ(0) at fixed y > 0. This result
is coherent with what has been argued above regarding the
degenerate points corresponding to the configuration with the
emitter parton at rest in the partonic centre-of-mass frame.
In the second region, the jacobian develops an integrable
singularity, that can be dealt with by importance sampling
techniques in Monte Carlo integration.

2.4 Generation of radiation

The POWHEG master formula for the generation of radiation
[19,20] is

dσNLO = B(Φn)dΦn

[
ΔNLO(Φn, tmin)

+
∑

α

[
dΦradΔNLO(Φn, K⊥(Φn+1))R(Φn+1)

]Φα
n=Φn

α

B(Φn)

]
,

(50)

where tmin is an infrared cutoff, and the NLO Sudakov form
factor is given by

ΔNLO(Φn, pT ) = θ(pT − tmin)

× exp

⎡

⎣−
∑

α

∫ [
dΦradR(Φn+1)Θ(K⊥(Φn+1) − pT )

]Φα
n=Φn

α

B(Φn)

⎤

⎦.

(51)

In the case of a massless emitter, K⊥ is a smooth function
of the radiation variables, which is required to reduce to the
transverse momentum in approaching the soft and collinear
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limits. For the massive case, in Ref. [15] the following defi-
nition was proposed

K 2⊥ = 2
k0

p0 p · k = q2

2
ξ2(1 − βyphy). (52)

yphy denotes the cosine of the physical angle between the
emitter and the emitted parton.2 Eq. (52) has the remarkable
property of reducing continuously to the transverse momen-
tum in the massless limit. We assume it as our default scale
choice.

According to the standard veto method, we look for a
suitable upper bound functionU of the integrand in the NLO
Sudakov form factor, namely

U (ξ, y)dξdy ≥ R

B
J (ξ, y)dξdy. (53)

For the sake of simplicity, we have omitted the integration
on the azimuthal angle dφ, which results in a constant 2π

factor.
We model the upper bound function on the asymptotic sin-
gular behavior of the real matrix element near the soft and
collinear singularities. We recall that the jacobian of the map-
ping has a divergent behaviour near the curve ξ = ξ(y). The
upper bound function should have a behaviour not weaker
than the Jacobian near the singular regions, and furthermore,
it should be simple enough to allow us to perform an analyti-
cal integration in the constrained radiation phase space given
by the cut K 2

T > t .
It is convenient to perform a change of integration variables
from ξ, y to ξ, K 2

T . Indeed, it turns out that K 2
T is a mono-

tonic decreasing function of y at fixed ξ , i.e. ∂K 2
T /∂y < 0.

The inversion of this mapping is too complex to be performed
analytically,3 but easy to perform numerically. We find that
the associated jacobian ∂K 2

T /∂y has a behaviour similar to
that of the jacobian of the mapping J :

∼ 1√
ξ(y) − ξ

when ξ → ξ(y); (54)

∼ (ξ(0) − ξ)2 when ξ → ξ(0) for y ≥ 0. (55)

We now write

U = ∂K 2
T

∂y
U ′, (56)

2 yphy must not be confused with the y variable of the mapping. More
specifically, in the region ξ(0) ≤ ξ ≤ ξmax, y > 0 we have yphy = −y,
while in all the remaining region yphy = y.
3 In fact, rather than proving analytically that K 2

T is a monotonic
decreasing function of y at fixed ξ , we demonstrated it numerically
by checking it a large number of times for random values of the input
parameters.

so that in the new integration variables the integrand becomes
U ′
∫

dξ dy Θ(K 2
T − t)U =

∫
dξdK 2

TΘ(K 2
T − t)U ′. (57)

U ′ must have a simple form, and must have the appropriate
behaviour to act as an upper bound for the soft and collinear
singularities of the real matrix element.

2.4.1 Upper bound function

The singular behaviour of the real matrix element squared is
universal and can be extracted in a straightforward manner by
means of the eikonal approximation. In terms of the radiation
variables, we get

R

B
∼ N

ξ2(1 − βyphy)
= N

K 2
T

, (58)

with N a suitable normalization constant. On the other hand,
in the soft limit, the jacobian of the mapping behaves as

J (ξ, y) ∼ N ′ξ. (59)

We must also take into account the behaviour in the soft limit
of the jacobian term factorized in U :

∂K 2
T

∂y
∼ N ′′ξ2. (60)

Putting all the three contributions together, we obtain the
following expression of the upper bound function U ′

U ′(ξ, K 2
T ) = 1

K 2
T

× ξ × 1

ξ2 = 1

ξK 2
T

. (61)

A more complete analysis shows that mapping J is enhanced
(although not divergent) at large ξ for y → −1. In order to
get a more efficient upper bound, we add the factor 1

1−K 2
T /q2

to the previous expression. Hence, our final choice for the
upper bound function U ′ is

U ′(ξ, K 2
T ) = 1

ξK 2
T (1 − K 2

T /q2)
. (62)

2.4.2 Integral of the upper bound function

In order to integrate the upper bound function analytically,
its domain of integration has to be suitably enlarged. This
can be done by interpreting the R/B expression as being
defined in the larger domain, but as vanishing outside of the
physical domain. Since the veto procedure prescribes that a
point generated according to the upper bound function should
be accepted with a probability proportional to the value of
the radiation function divided by the upper bound func-
tion, points generated outside the physical domain should
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always be vetoed according to the above interpretation. From
Eq. (52), we find the upper bound

K 2
T < K 2

max ≡ q2

2
ξ2

max(1 + β0), (63)

where β0 is the velocity of the emitter in the underlying Born
configuration (this follows from the fact that we always have
β ≤ β0), and we also find

2K 2
T

(1 + β0)
< ξ2 <

2K 2
T

(1 − β0)
, (64)

We thus take as our domain of integration the region in KT

and ξ such that Eqs. (63) and (64) are satisfied. We notice
that in this way ξ can even become larger than 1. In practice,
however, adding also the ξ < 1 or ξ < ξmax limit would
render the integration more difficult, so we prefer to deal
with it by vetoing. Defining

ξ M
m
(K 2

t ) ≡
√

2K 2
T

q2(1 ∓ β0)
, (65)

the integral of the upper bound function is then

I (t) =
∫ K 2

max

t

dK 2
T

K 2
T (1 − K 2

T /q2)

∫ ξM (K 2
t )

ξm (K 2
t )

dξ

ξ

= ln

[
K 2

max

q2 − K 2
max

q2 − t

t

]
y0, (66)

where y0 ≡ (1/2) ln[(1 + β0)/(1 − β0)] is the rapidity of
the emitter in the underlying Born configuration. Given a
number 0 < r < 1, the t value generated by solving the
equation r = exp[−2πN I (t)] is

t = A

1 + A
q2, A = K 2

max

q2 − K 2
max

exp

[
log r

2πNy0

]
. (67)

2.4.3 Generation of radiation kinematics

The algorithm for generating the radiation variables proceeds
as follows:

1. We set the initial scale t0 = K 2
max.

2. We generate a uniform random number

0 < r < exp[−2πN I (t0)],

and get t from Eq. (67). If t is below tmin, no radiation is
generated, and the event is emitted as is.

3. We pick a new uniform random number 0 < r ′ < 1 and
we generate a value for ξ as

ξ = ξm(t) exp(y0r
′). (68)

This is consistent with the distribution of ξ at fixed K 2
T

according to Eq. (66).

4. If ξ > ξmax, we set t0 = t , and go back to the step 2.
5. If the veto condition is passed, given t and ξ , we solve

numerically for y the implicit equation

K 2
T (ξ, y) = t. (69)

If a solution does not exist, we set t = t0 and go back to
step 2.

6. Now that ξ and y are available, we generate a random
φ, and compute the ratio R = [R/BJ (ξ, y)]/U (ξ, y)],
with U given in terms of U ′ in Eq. (56), and generate a
new random number 0 < r ′′′ < 1. If r ′′′ > R we set
t0 = t and go back to the step 2. Otherwise, the event is
accepted.

3 Phenomenology

3.1 Comparison in the bb4l case

We have compared results obtained with the new method pre-
sented here, with those obtained with the default POWHEG
settings for the bb4l generator of Ref. [17]. We found
remarkable agreement between the two results for all the
distributions that we have examined. Here we show only two
of them, to convey the idea of the quality of the agreement.
These results were obtained for the 8TeV LHC collider, using
the MSTW2008 PDF [21] set for reference only (other sets
could be used as well [22,23]). In our simulations we make
the B hadrons stable. Jets are reconstructed using the Fast-
jet [24] implementation of the anti-kT algorithm [25] with
R = 0.5. We denote as B (B̄) the hardest (i.e. largest pT)
b (b̄) flavoured hadron. The B (B̄) jet jB ( jB̄) is defined to
be the jet that contains the hardest B (B̄). We discard events
where the jB and jB̄ coincide. The hardest e+ (μ−) and the
hardest νe (ν̄μ) are paired to reconstruct the W+ (W−). The
reconstructed top (antitop) quark is identified with the corre-
sponding W+ jB (W− jB̄) pair. We show the invariant mass
of the W − b-jet system (Fig. 5) and the B fragmentation
function in top decay (Fig. 6), as defined in Ref. [17], i.e. the
the B energy in the reconstructed top rest frame normalized
to the maximum value that it can attain at the given top vir-
tuality. In the curves, the alt (for “alternative”) label stands
for our new implementation, while def (for “default”) is the
current POWHEG default. As one can see, the agreement is
very good. This also shows that details in the implementation
of radiation from the b quark in top decays do not seem to
have important impact on physical observables.

We found that the efficiency and the generation rate of
the new implementation are comparable with those of the
POWHEG default.
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3.2 b production in hadronic collisions

In this section we study the available POWHEG implementa-
tions of radiation from massive quarks for the hvq generator
[14], i.e. the default POWHEG implementation and our new
one. In spite of the fact that the default formalism has been

(a) (b) (c)

Fig. 7 Example diagrams for the three mechanism that give rise to
log-enhanced contributions in heavy flavour production: a final state
radiation from a quark; b gluon splitting; c flavour excitation

available for quite some time [15], no such study has been
performed so far. We thus discuss it in this work, where we
can also compare with our new implementation.

The hvq generator has been available for quite some time
as a tool to generate top, bottom and charm pairs in hadronic
collisions. It is designed to simulate correctly the production
of a heavy flavour pair when the logarithm of the ratio of the
transverse momentum of the heavy quark divided by its mass
is not too large. This limitation arises because there are three
mechanisms, depicted in Fig. 7, involving radiation from the
final state quark, production of a heavy quark-antiquark pair
via final state gluon splitting and the splitting of an initial
state gluon into a heavy quark-antiquark pair (where one of
the two quarks is scattered at large transverse momentum),
that can generate large logarithms involving the mass of the
heavy quark. In the inclusive cross section for the production
of a heavy quark with a given pT , for example, they generate
logarithms of pT /m (see Ref. [26], Eq. (5.1)). The last two
mechanisms are commonly referred to as gluon splitting and
flavour excitation. In spite of this, the hvq generator has also
been used to model relatively large transverse momentum
production of heavy flavours, as in Ref. [5]. There, the trans-
verse momentum distribution of the heavy flavoured hadron
in hvq was compared with the more accurate (but less exclu-
sive) FONLL prediction [4]. It was found to be in rather good
agreement. However, the large uncertainties related to the
non-perturbative fragmentation of the heavy quark leads to
the suspect that such agreement is at least in part accidental.

We will now compare the results obtained with the default
hvq generator, that we will label nol (for “no light”, mean-
ing that the heavy quark is treated as very heavy), that treats
as singular regions only the radiation from massless partons
(i.e. initial state radiation); hvq with the inclusion of the
radiation from the heavy quark as a singular region will be
labeled asl (for “as light”, meaning that the heavy quark is
treated as a light parton). Furthermore, the default treatment
of the heavy quark radiation region will be denoted as def,
while the new implementation presented here will be called
alt. In Figs. 8, 9 and 10 we show a comparison of def and
alt. We can immediately see that we do not find important
differences between the two methods, consistently with what
was found in the bb4l case. The settings are similar to the
bb4l case: we make the B hadrons stable, and define the
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b (b̄) jets as the jets containing the hardest b (b̄) flavoured
hadron, with the jets defined as in the bb4l case. However,
we do not exclude the case when both hardest b-flavoured
hadrons are in the same jet. We perform the calculation for
the LHC at 8 TeV, using NNPDF30_nlo_as_0118 pdf set
[23]. As one can see, the two implementations are in excel-
lent agreement. Observe the jump at 10 GeV in the jB mass.
It is due to the case in which the b and b̄ flavoured hadrons
are both in the jet cone. From Fig. 10 we also see that for
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Fig. 10 Comparison of alt and def for the b-jet mass

jet masses above 10 GeV the gluon splitting configuration
dominates.

We found that the new implementation has a generation
efficiency, which is estimated from the numbers of vetoes
in FSR generation, three times greater than the default one.
This leads to a generation rate of 1316 events per minute,
against the 298 events per minute of the POWHEG default,
which corresponds to a gain more than a factor of 4.

We now show in the left panels of Figs. 11, 12 and 13 the
comparison among the alt and nol. Here we see consider-
able differences, especially in the large-momentum tail of the
B and jB transverse momentum distribution, the alt ones
being much harder. The mass of the b jet is also remarkably
different. The large difference above 10 GeV hints to the
fact that heavy quark pair production via the splitting of a
large transverse momentum gluon is treated in a very differ-
ent way in the two cases, and that this difference may be the
cause of the large discrepancy in the transverse momentum
distribution of the b hadron.

The difference between thealt andnol cases should not
come as a surprise. The generation of radiation is performed
in the nol case according to the formula

dσ = dΦB B̃(ΦB) exp

[∫
R(ΦB, Φ ′

rad)

B(ΦB)
θ(k′

t − kt )dΦ ′
rad

]

× R(ΦB, Φrad)

B(ΦB)
dΦrad , (70)

where kt is the transverse momentum of the emitted gluon
with respect to the beam axis, since the only singular regions
that are considered there are the initial-state radiation (ISR)
ones. The strong coupling constant and the parton densities
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are evaluated by default at a scale equal to the transverse
mass of the heavy quark at the level of the underlying Born
kinematics

μ f = μr =
√
k2
t,q + m2

q (71)

in the B̃ function, while they are evaluated at a scale kt (or
k′
t ) in the R/B ratios appearing in formula (71). Since B̃ and
B are of order α2

S , while R is of order α3
S , this means that

in practice two powers of the strong coupling are evaluated
at the scale of Eq. (71), while one power is evaluated at a
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Fig. 13 Same as in Fig. 11 for the b-jet mass

scale kt . The mismatch in the scale used in B̃ and in the B
appearing in the ratios, combined with the exponential, leads
as usual to the correct Sudakov form factor for initial state
emission.

3.2.1 Problematic regions

In case the transverse momentum of the gluon is small, the
scale assignments and the Sudakov form factor describe the
process appropriately. It can happen however, that the real
emission kinematics is near the gluon splitting, flavour exci-
tation or quark radiation regimes. In these cases the gluon
transverse momentum is not small. Furthermore, the numer-
ator R in the integrand may be enhanced with respect to the
denominator, thus yielding a damping of the real cross section
that is not justified. Also the scale choices are not appropriate.
For example, in the case of production of a high transverse
momentum heavy quark pair according to the gluon splitting
mechanism, the appropriate scale should correspond to two
powers of αS evaluated at the gluon transverse momentum,
and one power of αS evaluated at the scale of the order of the
invariant mass of the heavy quark pair.

The adoption of the methods illustrated in Ref. [15] and
in the present work for dealing with radiation from a heavy
quark leads to the correct treatment of the radiation from
the heavy, quark provided all remaining regions are treated
correctly. This is in fact what happens in the case of the
bb4l generator, where there is only one enhanced region,
but it is not the case for the asl generator, that does not
treat in a proper way the two regions of gluon splitting and
flavour excitation. Thus, the nol and the asl generators
will end up treating the enhanced regions in different (and
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in both cases incorrect) ways. In fact, while in the nol case
the enhanced regions will all be treated as if they were ISR
processes, in the asl case they will be split, and treated in
part as ISR processes, and in part as radiation from the heavy
quarks. In order to test this hypothesis, and in order to explore
possible strategies to deal with this problem, we proceed as
follows. It is possible in POWHEG to further separate out the
real cross section into two terms, such that only one term has
singular behaviour, while the remaining term, being finite,
can be integrated independently. In the hvq case, this means

R = R(s) + R(r) . (72)

Equation (70) is then replaced by

dσ = dΦB B̃
(s)(ΦB) exp

×
[∫

R(s)(ΦB, Φ ′
rad)

B(ΦB)
θ(k′

t − kt )dΦ ′
rad

]

× R(s)(ΦB, Φrad)

B(ΦB)
dΦrad

+
∫

dΦBdΦradR
(r)(ΦB, Φrad) . (73)

We can exploit this mechanism in order to separate out the
enhanced regions, in such a way that we can treat them in
a more uniform way with our generators. In particular, we
separate out the gluon splitting and flavour excitation pro-
cesses in all cases. In the nol case we also separate out the
regions of radiation from the heavy quarks, in such a way
that they are treated in a more transparent way. Observe that
in performing this separation we rely upon the fact that the
three enhanced region are not really singular, since the quark
mass cuts off the collinear singularities, and thus the remnant
term is actually finite.

We define the distance of a real configuration from a given
enhanced region as follows

disr = k2
t , dglsp = 2kq · kq̄

k0
qk

0
q̄

(k0
q + k0

q̄)
2
,

dq = 2kq · k k
0

k0
q

+ m2
q , dq̄ = 2kq̄ · k k

0

k0
q̄

+ m2
q ,

dq,flex = k2
q̄,⊥ + m2

q , dq̄,flex = k2
q,⊥ + m2

q , (74)

where in the first line the distances for ISR and gluon splitting
are given, in the second line those for radiation from the heavy
quarks, and in the last line the ones for flavour excitation. We
then define, for the nol generator

D = d−1
isr

d−1
isr + d−1

glsp + d−1
q + d−1

q̄ + d−1
q,flex + d−1

q̄,flex

,

R(s) = RD, R(r) = R(1 − D) . (75)

For the alt and def generators, we define

D = d−1
isr + d−1

q + d−1
q̄

d−1
isr + d−1

glsp + d−1
q + d−1

q̄ + d−1
q,flex + d−1

q̄,flex

(76)

R(s)
i = Ri D, R(r)

i = Ri (1 − D) , (77)

where the index i labels the three singular regions that
POWHEG is handling. In this case, the cross section is damped
if the kinematics is near a singular region that is nether ISR
nor FSR, i.e. only gluon splitting and flavour excitation kine-
matics are separated into the (r) component.

There is one more issue that needs to be considered when
using a damping factor in POWHEG. By default, when eval-
uating the R(r) component (called “real remnant”), the scale
choice is the same as for B̃, i.e. it is Eq. (71) applied to
the underlying Born kinematics, that depends upon the con-
sidered singular region. This would lead to a different scale
choice for the remnants in nol and asl. In order to avoid
that, we should set the scale on the basis of the real kinemat-
ics. This can be done in POWHEG by setting appropriate flags
and by modifying the code that computes the scales for the
process. Our scale choice is

μ f = μr = 1

2

[√
k2
t,q + m2

q +
√
k2
t,q̄ + m2

q + kt

]
, (78)

that has the correct limit to the underlying Born scale both
in the ISR and in the FSR case.

The result of this procedure is shown in the right panels
of Figs. 11, 12 and 13. We notice a remarkable improvement
in the agreement, although some important differences do
remain. This is not unexpected, since in the two cases radia-
tion from the heavy quark is treated in a very different way.
It is interesting to notice that the B and the jB spectra com-
puted with the nol without remnants (which is the default
in the standard hvq generator), is in fair agreement with the
alt one when the enhanced regions are separated using the
remnants. Since the default hvq program gives a description
of the transverse momentum distribution of B hadrons that is
in fair agreement with the FONLL calculation, we infer that
also the alt prediction will display a similar agreement,
provided the gluon splitting and flavour excitation region are
treated separately as remnants.

The alt (or equivalently the def generator), with the
remnant separation discussed above, seems to be at this point
the generator that may give the best description of b produc-
tion data at hadron collider. We should not forget, however,
that some flexibility still remains in the treatment of the rem-
nant (in this work we have made a definite scale choice for
the remnants in order to have a clearer comparison with the
nol generator). We also notice from Figs. 11 and 12 that
after the remnants are introduced, the B-hadron and b-jet pT
spectra become softer. This seems to be in contrast with the
discussion at the beginning of Sect. 3.2.1. On the other hand,
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this result may be due to the particular scale choice that we
have performed for the real graphs, and that POWHEG applies
automatically also to the remnants. This scale turns out to be
higher than the typical scale involved in the region discussed
at the beginning of Sect. 3.2.1. A better approach would be
to introduce the possibility of alternative scale choices in the
remnants, including the possibility of performing a different
scale choice depending upon which enhanced region one is
considering. We refrain here from carrying out such study,
since we believe that comparison with data on single inclu-
sive b-hadron and b-jet production (see Refs. [27–29] and
references therein) and on correlations of bb̄ pairs [30,31],
would be needed in order to make progress in this direction,
and this is beyond the scope of the present work. Such study
would however be very valuable, and not only for the pur-
pose of testing QCD in bottom production. The production
of top pairs is one of the most important background pro-
cess at the LHC, including also its future high luminosity
and eventually high energy developments. An accurate sim-
ulation of the t t̄ background would be very valuable for the
LHC experimental collaborations, and it is quite clear that
a model of b production yielding a good description of the
data from low to high transverse momenta should be also
well suited to describe top production in all the needed phase
space. Furthermore, these studies could lead to an improved
description of top production at large transverse momentum,
that, as reported currently by CMS and ATLAS (see [32,33]
and references therein) seems to be not well described by
theoretical models.

4 Conclusions

In this paper we have presented a method for implementing
radiation from a heavy quark in the POWHEG framework.
This method is considerably simpler and more transparent
than the one presented in Ref. [15], and it has a much better
numerical performance. The present method overcomes a
problem related to the fact that the most natural map from an
underlying Born configuration and a set of FKS-like radiation
variables for radiation from a massive quark does not have a
unique inverse in the whole kinematic region. The POWHEG
inverse map has thus two solutions in some region of phase
space, and in the present work it is shown how, by giving
up the physical connection of the y variable to the gluon
emission angle in a very limited region of phase space one
can pick one of the two solutions in such a way that we still
have a single valued inverse mapping. We have examined the
output of the new method in the framework of the generators
of Refs. [17] and [14]. We found that the new method yields
results that are very consistent with the previous one, that is
at this moment the POWHEG default. This is reassuring, since
it shows that details of the implementation do not impact in

a visible way the physics result, and also it shows that the
previous implementation, in spite of being quite contrived,
is in fact correct.

In this work we have also examined for the first time the
impact of the inclusion of the singular region associated with
radiation from the heavy quark in the case of the hvq gener-
ator. We have shown that, unless one separates the enhanced
gluon splitting and flavour excitation contribution from the
real contribution that are dealt with by the POWHEG radiation
formula, and treats them as remnants, one finds results that
are in considerable disagreement with the traditional hvq
implementation. On the other hand, it seems that performing
this separation is the appropriate thing to do for a consis-
tent modeling of the process. We notice that such modeling
would be of great interest also for its potential application to
top pair production, that is a very important background to
many LHC physics studies.
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