
Noname manuscript No.
(will be inserted by the editor)

Overconfident agents and evolving financial networks

Pietro DeLellis · Anna DiMeglio · Francesco Lo Iudice

Received: date / Accepted: date

Abstract In this paper, we investigate the impact of

agent personality on the complex dynamics taking place

in financial markets. Leveraging recent findings, we model

the artificial financial market as a complex evolving net-

work: we consider discrete dynamics for the node state

variables, which are updated at each trading session,

while the edge state variables, which define a network

of mutual influence, evolve continuously with time. This

evolution depends on the way the agents rank their

trading abilities in the network. By means of exten-

sive numerical simulations in selected scenarios, we shed

light on the role of overconfident agents in shaping the

emerging network topology, thus impacting on the over-

all market dynamics.

Keywords evolving networks · agent-based model ·
artificial financial market · complex networks

1 Introduction

The modern and contemporary economic history pro-

vides several of evidences that are in apparent contrad-

diction with the hypotheses of neoclassical economics

[4]. As examples, we mention some of the speculative

bubbles and market crushes that cannot be explained

with the neoclassical theory. In 1637, the first big spec-

ulative bubble of the history erupted, the Tulip bubble,

making the price of a bulb comparable with that of

houses, fields and livestocks [18], while, around 1720, in

the United Kingdom the overwhelming euphoria of the

investors fostered the South Sea Bubble which caused
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substantial losses even to Isaac Newton [31]. More re-

cently, the worldwide crises which followed the Wall

Street’s crush of 1929 represents a stunning example

of unpredicted and sudden market crush. The analysis

of these and of more recent historical events, (e.g. the

2008 financial crisis), seriously questioned the model of

the homo oeconomicus and convinced the economists of

the necessity of additional and interdisciplinary tools to

make quantitative the novel concepts coming from be-

havioral econonomics [1, 29]. This stimulated the con-

tributions of other disciplines, which include mathe-

matics, physics and different branches of engineering

[2, 14–17,21,30,32,34].

In particular, recent interdisciplinary works attempted

to connect the development of atomized behavioral mod-

els of the individual agent with that of the interaction
among them [9, 10, 19, 24, 33]. Moreover, empirical ev-

idence shows that agent behavior is influenced by the

time-varying cobweb of relationships they develop [28].

A pressing open problem is to shed light on the drivers

determining the evolution of the network. In the lit-

erature on social networks, a key element that shapes

the topology is the perceived difference among the net-

work agents, which depends on the way they rank them-

selves [3]. This is true, for instance, in the network of

scientific credits [25]. Similarly, in financial markets the

way agents rank their trading ability plays a key role

in determining the evolution of their social relation-

ships, as well in shaping their individual behavior [5,9].

However, agent perception of his trading ability is often

driven by psychological effects that lie outside rational-

ity. One of the best-known effects is overconfidence [8],

which is the attitude of an agent to strongly believe in

his mistaken valuations. These often leads to perform-

ing overoptimistic judgements of life prospects which

ultimately affect financial decisions. Overconfidence is
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associated with a body of related effects, which includes

overplacement, that is, overestimation of one’s rank in

a population. Clearly, this directly impacts on the as-

sessment of his own trading abilities compared to those

of his competing peers [22,23], and reflects on his trad-

ing patterns: overconfident agents tend to be stubborn

rather than open-minded [7].

In this paper, we extend a recently proposed evolv-

ing artificial financial market [9, 10] to model and test

the effect of overconfidence. The original model eluci-

dated the subtle interplay between agents’ behavior and

the evolving dynamics of the topology describing their

mutual influence. Exploiting our setting, we make one

step forward compared to the existing literature, and

evaluate not only the direct impact of overconfidence

on individual decision, but also the way this shapes the

network topology.

2 Reference market model

Following [9, 10], we model the financial market as an

evolving network of dynamical systems populated by a

set V = {1, . . . , n} of financial agents. At each trad-

ing session, an agent can decide whether investing a

fraction δ of his capital in one of the alternative finan-

cial portfolios from the finite set L = {1, ...,m} or not.

The m-th asset is a virtual asset, corresponding to no-

investment, which, differently from the other (proper)

investments, has unlimited availability. Every agent will

chose among one of the available portfolios depending

on his risk attitude ri(k). In turn, the risk attitude dy-

namics are described by

ri(k + 1) =


(1− w)ri(0) +

w

νi(k)

n∑
h=1

ahi(k)rh(k),

if νi(k) > 0

ri(0) otherwise

(1)

for i = 1, . . . , n, where 0 < w < 1 is the interaction

weight, ri(0) is the innate risk attitude of agent i, ahi(k)

is 1 if agent i is influenced by agent h at time k, while

it is zero otherwise, and νi(k) =
∑

h ahi(k). In general,

ahi(k) can be viewed as the hi-th element of a time-

varying adjacency matrix A(k) describing the network

of mutual influences among the agents, and νi(k) the

cardinality of the set of influencers (the neighbors) of

agent i at time k.

At trading session k, the current risk attitude ri(k)

shapes the utility function that agent i seeks to max-

imize (see [9, 10] for further details), thus determining

the selection of the portfolio `i(k) := `i(ri(k)) in which

he invests a fraction δ of his capital. According to this

trading mechanism, the wealth dynamics will be then

given by

xi(k
− + 1) = xi(k) + βi(k)δxi(k)(a`i(k) − 1)

− (1− βi(k))δxi(k)(1− b`i(k)),
xi(k + 1) = τ(xi(k

− + 1)),

(2)

where a`i(k) and b`i(k) are the win and loss rates asso-

ciated to the selected portfolio `i(k), βi(k) a realization

of a uniform Bernoulli random variable describing the

output of the trade, and τ is a function describing the

taxation scheme regulating the market.

3 Modeling overconfidence

As explained above, an agent’s trading strategy is en-

tirely determined by his risk attitude. Therefore, in this

model, the level of confidence of an agent will be identi-

fied by his resistance to learn from the risk attitude (i.e.

trading strategy) of his neighbors. Equation (1) shows

that an agent’s risk attitude depends on his innate at-

titude and on the influence that the other agents may

have on him, described by the matrix A(k). Overconfi-

dence will be modelled by selecting an appropriate law

for updating A(k), which will take into account that

1. the interaction among the agents is selective, see

[26], and therefore agent i can be influenced by agent

h only if (h, i) ∈ Ea ⊂ V × V, with Ea being the set

of admissible edges;

2. the update will depend on the current wealth of the

agents, which is a measure that can objectively rank

the agents’ trading ability;

3. the update cannot be instantaneous, but has to be

dynamical;

4. the existence of an edge pointing to an agent, say i,

depends not on the objective ranking of i within his

neighbors, but on i’s perceived ranking.

To fulfill these four requirements, we exploit the edge

snapping mechanism [9, 11, 27] and associate to each

admissible edge (i, j) ∈ Ea (for all the others, aij(k) = 0

for all k) a state variable σij that can be viewed as a

mass moving in a double-well potential V , described by

σ̈ij(t) + µσ̇ij(t) +
dV (σij(t))

dσij(t)
= uji (t), (3)

where µ is a damping parameter, V (σij) := b(σij −
0.5)2(σij + 0.5)2 is depicted in fig. 1, and

uji (t) = γ(t) max{0, γ(t)(xi(btc)/cj − xj(btc))}, (4)

where γ(t) = (−1)aij(btc) and cj is the self-confidence

of j, that is, a parameter quantifying the level of con-

fidence of agent j in his trading abilities. Accordingly,
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Fig. 1 Potential driving the edge evolution with b = 16. The
red dotted arrow corresponds to an inactive edge, while the
blue solid arrow to an active one.

each element of A(k) will be updated as follows:

aij(k) =

{
1 if (i, j) ∈ Ea and σij(k) > 0,

0 otherwise.
(5)

To clarify how this mechanism works, for the sake of

clarity, we refer to the case of an agent j not being

influenced by agent i at time k (i.e. aij(k) = 0, σij(k) <

0), and having to decide whether he wants to account

for agent i’s risk attitude at time k+ 1, thus activating

the edge (i, j) (the case of a deactivation is specular).

In this case, eq. (4) becomes

uji (t) = max

(
0,
xi(k)

cj
− xj(k)

)
, t ∈ [k, k+ 1[. (6)

Indeed, in our mechanical analogy, when the mass is

closer to the first well (σij(k) < 0), then j is not in-

fluenced by i. To make j change his mind at the next

trading session, a necessary condition is that uij(t) > 0,

that is, he believes that i has better trading abilities

than his own. This happens when xi(k)/cj > xj(k).

Notice that a neutrally confident agent (cj = 1) just

compares his wealth with that of i, thus objectively

evaluating their relative past trading abilities. Differ-

ently, an overconfident agent (i.e. cj � 1) will consider

being influenced by i only if agent i’s trading strategies

proved to be way more successful than that of agent j

(i.e. xi(k) � xj(k)). The opposite happens for under-

confident agents. However, we emphasize that those are

only necessary conditions for activating the edge: as the

update is not instantaneous, but dynamical according

to equation (3), the perceived difference in trading abil-

ities has to be intense enough and persist for a sufficient

time span.

4 Numerical analysis

4.1 Setup

We have considered an artificial market populated by

n = 1000 agents that can choose to invest in one of three

alternative portfolios. As in [10], the agents are grouped

in three classes (of equal size) depending on their innate

risk attitudes that are uniformly distributed in the in-

terval [0.5, 1]. Namely, they are classified as audacious if

ri0 ∈ [0.83, 1], ordinary if ri0 ∈ [0.67, 0.83), and prudent

otherwise. The choice of the risk attitudes for the three

classes is such that the prudent agents will only con-

sider investing in the less risky portfolio, the ordinary

will consider also the averagely risky portfolio, while

the audacious agents will also invest in the riskiest one.

Moreover, the market is regulated by a Tobin-like taxa-

tion scheme, which defines the function τ in (2), see [10]

for further details. This scheme was shown to favor pru-

dent agents, as it reduces the wealth of the winning

agents and redistributes the tax revenues to the other

agents, and keeps unchanged the average wealth [10].

Within this main frame, we aimed at testing the ef-

fect of overconfidence on the overall market dynamics,

with a special focus on the properties of the emerging

network. In what follows, we call an agent overconfi-

dent when his self-confidence is greater than a certain

threshold c̄. In formal terms

O = {i : ci > c̄} .

where O is the set of overconfident agents. In our sim-

ulations, we set c̄ = 2.5. To test the effect of overconfi-

dence, we selected two reference scenarios:

a) All the agents are neutrally confident, that is, ci = 1

for all i. In this case, the agents are perfectly ratio-

nal, and they rank their trading ability by only con-

sidering the output of their past investments, that

is, their wealth.

b) The agents mildly deviate from rationality, as ci are

randomly selected from an inverse uniform distribu-

tion with median 1, where the overconfident agents

represent a minority in the market.

These reference scenarios are compared with cases in

which the overconfident are prevalent, as often occurs

in real markets [20]. In particular, we consider

c) An extremely overconfident market, in which all the

agents are overconfident, as we selected the coeffi-

cients ci, i = 1, . . . , n, from an inverse uniform dis-

tribution with values in [2.5,∞).

d) A prevalently overconfident market, in which, for

each class of agents (audacious, ordinary, and pru-

dent), half of the agents are selected as in Scenario

b) and half as in c).
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In our analysis, we have run 100 simulations for each

of the four scenarios, where all the agents start with

the same initial wealth. Before the interaction is trig-

gered, the agents trade without mutual influence for

1000 sessions to diversify their wealth xj , j = 1, . . . , n.

Then, we generate the edge set E0 of an Erdös and Rényi

(ER) graph [12] with average degree dave = 52. At time

k = 1001 the snapping dynamics (3) are activated for

all the pair of nodes (i, j) ∈ E0, and we let the market

evolve for further 14000 sessions, so that a steady-state

wealth distribution is achieved and that the network

parameters analyzed in the following section settle.

4.2 Results

In what follows, we first investigate how overconfidence

shapes the network of influence among the agents, and

then analyze the subsequent effect on the risk attitude

and wealth of the agents.

How does overconfidence shape the network?

The considered scenarios differ for both the percent-

age of overconfident, and for the variability of the self-

confidence, which could be quantified by the sample

standard deviation. In what follows, we aim at elucidat-

ing how these reflects on the network properties, with

a specific focus on

– the network density, quantified by its average degree

dave.

– the network asymmetry, that determines the direc-

tionality of the relations in the influence network,

and that, following [6], we quantify through the ab-

solute binary network asymmetry as

sb =
1

2

N + 1

N − 1

(∥∥A−AT
∥∥
F

‖A‖F

)2

,

where ‖·‖F is the Frobenius norm. Notice that sb
spans from 0, that is the case of an undirected net-

work, to 1, which corresponds to the case where

there are no mutual links, i.e. the activation of edge

(i, j) implies the absence of (j, i).

– the network clustering, that is quantified by the av-

erage clustering coefficient C. We remind that the

clustering coefficient of a node, say i, is computed

as the ratio between the number of directed trian-

gles in the graph and the total number of possible

triangles that i could form;

– correlation between degree distribution and wealth,

quantified through the computation of the correla-

tion ρ(x, do) between the wealth of an agent and his

out-degree.

Table 1 Legend. dave is the average degree of the network;
sb is the asolute binary network asymmetry; C and Cr are the
clustering coefficient of the network and of the corresponding
ER graph with equivalent degree, respectively; ρ(x, do) is the
correlation between the wealth of an agent and his out-degree,
Co, Cm, Ci, and Co are the number of cycle, middleman, in,
and out pattern over the total number of possible triangles,
respectively; |O| /n and |U| /n are the fraction of overcon-
fidence and underconfident agents, respectively. Confidence
intervals with significance level 0.05 are also reported when
needed.

Scen. (a) (b) (c) (d)

dave 26.00 23.46 5.50 14.40
[25.61, 26.39] [22.87, 24.05] [4.95, 6.05] [13.87, 14.93]

sb 1.00 0.80 1.00 0.91
[0.98, 1.00] [0.78, 0.81] [0.98, 1.00] [0.90, 0.92]

103C 25.80 28.10 4.18 24.10
[25.59, 26.01] [27.56, 28.64] [3.57, 4.79] [23.28, 24.92]

103Cc 0.07 0.85 0 0.19
[0.05, 0.09] [0.75, 0.95] [0, 0] [0.16, 0.22]

103Cm 8.58 8.86 1.50 8.11
[8.51, 8.65] [8.74, 8.98] [1.19, 1.81] [7.84, 8.38]

103Ci 8.58 6.50 2.53 4.05
[8.51, 8.65] [6.38, 6.62] [1.98, 3.08] [3.87, 4.23]

103Co 8.58 11.85 0.15 11.75
[8.51, 8.65] [11.43, 12.27] [0.13, 0.17] [11.02, 12.48]

103Cr 26.05 23.51 5.51 14.28

ρ(x, do) 0.41 0.51 0.71 0.62
[0.39, 0.43] [0.49, 0.54] [0.69, 0.73] [0.60, 0.64]

|O|/n 0 0.22 1.00 0.62

|U|/n 0 0.20 0 0.10

The effects of the different distribution of self-confidence

are summarized in Table 1 and discussed below. The

first immediate consequence of overconfidence is an in-

creased sparsity of the network. Indeed, the abnormal

level of self-confidence makes the agent reluctant to be

influenced by their neighbors. Consistently, we observed
a dramatic reduction of the average degree dave as the

fraction of overconfident agents increases. Indeed, when

all the agents are overconfident (Scenario (c)), given the

pair of edges (i, j), (j, i) ∈ Ea with agent i richer than

j, it clearly happens that i will decide not to be influ-

enced by j, but also (more irrationally), agent j will

often let aij = 0. This behavior produces a sparse net-

work, populated by stubborn investors, but the network

remains perfectly asymmetric, with sb being equal to 1

as in the Scenario (a). Consistently, we observe that the

presence of bidirectional links is caused by the presence

of a set of agent U with an opposite behavior, that is,

the underconfident, that in our simulations we define as

U = {i : ci < 0.65} .

Underconfident agents overestimate the trading abil-

ities of their neighbors, thus considering being influ-

enced also by less successful investors: this leads to an

increased probability of the presence of mutual links,
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Fig. 2 Example of the four possible patterns in triangles
from the perspective of node i [13]: cycle (i), middleman (ii),
in (iii), and out (iv).

and therefore to the reduction of sb as the fraction of

underconfident increases.

As for the clustering coefficient C, we observed that,

when the agents behave homogeneously, it is always

of the same magnitude as the expected one in an ER

random graph with the same size and expected degree.

This happens in Scenarios (a) and (c), where the agents

are all rational or all overconfident, respectively. On the

contrary, the increased heterogeneity of the agent be-

haviors in Scenarios (b) and (d) increases the likelihood

of encountering triangles of agents, see Table 1. How-

ever, the differences becomes even more relevant if we

decompose the overall clustering coefficient in the four

possible patterns that can be formed in directed net-
works, see Fig. 2. The absence of underconfident agents

in Scenarios (a) and (c) makes almost impossible the

formation of cycles, which instead appear in (b) and are

significantly higher in (d), which is the scenario char-

acterized by the highest fraction |U| /n of underconfi-

dent. Moreover, we notice that in a market dominated

by overconfidence as in Scenario (c), the possibility of

having (at least) two outgoing edges is limited only to

the richest agents, that may influence those who are sig-

nificantly poorer overcoming their overconfidence: con-

sequently, this strongly reduces the fraction of out pat-

terns Co, which are instead favored in Scenarios (b)

and (d), where the underconfidence of a non-negligible

minority of agents increases the chances of having out

patterns.

Finally, we observe the correlation between outde-

gree and wealth. Intuition would suggest this correla-

tion to be higher in a rational market, where the richer

are more likely to have a higher out-going degree. Sur-

prisingly, we observe that the ρ increases as long as

the fraction of overconfident agents increases. The ex-

planation is that in a market populated by overconfi-

dent agents, agent i may have outgoing edges only if

his wealth is much higher than that of his neighbors,

thus increasing the correlation between out-degree and

wealth.

How does overconfidence impact on agent success?

The different distribution of self-confidence in the four

considered scenarios shapes the network topology which,

in turns, affects the way agents’ trade through equa-

tion (1). From [9, 10], we know that in a rational mar-

ket the Tobin-like tax regulating the market favors the

prudent agents, that consider investing only in the less

risky asset. Therefore, prudent agents have in average

more outgoing links, and therefore the average risk at-

titude r̄ settles around 0.67, see the blue line in Fig.

3, which is significantly lower than the average innate

attitude of the agents, that is 0.75. An interesting ef-

fect is observed as the fraction of overconfident agents

pervades the market: the average risk attitude further

reduces, see Fig. 3 when all the agents are overconfi-

dent (red line) we observe the lowest settling value for

r̄(k). This is explained by the fact that overconfident

agents are only influenced by the agents who are signif-

icantly richer than them: this means that an overcon-

fident agent i is very likely to only imitate the trading

patterns of the agents with the best strategy, and not

of agents with wrong strategy, but that are temporary

richer than i due to a better luck.

Now, we focus on Scenario (d) to understand whether

overconfidence hinders agent’s wealth. To this aim, we

evaluated the average wealth for each class of agents

(prudent, ordinary, and audacious) and checked whether

being overconfident were an advantage or not in each

class, see Fig. 4. In agreement with the findings of be-

havioral finance [20–23], we find that an excess of con-

fidence is detrimental when agents’ own valuations are

mistaken: in this case, being open-minded can make

up for wrong evaluations. On the other hand, skilled

traders benefit from self-confidence, as they stand on

their own correct evaluations.

5 Conclusions

Overconfidence is a well-know psychological effect that

biases decision making in trading. In this paper, we in-

vestigated its impact on an artificial financial market

recently proposed in [9, 10], which is characterized by

the coevolution of the agents’ state, in terms of risk

attitude and wealth, with the network of mutual influ-

ence among them. In particular, we analyzed the way
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Fig. 3 Evolution of the average risk attitude r̄(k) in Sce-
nario (a) (blue line), (b) (green line), (c) (red line), and (d)
(magenta line).
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Fig. 4 Scenario (d). Evolution of the average risk attitude.
Blue, green, and orange lines, correspond to prudent, ordi-
nary and audacious agents, respectively, while solid and dot-
ted lines refer to overconfident and non-overconfident agents,
respectively.

the distribution of self-confidence shapes the network

topology through extensive numerical simulations. In

particular, we observed that

– overconfidence fosters network sparsity: agents tend

to become stubborn rather than open-minded, thus

reducing the connections with their neighbors;

– networks pervaded by overconfident agents are strongly

asymmetric, as underconfident (and rich) agents are

crucial for the formation of mutual influence among

pairs of agents;

– a more heterogeneous distribution favors clustering.

The presence both underconfident and overconfi-

dent agents promotes the emergence of triangle mo-

tifs and, more specifically, allows the for the pres-

ence of cycles;

– a highly overconfident market is characterized by a

stronger correlation between out-degree and wealth:

indeed, only the richest agents are capable of influ-

encing stubborn overconfident agents.

Also, we observed that the average risk attitude reduces

as the fraction of overconfidence increases: indeed, over-

confidence is accompanied by a more selective coupling

which implies that most of the influence links depart

from edges having the best (prudent) trading strategy.

However, we numerically illustrated that overconfidence

is indeed detrimental when it has the effect of sticking

the agent on his own mistaken valuation.
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