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SUMMARY

Problems involving dependent pairs of random variables usually involve two aspects: tests of inde-

pendence or estimation of measures of association. In order to find out which way best explains the

data, this paper addresses Regression Analysis applied to Correspondence Analysis (CA). It also

uses Agglomerative Hierarchical Clustering as a method to accompany Multiple Correspondence

Analysis (MCA). A well known data set is analyzed.

Keywords: Complete Disjunctive Table, Burt Matrix, Regression Table, Multiple Correspondence

Analysis, Agglomerative Hierarchical Clustering.

1. INTRODUCTION

There have been considerable developments of statistical methods that analyze, in a

single framework, the asymmetrical relationships of more than one subset of quanti-

tative variables (criterion and explanatory), as well as qualitative variables.

The mathematical analysis of data is often divided into two antagonistic schools.

On the one hand, there are the adepts of traditional statistics (tests of hypotheses,

analysis of variance, regression analysis, general linear model, etc.). On the other

hand, there is data analysis using scaling techniques that include two principal areas:

Correspondence Analysis (CA) and Hierarchical Clustering (HC).

This, in fact, leads to Classification, i.e., the identification of homogeneous and

distinct subgroups in data where one focuses on an aspect (sequence of aggregations)

of the computational algorithm used. Here Hierarchical Clustering is intended as

used as a companion method to CA: Agglomerative Hierarchical Clustering (in

French: ‘‘Classification Ascendante Hiérarchique’’ (CAH)).

Note that Classification is an extremely broad subject area which often requires

Discriminant Analysis. In other words, we first want to know in which respects the

given groups of subjects are different. Then we apply this knowledge to classify new

subjects into groups.

Typically, the data tables to be analyzed are made of several measurements, col-
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lected from a set of units (e.g., subjects). In general, the units are rows (observations,

objects or individuals) and the variables are columns (questions). The main goals of

Regression Analysis can be summarized as data description (to investigate or refute a

relationship among variables), interpretation using a fitted model to obtain an inter-

polation or calibration curve/surface) and finally, inference.

A common procedure when using applied regression analysis, is to select a subset

of the available predictor variables and to estimate regression coefficients of the sub-

set by Ordinary Least Squares (OLS) estimates. In other words, a subset of the re-

gression coefficients is reduced to zero, while the rest are estimated by least squares

and are therefore regarded as not at all reduced. This often leads to alterations of the

initial model such as transformations of the data or further regression techniques.

The purpose of this paper arises from our questions related to the practice of cor-

relation and regression analysis. The bonds existing between two variables are usual-

ly so complex that it is not judicious to express them with only one number. More-

over, in our view, the possibility of expressing one or more response variables with-

in a group of explanatory variables could be possible using CA on a contingency ta-

ble and thus crossing the categories of some of these variables, as well as others.

Benzécri (1992) and Cazes (1977) presented more than adequate methods for

dealing with solutions offered by polynomial regression as well as showing how to

progress step by step in order to protect data quality. They suggested a judicious

prior compression of data by substituting numerous primary variables with a reduced

number of coordinates constituting as large a base (all observations) and as stable a

base (very few variables) as possible.

Many practical studies follow the following scheme: a set of individuals (observa-

tions) I is described by a set of variables J which one can subdivide into a set of ex-

planatory variables X and a set of response variables Y . The problem is to find and

explain relationships (causal or not) between the variables of X and those of Y .

In general, if Y is reduced to only one variable, y (which is the case in the present

study), several traditional methods of prediction are applicable, according to the type

of the variable y and to the following types of variables of X :

� regression analysis is possible if y is quantitative and the variables of X are

quantitative and also categorical considering only the dummy variables (indica-

tor variables) that can be treated as quantitative variables;

� analysis of variance, if y is quantitative, and if all variables of X are qualitative

(we also get this case, by dividing variables into categories, if certain variables

of X are quantitative);

� discriminant analysis, if y is qualitative, and the variables of X are quantitative

and also categorical considering only the dummy variables (indicator variables)

that can be treated as quantitative variables;

� barycentric discrimination, if y and all variables of X are qualitative (one can, in

the same way, again get this case if certain variables of X are quantitative).

If Y is not reduced to only one variable, one can use the factorial methods (Re-

duced Rank Regression, Principal Component Regression, Principal Component
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Analysis, Correspondence Analysis, etc. according to different cases). For more de-

tails, see D’Ambra, Amenta and Gallo (2005).

When there is a small number of observations for which both explicative vari-

ables and response variables are known, keeping a test sample (that will not be used

to calculate the regression coefficients, but rather to choose the number of explana-

tory (predictor) variables to be preserved) leads to a doubtful reduction of the basis

for the calculation. See Cazes (1975) and Brenot (1977).

As suggested by Cazes (1977), we study in this paper a regression problem be-

tween a response variable and a set of categorical predictor variables. For more de-

tails, see Cazes (1997), and de Tibeiro (1997).

When there is a large number of predictors, one can obtain a model with too

many parameters and consequently a model which models the error. To avoid such

an over-parametrization, the Partial Least Square (PLS) regression may be intro-

duced. As the PLS components depend on the connection between the response vari-

ables and the predictors, we cannot calculate the variances of the regression coeffi-

cients with a simple formula. For more details, see Tenenhaus (1998) and Cazes

(1997).

We will proceed as follows in this paper. We present, in Section 2, a short mathe-

matical background of CA and its ‘‘natural’’ connection with hierarchical clustering.

In Section 3, we propose a methodology of regression with CA for the case study

presented in Section 4. Results and concluding remarks are given respectively in Sec-

tions 5 and 6.

2. PREREQUISITE NOTIONS OF CORRESPONDENCE ANALYSIS

2.1 Algebra of Two-Way Correspondence Analysis

Correspondence Analysis (CA) is an exploratory computational method for the stu-

dy of associations between variables. CA can be used to analyze several types of

multivariate data. All involved some categorical variables. Much like Principal

Component Analysis (PCA), it displays a low-dimensional projection of the data,

e.g., into a plane.

The objective of (two-way) CA is to portray data geometrically as a set of row

and column points in, say, two-dimensional space for ease of visualization. Let rows,

I , and columns, J , be collected into the I � J data matrix N (with elements nijÞ re-

presenting a contingency table of two categorical variables with positive row and

column sums (almost always N consisting of nonnegative numbers, but there are

some exceptions, such as the one described at the end of Chapter 23 in Greenacre

(2007)).

Let niþ and nþj denote the sum of the i-th row and j-th column, respectively, and

nþþ ¼Pi

P

j nij ¼ 1TN1 denote the grand total of N. The notation 1 is used here

for a vector of ones of length that is appropriate to its use; hence the first 1 is I � 1

and the second is J � 1 to match the row and column lengths of N. The mass of the
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i-th row is defined as ri ¼ niþ=nþþ and likewise the mass of the j-th column is

cj ¼ nþj=nþþ. We note respectively r and c, the vector of row masses and the vector

of column masses.

The matrix N is first converted to the so-called correspondence matrix of relative

frequencies P by dividing N by its grand total nþþ as P ¼ N=nþþ with entries

pij ¼ nij=nþþ. The following notation is used respectively for row and column

masses: ri ¼
PJ

j¼1 pij i.e., r ¼ P1 and cj ¼
PI

i¼1 pij i.e., c ¼ PT1: Let Dr ¼ diagðrÞ
and Dc ¼ diagðcÞ denote respectively the diagonal matrices of row and column

masses.

Note that all subsequent definitions and results are given in terms of these relative

quantities P ¼ fpijg; r ¼ frig and c ¼ fcjg, whose elements add up to 1 in each

case. Multiply these by nþþ to recover the elements of the original matrix N:

nþþpij ¼ nij, nþþri ¼ i-th row sum of N, nþþcj ¼ j-th column sum of N.

We define the row profiles as the rows of the original table N divided by respec-

tive row totals, equivalently D�1
r P. Similarly, we define the column profiles as the

columns of the original table N divided by respective column totals, equivalently

PD�1
c . The assumption of independence is

pij ¼ ricj; i ¼ 1; . . . ; I ; j ¼ 1; . . . ; J

All of CA is based on the computational algorithm to obtain coordinates of the

row and column profiles with respect to principal axes. The first step of this algo-

rithm is the computation of the so-called matrix S of standardized residuals:

S ¼ D�1=2
r ðP� rcT ÞD�1=2

c ð1Þ

with elements sij ¼ ðpij � ricjÞ= ffiffiffiffiffiffiffi

ricj
p

. The second step of this algorithm is the com-

putation of the Singular Value Decomposition (SVD) of

S ¼ UD�V
T ð2Þ

where UTU ¼ VTV ¼ I; D� is the diagonal matrix of (positive) singular values in

descending order: �1 � �2 � . . . and columns of matrices U and V are left and

right singular vectors, respectively.

The following steps in CA are to define the configuration’s row and column co-

ordinates, F and G (after dropping the dimensionality subscript), as follows:

F ¼ D�1=2
r UD� ¼ �D�;G ¼ D�1=2

c VD� ¼ �D� ð3Þ

where the standard coordinates � of rows and the standard coordinates � of co-

lumns are respectively defined as

� ¼ D�1=2
r U;� ¼ D�1=2

c V ð4Þ

The two sets of coordinates, F and G, represent the final set of outputs of interest

to the researcher. They usually are plotted together in a two (or more) dimensional

space. According to the SVD of S, the squares of singular values ð�2
kÞ or principal

inertias ð�kÞ of S also decompose total inertia as
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�k ¼ �2
k ; k ¼ 1; 2; . . . ;K where K ¼ minfI � 1; J � 1g

To understand the link between CA and the biplot, we need to introduce a mathe-

matical formula which expresses the original data nij in terms of the row and column

masses and its coordinates. From the relations ð1Þ, ð2Þ and ð4Þ of the basic computa-

tional algorithm, the data in P can be written as

pij ¼ ricj 1þ
X

K

k¼1

ffiffiffiffiffi

�k

p

�ik�jk

 !

This is known as the bilinear CA model, also called the reconstitution formula,

which can be written in matrix notation as

P ¼ Drð11T þ �D
1=2
� �T ÞDc

Because of the simple relations ð3Þ between the principal and standard coordi-

nates, this bilinear model can be written in several alternative ways. For more details,

see Benzécri (1992) and Greenacre (2007).

The left and right singular vectors are related linearly, for example by multiplying

the SVD on the right by V: SV ¼ UD�. Expressing such relations in terms of the

principal and standard coordinates gives the following variations of the same theme,

called transition equations that govern the asymmetric maps for the equivalent scalar

versions:

Principal as a function of standard (barycentric relationships):

F ¼ D�1
r P�;G ¼ D�1

c PT� ð5Þ

Principal as a function of principal:

F ¼ D�1
r PGD

�1=2
� ;G ¼ D�1

c PTFD
�1=2
� ð6Þ

The equations ð6Þ express the profile points as weighted averages of the vertex

points, where the weights are the profile elements. They govern the asymmetric

maps. They show that the two sets of principal coordinates, which govern the sym-

metric map, are also related by a barycentric (weighted average) relationship, but

with scale factors (the inverse square roots of the principal inertias) that are different

on each axis.

The total inertia of the data matrix is the sum of squares of the matrix S in ð1Þ
and also the sum of squares of the singular values, i.e., the sum of the eigenvalues:

Inertia ¼ traceðSST Þ ¼ traceðSTSÞ ¼
X

I

i¼1

X

J

j¼1

ðpij � ricjÞ2=ðricjÞ

¼
X

K

k¼1

�2
k ¼

X

K

k¼1

�k

In other words, the part of variance of the cloud accounted for by axis k is equal
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to the eigenvalue �k . The proportion of variance �k

PK
k¼1 �k

.

accounted for by axis

k is a descriptive index of the importance of axis k.

To first approximation, CA can be understood as an extension of PCA where the

variance in PCA is replaced by an inertia proportional to the chi-square distance of

the table from independence. CA decomposes this measure of departure from inde-

pendence along axes that are orthogonal according to a chi-square inner product. If

we are comparing two categorical variables, the simplest possible model is that of in-

dependence in which case the counts in the table would obey approximately the mar-

gin products identity.

As is well known, CA provides useful aids to interpretation, among which the ei-

genvalues (�k , k ¼ 1; . . . ;K associated with the percentages �k , k ¼ 1; . . . ;K) and

principal coordinates (basic results of CA), obtained by computer software. One de-

duces: the relative contributions of points to axes and the quality of representation of

each object on each object factorial axis. The quality of representation is defined as

the square of the cosine of the angle that the object forms with the object axis.

For more details including the transition equations defined in ð5Þ and ð6Þ, see
Benzécri (1973,1992), Lebart et al. (1997), Greenacre (1984), Murtagh (2005) and

Le Roux and Rouanet (2004).

2.2 Overview of Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA) is defined as an extension of CA to more

than Q ¼ 2 variables, which allows one to analyze the pattern of relationships of se-

veral categorical dependent variables. Suppose the original matrix of categorical da-

ta is N � Q, i.e., N cases and Q variables.

The first form of MCA converts the cases-by-variables data to an indicator matrix

S where the categorical data have been recorded as dummy variables. If the q-th vari-

able has Jq categories, this indicator matrix will have J ¼Pq Jq columns.

Then the indicator version of MCA is the application of the basic CA algorithm

defined above in Section 1 to the matrix S, resulting in coordinates for the N cases

and the J categories.

The second form of MCA calculates the J � J table obtained as B ¼ ST � S of

all two-way cross-tabulations of the Q variables and is called the Burt table (or Burt

matrix). Then the Burt version of MCA is the application of the same basic CA algo-

rithm to the symmetric matrix B, resulting in coordinates for the J categories.

The standard coordinates of the categories are identical in both versions of

MCA, and the principal inertias in the Burt version are the squares of those in the in-

dicator version. Moreover, the eigenvalues obtained from CA of the Burt table give,

in general, a better approximation of the inertia, explained by the factors, than the ei-

genvalues of S. For more details, see Murtagh (2005) and Greenacre (2007).
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2.3 Agglomerative Hierarchical Clustering

The aim of a Cluster Analysis is to derive a partition, or a sequence of partitions, of

a set of objects, based on their similarities (equivalently, their distances) to one ano-

ther, so that objects clustered into the same group (or class) are similar, or close, to

one another, while those of different groups are dissimilar, or far apart. In Agglome-

rative Hierachical Clustering, the I objects are regarded initially as I clusters of

one object each, and the analysis proceeds sequentially to lump together clusters in-

to larger clusters, until all the objects form a single cluster.

Let’s remember that in a proper sub-space (plane 1� 2, space 1� 2� 3, etc.)

stemming from the analysis of a correspondence table N, the set I can appear di-

vided in known classes before the analysis, but for which the composition is not ex-

plicitly noted in table N.

Most of the classification algorithms, and particularly the agglomerative algo-

rithms, are locally robust in the sense that the lower parts of the produced dendro-

grams are largely independent of possible outliers. For all these reasons, particularly

in the case of large data sets (which is not the case in our study), it is highly advisable

to complement CA with a classification performed on the whole space, or at least in

the high-dimensional space spanned by all the significant axes. See Benzécri (1992).

In other words, it is often more efficient to perform a classification using a limited

number of factors issued from CA. We note that a technique of hierarchical cluster-

ing such as the reciprocal neighbour algorithm (McQuitty, 1966), and particularly the

chain search algorithm (Benzécri, 1997a,b) can be performed without storing the ar-

ray of distances in the central memory. See also Juan (1982) and Murtagh (2002).

The most significant categories or variables of variables characterizing each clus-

ter are automatically selected and sorted, therefore producing a computer-aided de-

scription of the classes, and hence, of the whole multidimensional space. See Lebart,

Mourineau and Warwick (1984). See also Murtagh (2005), Le Roux and Rouanet

(2004), Lebart (1997) and Jambu (1983).

It appears useful to combine CA with another inductive method intended to pro-

vide not a spatial representation but an automatic classification. As a result of the

chosen distance, the method works well with CA: it is possible to produce from the

total variance of the cloud NðIÞ (representing the set I to classify) a double decom-

position following the nodes of the clustering and the axes retained in CA. This al-

lows us to combine interpretation of both clusters and factors. For more details, see

Benzécri (1992), Lebart et al. (1997), Greenacre (1984) and Murtagh (2005).

In order to reduce the complexity of the study, we propose to perform a \ preli-

minary agglomerative hierarchical clustering as a prior condensation of the data. This

clustering is carried out on an indicator matrix crossing all the observations, while

splitting up explanatory variables and the response variable. It uses an algorithm

which is founded on the property of reducibility. We consider this algorithm that

may be used to build up a hierarchy of classes, and then concentrate on the criterion

of inertia, which closely fits the �2-distance used in CA. For more details, see Lebart

(1994).
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3. REGRESSION ANALYSIS WITH MCA

Our methodology is at the heart of MCA, studying the regression problem between

a response variable and a set of categorical predictor variables. We suppose that

all the variables x1; x2; . . . ; xi; . . . ; xp, y1; y2; . . . ; yj; . . . ; yq, have been divided into

classes, and we designate by Kxi (resp. Kyj ) the set of categories of the variable xi
(1 � i � p) [resp. yj (1 � j � q)] and by KX (resp. KY Þ the unconnected union of

Kxi (resp. Kyj ), i.e., the set of all the explanatory categories (resp. to explain):

KX ¼ [fKxi ji ¼ 1; . . . ; pg;KY ¼ [fKyj jj ¼ 1; . . . ; qg
If E designates the set of n observations, then we consider the complete disjunc-

tive table (indicator matrix) SEKX
that we note simply S, associated with variables xi

of which the general term Sðe; kÞ is defined by

Sðe; kÞ ¼ 1 if e has adopted the modality k of xi
0 if not

n

; 8e 2 E; 8k 2 Kxi � KX

We have the same notation for TEKY
, (or simply T ), the complete disjunctive table

associated with variables yj. We designate Tðe; kÞ (e 2 E; k 2 KY ), as the general

term of T . Regression analysis with CA involves carrying out the following steps:

Step 1: After dividing into slices of variables xi and yj, we construct the table

C ¼ T tS (associated with the complete disjunctive table tEðYJÞ), which gathers

together the set of qp contingency tables crossing every variable xi
ð1 � i � pÞ with every variable yj ð1 � j � qÞ.

Step 2: We carry out CA of data table C. We designate by ð’KX
� ; ’KY

� Þ the �th cou-

ple of factor coordinates associated with variance 1 (derived from this analy-

sis) and by �� the corresponding eigenvalue.

Step 3: We add the table S to supplement C, i.e., we project on the r first factorial

axes (coordinates) found in Step 2 the profiles of the rows e in the table S.

Let F�ðeÞ be the factor coordinates of the row’s profile e 2 E on the factorial

axis �.
Taking into account that

P

fSðe; kÞjk 2 KXg ¼ p, we obtain

F�ðeÞ ¼
1

p

X

k2KX

’k
�Sðe; kÞ ð7Þ

Step 4: We carry out the usual regression} of each yj (before dividing them into

classes) with the factor coordinates} F�.

Let

y�j ðeÞ ¼
X

�¼1;r

g�j F�ðeÞ

be the approximate value of yj for the individual e. According to ð7Þ, we have

y�j ðeÞ ¼
X

k2KX

bkj Sðe; kÞ
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with

bkj ¼
1

p

X

�¼1;r

g�j ’
k
�

If iðeÞ indicates the slice of xi in which falls e

y�j ðeÞ ¼
X

i¼1; p

b
iðeÞ
j

This quite simply corresponds to a formula used in analysis of variance, insofar

as the approximate value y�j ðeÞ of the variable yj is obtained by adding the regression

coefficients associated with the categories through the observation of e.

More precisely, this formula represents the reconstitution of yj with a sum of

terms associated with the modalities from the individual e, as is the case in analysis

of variance.

For example, if yijk is the output of the fragment i with the type of ground j and

the type of fertilizer k, we can write as EðyijkÞ ¼ aj þ bk , the sum of the terms asso-

ciated with the modalities of this piece, this also remains true for the reconstitution

y�ijk of yijk starting from the estimates of aj and bk .

Moreover, it is well known that if one carries out CA of the complete disjunctive

table SEKX
(denoted earlier simply as S) by keeping all the factors (coordinates), the

result of the regression is identical to the result of the analysis of variance. For more

details about properties of regression after MCA, see Cazes (1977, 1997).

In classical linear regression, a set of n measurements (observations) on a depen-

dent (predictand or response) variable y and on p independent (predictor) variables

x1; . . . ; xp is given. We consider the following centered data vectors of Rn:

y; x1; x2; . . . ; xp. Let Xðn;pÞ ¼ ðx1; x2; . . . ; xpÞ the data set associated with the predic-

tor variables.

We denote

UXX ¼ XTX and UXy ¼ XTy ð8Þ

As y is an n� 1 vector of the observations of the response variables, X is an

n� p full rank matrix of levels of the regressor variables, � is a p� 1 vector of the

regression coefficients. The goal of regression analysis could be accomplished using

ordinary multiple regression, which provides just one solution, often based on the

least squares criterion. Thus, the least-squares estimator of � is

�̂� ¼ ðUXXÞ�1
UXy ¼ ðUXXÞ�1

XTy

Note that the ðUXXÞ�1
matrix will always exist if the regressors are linearly inde-

pendent.

PLS regression combines features from Principal Component Analysis (PCA) and

multiple regression. Its goal is to predict or analyze a set of dependent variables y

from a set of independent variables or predictors X, and to describe their common

structure. This prediction is achieved by extracting from the predictors a set of ortho-

gonal factors called latent variables which have the best predictive power.
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Several approaches have been developed to cope with this problem. One ap-

proach is to eliminate some predictors (e.g., using stepwise methods). Another one,

called Principal Component Regression (PCR), is to perform a PCA of the X matrix

and then use the principal components (i.e., eigenvectors) of X as regressors on y.

Technically in PCA, X is decomposed, using its SVD as X ¼ S�VT with

STS ¼ VTV ¼ I (matrices left and right singular vectors), and � being a diagonal

matrix with the singular values as diagonal elements.

According to the previous relations from ð8Þ, we propose to carry out the regres-

sion on PLS components as follows. Specifically, the goal is to obtain a first pair of

vectors:

� ¼ X½diagðUXXÞ��1
UXy ¼ Xc; and u ¼ yv

where �Tu is maximal and c ¼ ½diagðUXXÞ��1
UXy ¼ ½diagðUXXÞ��1

XTy and

VarðcÞ ¼ ½diagðUXXÞ��1
UXX½diagðUXXÞ��1�2

When the first latent vector is found, it is subtracted from both X and y and the

procedure is repeated until X becomes a null matrix. For more details, see the PLS

regression algorithm (Tenenhaus, 1998).

Being satisfied with only one response variable, y, to simplify, if y is normally

distributed, it is not the same for the PLS components, and thus, for the regression

coefficients. The explanation of y by the PLS components � may be done by

ŷyPLS ¼ ½ð�TyÞ=ð�T�Þ� � � ¼ d�

where

d ¼ ½ð�TyÞ=ð�T�Þ�

If t was independent of y, one would have

VarðdÞ ¼ ½�TVarðyÞ� �=½�Ty�2 ¼ 	2=½�Ty�

But as � depends on y, the expression d is non-linear in y, which ‘‘intervenes’’ in

the numerator and the denominator of d. That being the case, one cannot calculate

the variance of d. As a consequence, we can not determine a prediction interval un-

less we apply bootstrap techniques, which are used more and more when one does

not have a simple formula to compute standard deviations.

The interest of the PLS approach is to force the connection between y and the

predictors, but, it is a ‘‘biased technique’’. For example, when we want to explain

the (quantitative) variables, based on the connection between the variables yj
ðj ¼ 1; 2; . . . ; qÞ and the variables xi ði ¼ 1; 2; . . . ; pÞ on which we will carry out the

regression of each yj. The goal of PLS regression is to provide new variables

’1; ’2; . . . ; ’r ðr � pÞ linear combinations of the not correlated explanatory vari-

ables.

The results obtained with PLS regression are ‘‘biased’’ because we use this ap-

proach to explain the yj components which are already function of the connections
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between the response variables yj and explanatory variables xi. For more details, see

Cazes (1997).

4. THE DATA

We illustrate regression analysis, combined with MCA, with an example from a ran-

dom sample of Gasoline Mileage Performance for automobiles during 1975 where

the variables have a well-defined scale of measurement. Appendix Table B.3 in

Montgomery et al. (2001,p. 570) presents gasoline mileage performance data on 32

automobiles, along with 1 response variable (Miles/gallon) and 11 taxonomic (ex-

planatory) variables (Displacement, Horsepower, Torque, Compression ratio, Rear

axle ratio, Carburetor, No. of transmission speeds, Overall length, Width, Weight,

Type of transmission).

There are missing values in two of the observations (Trans AM and Star), so we

will confine our analysis to only the 30 vehicles for which complete samples are

available. We will retain 10 explanatory variables in a new dataset henceforth named

Table 1.

We propose in the following rows the specification of the names (codes) assigned

to the variables as they are found in the figures. We retained the first four letters to

code each car: for example, Apollo (apol), Omega (omeg), Nova (nova), . . ., Corv-

ette (corv). The cars Trans AM and Star were excluded because of missing values.

TABLE 1. - Description and Coding of Variables

Variable Description Coding

y Miles/gallon MIL1, MIL2, MIL3, MIL4, MIL5
x1 Displacement (cubic in.) dis1, dis2, dis3, dis4
x2 Horsepower (ft-lb) hor1, hor2, hor3, hor4, hor5
x3 Torque (ft-lb) tor1, tor2, tor3, tor4, tor5
x4 Carburetor (barrels) car1, car2
x5 No. of transmission speeds nts1, nts2
x6 Overall length (in.) ovl1, ovl2, ovl3, ovl4, ovl5
x7 Width (in.) wid1, wid2, wid3, wid4
x8 Weight (lb) wei1, wei2, wei3, wei4, wei5
x9 Type of transmission typ1: automatic transmission (A)

typ2: manual transmission (B)

Source: Motor Trend (1975).

The aim of the study is to evaluate whether an automatic or manual vehicle has

an effect on gasoline mileage performance. People who are driving manual vehicles

will claim that they have tremendous gasoline mileage, saving money on gas, and

concede that a full tank of gas can take them a longer distance than automatic vehi-

cles.
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However, let us remember that the objectives of multiple regression are somewhat

different: one is trying to find an optimal (or near-optimal) ‘‘classification’’ structure,

while the other seeks to develop a prediction equation. This study illustrates the use

of CA to identify distinct profiles characterizing automatic or manual vehicle and the

effect on gasoline mileage performance.

As the rows and columns in Table 1 are completely independent of each other,

the entries in the dataset (distribution of mass) can be reproduced from the row and

column totals alone, or row and column profiles in the terminology of CA.

5. RESULTS

5.1 Solutions by a Classical Regression Problem Approach with the Explanatory

Variables

According to the linear regression of all the 9 explanatory variables in the dataset,

only the intercept parameter �0 is statistically significant. Hence, none of these va-

riables help to predict the response variable, mpg (miles per gallon) (see Table 2).

The residual plots in Figure 1 suggest that the residuals appear to be reasonably

normal with constant variance, given the sample size.

TABLE 2. - Summary Statistics for Regression Model

for all Explanatory Variables

Coefficient Estimate Std. Error t Value Prð> jtjÞ
Intercept 37.37 17.56 2.13 0.05

displacement �0.09 0.06 �1.66 0.11

hp �0.06 0.08 �0.74 0.47

torque 0.08 0.09 0.94 0.36

carburetor 1.20 1.31 0.91 0.37

transmission.speed 0.43 2.13 0.20 0.84

length 0.06 0.09 0.67 0.51

width �0.24 0.27 �0.91 0.38

weight 0.00 0.00 0.09 0.93

transmission.type �0.94 3.19 �0.30 0.77

Root MSE: 3.35

R2: 0.74

Adj. R2: 0.71

R: 0.86

F Statistic: 8.73 on 9 and 20 degrees of freedom

p-value: < 0:00

However, the variance inflation factors (VIFs) of this model in Table 3 indicate

high dependency between some of the explanatory variables; thus, it allows some
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variables to be removed from the analysis. The variables, displacement, torque and

carburetor, can be removed because they are dependent on hp of the automobile.

The variable weight can be removed too because it is dependent on the length and

width.

TABLE 3. - Variance Inflation Factors of Regression Model

for all Explanatory Variables

Coefficient VIF

displacement 102.61

hp 35.07

torque 126.73

carburetor 4.98

transmission.speed 4.96

length 9.83

width 5.77

weight 19.66

transmission.type 5.16

According to the new linear regression analysis in Table 4, at least one of these

variables helps to predict the response variable, mpg or miles per gallon. The resi-

duals plots in Figure 2 suggest that the residuals appear to be reasonably normal with

constant variance, given the sample size. Although there appear to be some outliers

in these plots, the standardized residuals in Table 5 suggest that they should still be

included in the model.
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TABLE 4. - Summary Statistics for Regression Model

after excluding Highly Dependent Explanatory Variables

Coefficient Estimate Std. Error t Value Prð> jtjÞ

Intercept 45.02 14.41 3.13 < 0:00

hp �0.06 0.03 �2.40 0.02

transmission.speed 1.70 1.94 0.87 0.39

length 0.03 0.08 0.44 0.67

width �0.41 0.25 �1.63 0.12

transmission.type 1.38 3.03 0.46 0.65

Root MSE: 3.46

R2: 0.75

Adj. R2: 0.69

R: 0.87

F Statistic: 14.2 on 5 and 24 degrees of freedom

p-value: < 0:00
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FIGURE 2. - Residual Plots for Regression Model

after excluding Highly Dependent Explanatory Variables
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TABLE 5. - Summary Statistics for Regression Model

after excluding Highly Dependent Explanatory Variables

Obs. Std. Resid. Obs. Std. Resid. Obs. Std. Resid.

apol 0.19 cam6a �0.11 star 0.22
omeg 0.09 dats 2.34 cord 1.82
nova �0.27 capr �0.02 coe5 0.34
mona 0.09 pace 0.54 mark 0.50
dust �0.85 babc �1.52 celi �1.47
jens �1.08 gran �0.29 char 0.58
skyh �0.19 eldo 0.27 coug �0.70
monz �0.38 impe 0.78 elit �0.89
scir 1.90 novl �0.00 mata 0.04
cosr 0.28 vali �0.73 corg �0.46

The VIFs of this model in Table 6 are small ð� 10Þ; indicating low dependency

amongst these variables.

TABLE 6. - Variance Inflation Factors of Regression Model

for all Explanatory Variables

Coefficient VIF

hp 3.28

transmission.speed 3.98

length 6.42

width 4.82

transmission.type 4.49

According to Mallow’s Cp in Table 7, a model having 3 or 4 variables appears to

be best regression model for the remaining variables. The best model having 3 vari-

ables contains the variables, hp, transmission.speed and width, and the best model

having 4 variables, hp, transmission.speed, width and transmission.type.

TABLE 7. - Mallow’s Cp Selection Method

Variables

1 2 3 4 5

Cp Values 8.67 3.24 2.36 4.19 6.00

Selection Algorithm: Exhaustive

Variables hp transmission.-
speed

length width transmission.-
type

1 *

2 * *

3 * * *

4 * * * *

5 * * * * *
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According to the PRESS statistic, the model having 3 variables is the best model.

The first value (404.72) is the PRESS statistic for the model using 3 variables while

the second value ð462:89Þ is the PRESS statistic for a model using 4 variables. The

model with the smaller PRESS statistic is preferred.

In Table 8, the best model to predict mpg is

mpg ¼ 44:03� 0:06 hpþ 2:29 transmission:speed � 0:33 width

In the last column of Table 8, the asymptotic p-value for each coefficient is given.

That should be precise enough.

TABLE 8. - Summary Statistics for Best Subset Regression Model

Coefficient Estimate Std. Error t Value Prð> jtjÞ

Intercept 44.03 13.62 3.23 < 0:00
hp �0.06 0.02 �2.95 0.01

transmission.speed 2.29 1.31 1.75 0.09

width �0.33 0.17 �1.93 0.06

Root MSE: 3.35

R2: 0.74

Adj. R2: 0.71

R: 0.86

F Statistic: 25.12 on 3 and 26 degrees of freedom

p-value: < 0:00

Figure 2 and Figure 3 are not the same plots although they look the same. Those

two variables that were removed from the full model made little or no contribution

to the predictions, and thus, little change to residual plots.
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5.2 Preliminary Agglomerative Hierarchical Clustering of the Indicator Matrix

S30�39

We perform a preliminary clustering of the observations with �2 distance (criterion

of inertia), using an agglomerative algorithm which is locally robust in the sense

that the lower parts of the produced dendrogram are largely independent of possible

outliers. For this reason, ‘‘classification’’ is used in this Section 5.2 as a prior con-

densation of the data. For more details, see Lebart (1994).

Here the categorical data have been recorded as dummy variables J ¼Pq Jq
columns.

More precisely, we have carried out on the complete disjunctive table S30�39

crossing the 30 observations (automobiles) while splitting up the 9 explanatory vari-

ables into 34 modalities and the response variable into 5 categories (MIL1, MIL2,

MIL3, MIL4, MIL5), for a total of 39 modalities.

When analyzing Figure A.1, we see that the class 55, the class of the 8 manual

cars of our basic sample, breaks away from the top of the tree. The remainder, i.e.,

class 58, the class of automatic cars is divided into 57 and 53. The histogram of the

indices of level of the hierarchy indicates two ruptures, suggesting the general ten-

dency which will be confirmed later by CA in Section 5.3.2, i.e., the split according

to F1: opposition between the different types of transmission speeds.

It is certainly necessary to be careful not to excessively rationalize. Agglomerative

hierarchical clustering, founded on a sample, cannot provide an explanatory model;

but it has merit in that it invites us to treat and compare the model, by proposing a

way of looking at it in terms of functionality. Thus, with CA, one reduces the num-

ber of dimensions; by hierarchical clustering, one reduces the number of types.

To confirm the general tendencies of this preliminary clustering, we perform CA

of the same indicator matrix S30�39. CA of this table S30�39 leads to five important

eigenvalues (see Table 9). The first plane (represented in Figure A.2) accounts for

43.43% of the total variance.

TABLE 9. - Correspondence Analysis of Table S30�39: Eigenvalues

Eigenvalues % % Cumul. Histogram

1 0.79 27.33 27.33 *************
2 0.47 16.10 43.43 ******
3 0.34 11.79 55.22 ****
4 0.27 9.15 64.37 ***
5 0.17 6.00 70.37 **

The sequence of patterns can be observed along a succession of response vari-

ables, going in the parabolic direction known as the Guttman effect (a typical struc-

ture we usually find in ordered categorical data): from the strongest ðMIL5Þ to lowest

fuel consumption ðMIL1Þ. This sequence is typical of a hierarchical structure: the

non-zero coordinates on each principal axis oppose mainly two groups of automo-

biles: cars with automatic transmission and cars with manual transmission.
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The first axis, for instance, according to factor projections, contributions and cor-

relations, is the axis of manual transmission (scir, cosr, dats, capr, babc, coe5, celi)

with very pronounced negative coordinates except dust.

These manual cars are associated with the response category MIL5 and the expla-

natory categories typ2, dis1, hor1, tor1, nts2, ovl1, wid1, wei1. More precisely, the

weaker displacement (cubic in.), horsepower (ft-lb), torque (ft-lb), overall length

(in.), width (in.), weight (lb) are, the more the number of transmission speeds is

raised, and the more consumption of gas will increase for the cars of manual trans-

mission.

Axis 2 opposes an intermediate class ðMIL2;MIL3Þ to the two extreme classes

ðMIL1;MIL5Þ of consumption of gasoline. However, plane projections do not allow

the definition of classes with as much finesse and certainty: one could resort here to

using the tools to interpret and to better label the tree resulting from hierarchical clus-

tering. More details for the interpretive tools are furnished by the programs Facor or

Vacor; see Benzécri (1992) and Murtagh (2005).

5.3 Regression Analysis used with MCA

This approach projects explanatory variables on a lower dimensional space that al-

most estimates the response variable y. This methodology, divided into two parts, is

at the heart of MCA, studying the regression problem between a response variable

and a set of categorical predictor variables:

1. Interpreting relationships between the response variable y and the predictor varia-

bles from different axes (planes 1-2, 1-3, etc.) of the previous CA which yields

two clouds of points, namely the cloud of modalities, and the cloud of indivi-

duals (or equivalently-weighted response patterns).

2. Regression analysis where we consider explanatory variables as factor coordina-

tes (on the observations) provided from the previous CA.

5.3.1. CA of the Burt Table B11�11

We believe it to be more useful to explore another approach here: to subject the 3

questions (2 explanatory and 1 response variables) of Table 1 to a complete disjunc-

tive form (in the format of an indicator matrix); from which is built a Burt matrix

(Burt table).

The 3 variables are divided into 11 categories: 5 for miles/gallon, 4 for displace-

ment and 2 for the type of transmission (typ1: automatic; typ2: manual).

The ‘‘functional model’’ which one produces initially is that of the ‘‘continuous

correspondences’’; by dividing the explanatory variables into a great number of cate-

gories, there would be for first coordinate, the function, of general form, best corre-

lated with the quantity to explain. For more details, see Benzécri (1992,p. 392); Le-

bart et al. (1997,p. 108), Cazes (1977,1997) and de Tibeiro (1997).
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CA of the disjunctive table, is also called an indicator matrix, crossing the 30 ob-

servations and 5þ 4þ 2 ¼ 11 modalities. That is, MCA, which yields two clouds of

points, namely the cloud of 11 categories, and the cloud of 30 observations. In nu-

merical terms, each cloud is defined by a table of principal coordinates, where, for

each axis, the weighted average of the squares of the principal coordinates is equal

to the eigenvalue associated with the axis. For more details, see Murtagh (2005), Le

Roux and Rouanet (2004) and Greenacre (1991).

CA of the Burt table is now discussed. The percentages of inertia explained by

the top-ranked five factors are 55.28%, 19.12%, 11.70%, 7.49% and 4.72%. Axis 1

therefore accounts for more than one half of the total inertia of the cloud. We have

displayed the principal (1,2) plane in Figure A.3, representing 74.40% of the total in-

ertia, in which the initial character of the first factor appears.

The first factor ðF1Þ, clearly stands apart from the one that follows it in the table

of the eigenvalues. It is a factor of general level (the first eigenvalue which is asso-

ciated with the first axis is almost double the two subsequent ones). This factor indi-

cates the degree of separation of the different automobiles according to the gasoline

mileage performance system.

We are thus lead to deal with this first axis as a new artificial variable, providing

a mode of ‘‘classification’’ of the observations taken from our basic sample. The sig-

nificance of the known factor will be illustrated by exogeneous information provided

from explanatory variables. The classic linear regression would not be precise en-

ough here if one applied it to the primary data. It was necessary to create, a ‘‘new

explanatory variable’’ which incorporates into the study the explanatory variable as it

creates gas consumption (mileage).

F1 is a general attitude which necessarily detaches itself from the attitudes based

on particular facts. We note also that the first three factors explain a little bit more than

86.10% of the dispersion of observed values. We will admit that the essential part of

structural links between the data is contained in the space of the three first dimensions.

This first axis is produced when contrasting two types of vehicle transmission

(manual transmission, typ2: automatic transmission, typ1). On the side F1 < 0, the

cars of manual transmission are associated to a very strong fuel consumption ðMIL5Þ
and a weak rate of displacement ðdis1Þ. On the other hand ðF1 > 0Þ, the cars with

automatic transmission are related to a low fuel consumption ðMIL2;MIL1;MIL3Þ
and a strong enough rate of displacement ðdis3; dis4Þ.

Axis 2 confirms the split between gas consumption ðMIL3;MIL1Þ and displace-

ment ðdis2; dis4Þ. CA therefore has created a synthetic variable, a factor of general

level, an expected indicator: the contrast between the superior categories and inferior

categories at the response variable level ðmilesÞ and the explained variable level (dis-

placement (cubic in.) and type of transmission).

Thus, by diving up the explanatory variables into a great number of categories,

one would have for first factor, the best correlated general form function with the re-

sponse variable y, linear combination of the factors F�ðiÞ resulting from CA. For

more details, see Benzécri (1992), Cazes (1977, 1978), Lebart et al. (1997) and de

Tibeiro (1997).
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The 1� 2 plane in Figure A.3 reveals an excellent ‘‘discrimination’’, a clear se-

paration between the cars of automatic transmission and the cars of manual transmis-

sion. What confirms the opposition evoked above in Section 5.2 between class 55

[of the cars with manual transmission, ðF1 > 0Þ] and class 58 [of the cars with auto-

matic transmission, ðF1 < 0Þ]. This similarity of the results appears acceptable to us

even if CA of the Burt table B11�11 is related only to 3 variables [Miles/gallon, Dis-

placement (cubic in.) and Type of transmission].

5.3.2. CA of the Table C5�34

According to Steps 1 and 2 of Section 3, we have created the table

C5�34 ¼ Tt
5�30S30�34 where Tt

5�30 is the transpose of T30�5 (the complete disjuncti-

ve form associated with the response variable) and S30�34: the complete disjunctive

form associated with the 9 explanatory variables.

We have displayed the (1,2) plane in Figure A.4 which is almost sufficient for

the interpretation. It shows the set of all the categories of the response variable y

(mileage) spread out on a parabolic crescent. It is an index of a steep gradient within

the data: these are arranged according to a series which is patently obvious, not on

the axis 1, but in the plane 1� 2.

We consider the 1� 2 plane, in which the initial character of the first factor ap-

pears: the 5 categories of the response variable and the 34 modalities associated with

the explanatory variables, reveals an excellent discrimination of the two types of

transmission (manual and automatic). There is a succession, according to the first

axis, going in the parabolic direction of Guttman effect: from the strongest ðMIL5Þ to
lowest fuel consumption ðMIL1Þ.

In practice, the set of the selected explanatory variables X should be enough to

approximatively reconstruct the response variable y. We believe, it to be an accurate

expression of the relative importance of the factors. The percentage of inertia ex-

plained by the top-ranked factors of this table C5�34 are

�1 ¼ 61:40%; �2 ¼ 23:78%; �3 ¼ 9:29%; �4 ¼ 5:54%

Therefore, one notices the preponderance of the first factor (axis 1), with 61.40%

of inertia. This factor clearly stands apart from the one that follows it in the table of

the eigenvalues ð�1 ¼ 61:40%; �2 ¼ 23:78%Þ, accounts for more than half of the in-

ertia of the cloud. It is also a factor of general level: a general attitude which neces-

sarily detaches itself from the attitudes based on particular facts.

On axis 1 (according to factor projections, contributions and correlations), we see

that the first dimension contrasts with the strong mileage ðMIL5Þ (positive part) and

the low mileage (MIL1 and MIL2) (negative part). The response category ðMIL5Þ is
associated with the explanatory categories dis1, hor1, tor1, nts2, ovl1, wid1, wei1

and typ2 whose correlations are very good. The response categories (MIL1 and

MIL2) are associated with the other explanatory categories, particularly dis3, car2,

wid4, hor3, ovl5, wei3, wei5, nts1 and typ1.
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On axis 2, ðMIL1Þ is the opposite of all the response variables except ðMIL5Þ
whose contribution and correlation are negligible. More precisely, on this axis,

ðMIL1Þ is associated with the following explanatory variables: dis4, hor5, tor5, ovl5,

wid4 and wei5.

5.3.3. ‘‘Visualized Regression’’ and CA of the ‘‘Regression Table’’ C35�34

According to Step 3 in Section 3, we perform an estimation of the response variable

from the ‘‘Regression Table’’. One adds up the indicator matrix S30�34 (supplemen-

tary rows or vectors of description in (0,1) of all the individuals of the basic sam-

ple) as supplementary to C5�34, while projecting on the first four (non trivial) facto-

rial axes found the profiles of the rows e of table S. Each modality of the response

variable is regarded here as a numeric variable, that one seeks to express in linear

combination of the data variables, replaced here by the factors resulting from CA of

the table in (0,1) or of the table of ‘‘regression’’.

In this Figure A.5, we consider the same results evoked above in Figure A.4

where we project moreover additional categories relating to the marks of the cars.

For the first group of variables on the positive side ðF1 � 0Þ of Figure A.5, the

strong categories ðMIL5;MIL4Þ are associated with the type of manual transmission

(typ2).

Of course, the manual cars projected in this group are capr, babc, scir, monz,

skyh, dust, celi. See Agglomerative Hierarchical Clustering on Figure A.1. This ‘‘vi-

sualized regression’’ confirms to some extent the result already evoked in prelimin-

ary clustering of the indicator matrix S (Section 5.2). See Agglomerative Hierarchical

Clustering in Figure A.1.

For a second group of variables ðF1 � 0Þ, it is the contrary. The weak ones and

average modalities of mileage ðMIL1;MIL2;MIL3Þ are associated with the automatic

type of transmission (typ1). Practically all cars with automatic transmission of the ba-

sic sample are projected there: eldo, jens, coug, cord, char, nova, apol, gran, omeg,

cama, mona, vali, corv, nova,. . . See Agglomerative Hierarchical Clustering in Fig-

ure A.1.

Between the two groups, the separation is almost perfect as evoked previously in

Section 5.3.1. We find the same Guttman Effect in the plane (1,3) of Figure A.6

which emphasizes clearly the curve of the modalities with the form of an S. Agglom-

erative Hierarchical Clustering of the two sets in correspondence confirms fully the

interpretation of factors 1 and 2. We connected the categories of the same parameter

(or variable) by a polygonal line, thus highlighting a gradient of the function of the

type of transmission in the direction of axis 1.

The cloud of supplementary ‘‘individuals’’ is projected in the plane (1,2) with for

zone of maximum density, a crescent framing the curve of the modalities of the re-

sponse variable.
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6. CONCLUDING REMARKS

Preliminary results indicate that there is a difference between the regression lines re-

lating displacement to mileage for automatic (typ1) and manual driven vehicles

(typ2). We realize that regression analysis applied to the original Table 1 is equiva-

lent to MCA of the data table C35�34 which can be regarded as the estimation of

the response variables categories by means of the explanatory variables.

It is realized here that in practice the set of these selected explanatory variables X

is enough to reconstitute approximatively the response variable y.
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RIASSUNTO

Lo studio della dipendenza tra variabili di solito è affrontato con la regressione multipla, ma talvol-

ta la struttura dei dati è complessa e richiede un approccio più articolato che deve anche tener con-

to delle potenzialità grafica delle tecniche multivariate. L’articolo integra l’analisi della regressione

multipla con l’Analisi delle Corrispondenze Multiple. Viene altresı̀ considerata anche l’analisi di

classificazione automatica che si accompagna spesso all’Analisi delle Corrispondenze Multiple. Infi-

ne, sono evidenziati con un data set noto i vantaggi di questo approccio integrato.
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APPENDIX

FIGURE A.1 - Dendrogram Associated with the Table S30�39

Preliminary Hierarchical Agglomerative Clustering carried out on the indicator

matrix S30�39, crossing the 30 automobiles, while expanding the 9 explanatory vari-

ables into 34 modalities and the response variable into 5 categories, for a total of 39

modalities.
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FIGURE A.2 - Correspondence Analysis Factor Map

Plane spanned by axes 1 and 2: CA of the table S30�39 crossing the 30 observa-

tions (automobiles) while splitting up the 9 explanatory variables into 34 modalities

and the response variable into 5 categories (MIL1, MIL2, MIL3, MIL4, MIL5), for a

total of 39 modalities.
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FIGURE A.3 - Correspondence Analysis Factor Map

Plane spanned by axes 1 and 2: CA of the Burt’s table B11�11 generated by 3 vari-

ables (Miles/gallon, Displacement (cubic in.) and Type of transmission) of Table 1.
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FIGURE A.4 - Correspondence Analysis Factor Map

Plane spanned by axes 1 and 2: CA of the table C5�34 ¼ Tt
5�30S30�34 according

to Steps 1 and 2 of Section 3. T30�5: the complete disjunctive form associated with

the response variable and S30�34: the complete disjunctive form associated with the 9

explanatory variables.
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FIGURE A.5 - Correspondence Analysis Factor Map

Plane spanned by axes 1 and 2: CA of the ‘‘Regression Table’’ C35�34 according

to Step 3 in Section 3.
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FIGURE A.6 - Correspondence Analysis Factor Map

Plane spanned by axes 1 and 3: CA of the ‘‘Regression Table’’ C35�34 according

to Step 3 in Section 3.
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