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Abstract 

This paper offers a new interpretive perspective to investigate factors of researchers productivity, moving from a personal 
features/resource endowment view to a behavioral one centered on the knowledge search.  Little work has indeed been carried out 
on the relationship between the research productivity and the scientist knowledge search behaviors. Three knowledge search 
dimensions are taken in account: search type, search focus and search dynamics. Using data relative to 873 biotechnology patents 
granted from 1960 to 2007 to 255 academic scholars that are affiliated to 36 Italian universities, this paper investigates if a 
particular knowledge search behavior is associated to greater patenting rates. 
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1. Introduction 

Since the 1970s, the university research has played a particular important role both for the advancement and 
dissemination of the stock of scientific knowledge and the growing of industry in the biotechnology field. Indeed, 
biotechnology is a science-based industry and an extraordinary example of effective interaction between basic and 
applied research (Audretsch and Feldman, 1996; McMillan et al., 2000; Cockburn, 2005). It is not infrequent that new 
companies are formed as academic spin-offs (Audretsch, 2001; Chiesa and Piccaluga, 2000; Walsh et al., 1995). 
Traditionally, the stock of knowledge has been freely available within the research community, accessible through 
journal articles, conference papers, databases, scientists mobility, etc. But, more recently with the increasing 
awareness of the commercial potential of the biotechnology research outlets and the need for funding of the academic 
institutions, university scientists have been more and more involved in the exploitation of the research activity through 
patenting. Although Italian biotech is characterized by recognized scientific excellence and a high degree of 
dynamism, Italy is ranked fourth as to the overall number of scientific publications in the biotechnology domain (close 
to 6%) preceded by US, UK, and Germany, but it ranks only fifth, below France, in terms of patents productivity, with 
a relative share of 3% of the total number of patents granted in Europe or 2% of patents granted in US (Pammolli, 
2011). 

In this paper, I will analyze patterns of knowledge search in Italian universities active in the biotechnology field. In 
particular, by using data relative to 873 biotechnology patents granted from 1960 to 2007 to 255 academic scholars 
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affiliated to 36 Italian universities, this paper investigates if there is an association between the knowledge search 
behavior pursued by a researcher and his/her patenting productivity. Three knowledge search dimensions are 
considered to model the researchers knowledge search behavior: search type, search focus and search dynamics. 
Indexes of technological familiarity, technological concentration, and collaboration are built and measured to qualify 
search behaviors. 

2. Modeling scientific research as knowledge search 

As a form of problem-solving activity, scientific research involves the generation and recombination of ideas, 
concepts, insights, interpretation of data and information that lead to the creation of new knowledge (Katila and Ahuja, 
2002). Indeed, knowledge does not have a rigid nature, but it can be transformed, combined, accumulated, stored and 
transferred. The search for new knowledge useful to solve old unsolved problems or identify new problems to deal 
with represents the principal activity of scientific research. The search for new knowledge is mostly an evolutionary 
path-dependent, intrinsically uncertain and interactive process, and scientists  due to the resource and cognitive 
limitations that make it difficult to formulate objective prior beliefs - tend to pursue their innovative search for new 
knowledge and solutions to problems leveraging on the knowledge stock they are more familiar with or within a set of 
knowledge domains that are very close to the familiar knowledge domain which are many times freely available in the 
academic and technical communities, refining and improving it, or, as frequently occurs, combining them together 
(March, 1991). When scientists become engaged in problem-solving activity in search of new useful knowledge, they 
use existing knowledge as a recipe, using as ingredients the elementary components of knowledge information, 
physical components and processes (Nelson and Winter, 1982). This recipe shows how these ingredients should be 
combined to obtain useful outlets. Scientific research is thus a process in which scientists search for new recipes, i.e. 
new ways useful for the recombination of single pieces of knowledge to generate new and better alternatives. When 
researchers accumulate expertise in a specific knowledge domain, they prefer rely upon this expertise even when they 
deal with new problems that require a change in the knowledge search perspective, thus limiting the potential set of 
alternatives, setting more or less rigid constraints to the search activity. When scientists either recombine the 
components of a familiar set of knowledge pieces or refine single or combinations of knowledge pieces previously 
used, they move within a bounded search space, reducing uncertainty and limiting risk, carrying on local search that 
becomes a synonymous of exploitation. On the contrary, when scientists try either new knowledge combinations or 
new single knowledge components, they carry on distant search or exploration (March, 1991; Simon, 1991). The 
spreading out of the range of knowledge search help researchers finding useful solutions distant from the commonly 
exploited reference models, discovering alternatives that were disregarded in the past (Brabazon and Matthews, 2002). 

 

3. The study setting 

Data relative to patents granted between 1960 and 2007 to 255 Italian university researchers actively working in the 
biotechnology field were collected for the empirical study from the EPO databank. In total, 873 granted patents were 
considered for the analysis, while the single university researcher was the primary research unit. The following 
procedure was implemented to assemble the patents sample. Firstly, patents related to biotechnology were classified 
developing an a priori list of biotechnology related fields of interest based on the OECD classification (van Beuzekom 
and Arundel  2006), associating a number of IPC classes and subclasses to each field. Secondly, researchers working 
in the biotechnology field in Italian universities were identified and adopting an approach similar to the one proposed 
by Trajtenberg (2004), the EPO databank was queried to check whether the specific researcher had been granted at 
least one patent classified as a biotechnology patent. Researchers include: 43 assistant professors, 69 associate 
professors, and 143 full professors. Finally, data relative to patents granted to every inventor in the biotechnology field 
were collected and a databank that associates 255 inventors names to 873 biotechnology patents distributed on a 
temporal window from 1960 to 2007 was constructed. Patents granted to more than one researcher were not included 
in the sample. All the assignees of patents in the sample are individual researchers. Indeed, according to the Italian 
law, the university . 

A forward stepwise statistical regression analysis was performed to measure how specific knowledge search 
behaviors affect scientists research productivity (Stevens, 1996). This method identifies the independent variables that 
account for the highest proportion of the observed variance of the dependent variable, and  as many scholars point 
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out - it is often the best compromise to find an equation capable to predict the maximum variance for a specific dataset 
(Hocking, 1976). 

3.1. Research productivity as dependent variable 

The count of patents granted from 1960 to 2007 to every researcher included in the sample was used to measure 
research productivity. A semi logarithmic transformation of this variable was used as dependent variable, assuming an 
exponential trend (LOGPAT). 

3.2. Variables modeling the scientists knowledge search behavior 

According to the IPC international patent classification standard, a patent can be identified as the combination of a 
number of technological components associated to certain classes and subclasses. These latter can be indirectly used to 
investigate the type of knowledge search pursued by the inventor. Moreover, as the patent databank contains 
information relative to time when each patent was granted, moving back over time, the knowledge search evolution 
can be reconstructed, and the innovation search trajectories can henceforth be explored. 

Three dimensions of the knowledge search behaviour were considered in this study: 1) the search scope, which 
classifies search as being either exploitative or explorative; 2) the search focus that classifies search in terms of its 
being more or less dispersed across different knowledge domains; and 3) the search dynamics, that views search in 
terms of its being more or less uniformly distributed over time. Consistently, three types of patent-based indexes were 
used to investigate the knowledge search behavior of every firm: two familiarity indexes (FS and FC), the 
technological concentration index (TC), and two inequality indexes (GFSI and GFCI). 

Search scope. The FSi
j index measures the familiarity an inventor has with the technological component j, the 

subclass j of IPC standard of a patent i (Fleming, 2001; lo Storto, 2006). The greater its value, the greater the 
familiarity with component j. FSi

j is calculated as a product between two factors, the first one obtained as a summation 
of the number of all patents which were codified with that particular subclass before the reference year, and the second 
one used as a damping factor that takes into account for the loss of knowledge over time:  

= 1 e
i kt - t

i c
j

all patents k granted
before patent i 

FS if  patent k uses subclass j   

ti = year in which patent i was granted 
tk=year in which patent k was granted 
c= knowledge loss constant 

 
FSi

j was calculated for every patent subclass. Therefore, a patent classified into n subclasses will have n values for the 
index. Finally, for every year a FS was calculated as an averaged summation of all FSi

j indexes (AFS). The rationale 
behind the calculation of FS is that the use of a familiar component will enable an inventor to build new knowledge 
leveraging on the efforts made to accumulate useful knowledge available in the scientific and technological field, 
avoiding to use not effective components. 

The FCi
j is a measure of the inventor familiarity for a combination j of technological components included in a 

patent i (Fleming, 2001; lo Storto, 2006). 

= 1 e
i kt - t
c

all patents granted
before patent i 

iFC if  patent k uses a combination of  subclasses jj  
 

ti = year in which patent i was granted 
tk=year in which patent k was granted 
c= knowledge loss constant 

 
The index has a structure similar to that of the FS index. The greater FCi

j, the greater the familiarity with 
combination j. A higher value of this index also indicates a progressive refining of the combination used in a patent. 
FCi

j increases when the frequency in the usage of a specific combination of components increases and its use is almost 
recent. The FCi

j index was calculated for every combination of a patent subclasses. A global FC was calculated as an 
averaged summation of all FCi

j indexes in every year (AFC). 
For both FS and FC indexes, the value of 5 was set for the constant c (Fleming, 2001; lo Storto, 2006). 
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Search focus. The TC index measures to what extent the innovation search of the inventor is focused on a single 
technological subcomponent - the IPC subclass. This index ranges between 0 and 1, this latter value achieved if the 
inventor is granted patents in only one technological subclass (lo Storto, 2006): 

2

 = j
subclass

j

N
TC

N
 

 

 

N = number of patents granted to an inventor 
j = patent subclass 

 
Search dynamics. The GFSI and GFCI respectively measure the inequality of the FS and FC distributions over time 

in the research activity dynamics of the firm. These indexes have the same structure, based on the GINI index (Gini, 
1936). As to FS, it is: 

1

48

i i
1 i i-1 i i-1GFSI FS + FS y - y   

 
FSi = the cumulated proportion of the FS variable, for i = i1,...,48 
yi = the cumulated proportion of the time variable, for i = i1,...,48 
48 = the number of years included in the temporal window 
i1=the year in which the first patent was granted to the inventor 

 
A low value of the index is associated to a more uniform distribution over time of FS or FC; vice versa, a higher 

value indicates a more unequal time distribution of knowledge search. 

3.3. Additional (control) variables 

Four additional variables have been added to the model: 
Department size (DEPTSIZE). The university department size was measured by the total number of researchers 

employed in the researcher j department, including both those scientists working in the biotechnology field and those 
not working on that field. The inclusion of this variable is justified by empirical evidence suggesting that research 
productivity increases with team size. 

Researcher academic position (POSITION). A dummy 3-level variable was included in the regression analysis to 
take into account for the researcher academic position. Variable code are: 1 for assistant professors, 2 for associate 
professors and 3 for full professors. The addition of this variables has ist justification in empirical evidence that found 
that academic rank might be a predictor of research productivity (Fulton and Trow, 1974). 

Collaboration between inventors (IC). Empirical literature supports the idea that collaborative research between 
academic researchers and other academic researchers and between academic researchers and industry researchers 
increases the academic researchers productivity allowing cross fertilization of ideas (Siegel et al, 2003; Powell et al., 
2005). An index (ICj) measuring the inventor j collaboration intensity with other researchers inside or outside the 
affiliated department during the innovation activity was included in the regression model. The higher the index value, 
the higher the collaboration intensity. 

1

m

i
j

number of  co - inventors for patent i
IC

m
 

 

 
m = number of patents granted to inventor j 
 

Inventing tenure (AGE). A variable that measures the inventing tenure of every scientist was also included in the 
statistical analysis. This variable was built as the number of years elapsed from the final end of  the temporal window 
of analysis (2007) to the year when the scientist was granted his/her first patent. 

4. Results 

Table 1 shows the outcome of the stepwise regression analysis. Variables values have been preliminarily 
normalized by dividing them by the maximum. Figures reveal that not all variables included in the regression model 
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affect research productivity of scientists. In particular, it seems that neither the academic rank of the researcher nor the 
collaboration intensity affect his/her patenting productivity. Contrarily to what expected and reported in literature, an 
increase in the department size negatively influence the number of patents granted to researchers, even though this 
impact is modest. As expected the effect of the inventing tenure on the researcher productivity is positive, but not 
relevant. As to variables describing the scientist knowledge search behavior, only for the search focus (TC) the effect 
on patenting productivity is clearly identified. This effect is negative and remarkable, and an increase in the focus of 
the research effort on one (one single IPC subclass) or a limited domain of knowledge components (a small number of 
IPC subclasses) pushes down the researcher productivity. As to the knowledge search scope, the average familiarity 
for the technological subclass (AFS) has no significant statistical influence on the patenting productivity. On the 
contrary, the average familiarity for the combination of subclasses (AFC) positively affects the number of patents 
granted to researchers. However, this effect is not relevant. The analysis of findings relative to the knowledge search 
dynamics are also intriguing. Indeed, there is no effect on the patenting productivity of the FC index temporal 
distribution, but the dynamics of the FS over time largely influence the researchers productivity in terms of patents 
granted. This effect is negative, as an unequal distribution of the familiarity index relative to the single technological 
subclasses over the inventing life of the scientist decreases the patenting productivity. 

Table 1. Stepwise regression analysis. LOGPAT as dependent variable 
effect level of effect comment param. beta t prob. 

intercept   16.377  25.045 0.000 
DEPTSIZE   -0.239 -0.045 -2.375 0.018 
POSITION 1 pooled     
POSITION 2 pooled     
IC  pooled     
AGE   0.449 0.085 4.159 0.000 
TC   -1.079 -0.451 -20.187 0.000 
AFS  pooled     
AFC   0.284 0.052 2.356 0.019 
GFSI   -15.214 -0.588 -22.845 0.000 
GFCI  pooled     
       
adjusted  r-squared 0.914      
F 517.722      
prob. 0.000      

5. Conclusion 

This paper has presented a framework that explains a scientist patenting productivity in terms of his/her knowledge 
search behavior. Three dimensions of the knowledge search behavior are taken into account: search type, search focus 
and search dynamics. In particular, findings show that: 
 the knowedge search scope has an impact on the patent productivity rate. A strong focalization of the knowledge 

search behavior on a limited knowledge domain may be detrimental to research productivity. 
 the strong negative and statistically significant value of GSFI emphasizes that how knowledge search is distributed 

along the academic life of a researcher together with the knowledge search scope (exploitative vs explorative) may 
affect research productivity. Particularly, a discontinuous, very unbalanced and not uniformly distribution of 
search relative to single knowledge components (IPC subclasses) has a negative effect upon research productivity. 
Researchers who adopt a continuous and more uniform search behavior balancing distant and local search are more 
productive in terms of patents granted. That is consistent with the insights from the analysis relative to AFC. 
Researchers that use recombination of familiar technology components to develop new knowledge have a higher 
patenting productivity. Thus, an incremental exploitative approach to knowledge development seems more 
conducive to higher patenting productivity. 

 collaboration is not critical for the patenting productivity. This outcome remains equivocal. A more in depth 
investigation of how collaboration between researchers influences research productivity is needed, as literature 
emphasize how this variable has a positive effect on research productivity (Jones and Preusz, 1993). Scientific 
production is not so much the 
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which involves a number of researchers and the whole scientific community. In particular, interaction limited only 
to university researchers should be distinguished from interaction between university and industry researchers. As 
Siegel et al. (2003) show, interaction with industry can often lead to the development of new research ideas and 
concepts, and consequently enhanced productivity. Interaction of academic researchers with industry can lead to an 
increased interest in patenting, both because industry is more interested in technology transfer and commercial 
applications of research output (e.g., patents), and because it directs its research to questions that are well suited to 
patenting (Agrawal and Henderson, 2002). How scientists interact with one another should also be taken into 
account as the quality of interaction affects the amount of social exchange due to social interactions and, hence, 
their scientific productivity. In addition, team homogeneity (or heterogeneity) is an important factor to be 
considered. A high researchers homogeneity may have perverse effects on creativity and research productivity. 
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