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Abstract. The aim of the present paper is the dynamic analysis of Euler-Bernoulli beam, 

characterized by fractional viscoelastic stress-strain relation, forced by stochastic load. 

Quasi-static viscoelastic behaviour of continuous Euler-Bernoulli beam has been investigated 

very recently, while the dynamic behaviour of fractional viscoelastic beam under stochastic 

loads is the new topic of study, and it is very useful for the vibration control in the real 

structures. The article provides an example of dynamic analysis in frequency domain of 

cantilever viscoelastic beam. 

Sommario. Scopo del presente articolo è l’analisi dinamica della trave di Eulero-Bernoulli, 

avente legame tensione-deformazione viscoelastico frazionario, forzata da carico aleatorio. Il 

comportamento viscoelastico quasi-statico della trave continua di Eulero-Bernoulli è stato 

studiato recentemente, mentre il comportamento dinamico della trave viscoelastica 

frazionaria soggetta a carichi aleatori è argomento nuovo di ricerca, e tale studio risulta 

utile per il controllo delle vibrazioni nelle strutture reali. L’articolo fornisce un esempio di 

analisi dinamica nel dominio della frequenza di una trave a sbalzo viscoelastica. 

1 INTRODUCTION 

The viscoelastic behaviour – typical of many materials i.e. rubber, glass, polymer, wood, ect. 

– has been investigated for more than two centuries. In the past the “classical” models as 

Maxwell and Kelvin-Voigt ones or more complex combinations of such units composed by 

springs and dashpots have been used to capture viscoelastic phenomena like relaxation and/or 

creep. However, these models, although very simple, show some inconsistencies. In the early 

years of twenty century Nutting [1] has shown that real experimental data of relaxation tests 

of viscoelastic material were well fitted by a power-law decay. The meaning of this 

experimental evidence is that the classical models are inconsistent because from them it is 

impossible to obtain power-law type relaxation functions. Starting from this observation 
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Scott-Blair et al. [2] introduced in the second part of the last century a new mathematical form 

to describe the viscoelastic behaviour. This new form of viscoelastic modelling agreed to the 

Nutting’s data and it involved the fractional operators in the stress-strain relation. On the other 

hand, in the linear viscoelastic field the Boltzmann superposition principle is applicable, 

according to this principle the stress history is related to the strain history through a 

convolution integral, and if we introduce in the cited integral a power-law kernel we get a 

fractional differential or integral operator in the stress-strain relation. Such a model is called 

fractional viscoelastic model since fractional operators are involved, this fractional operators 

are the natural extension of classical differential/integral calculus [3,4]. 

In this paper the fractional operators are involved in a stress-strain relation of a continuous 

viscoelastic beam under the Euler-Bernoulli hypothesis. In particular we have considered the 

dynamic analysis of fractional viscoelastic beam forced by deterministic and stochastic loads 

and numerical examples have been provided. 

2 FLEXURAL VIBRATION OF EULER-BERNOULLI BEAM MODELED USING 

FRACTIONAL KELVIN-VOIGT MODEL 

Let us consider an isotropic homogeneous viscoelastic Euler-Bernoulli beam of length L, 

see Fig. 1, referred to the axes  , ,x y z  with origin located at the centroid of the cross section, 

and  ,x y  are principal axes of inertia of the cross section. All external spatially distributed 

loads, denoted as  ,yq z t , are assumed to act in y-direction, thus orthogonally to the z-axis. 

                                
 

         a) Layout of the beam                      b) Free body diagram of  the beam

     

Figure 1: Euler-Bernoulli beam. 

 

Viscoelastic behaviour is described using a general model called fractional Kelvin-Voigt 

model, that is a springpot [4,5] in parallel with a spring (as shown in Fig. 2). 

 
 

Figure 2: Fractional Kelvin-Voigt model. 

 

Let  ,xM z t  be the bending moment and  ,yT z t  the shear in the section at abscissa z and 
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at time t. The equilibrium equation for translations in the y-direction of the length dz  of the 

beam is readily obtained by equating the inertia force to the sum of the forces exerted by the 

other parts of the beam and the external forces: 

 
 

 
 

2 2

2 2

, ,
,

x

y

M z t v z t
z q z t
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being  z  the mass per unit length and    , ,x yM z t z T z t   . 

In virtue of the Euler- Bernoulli hypothesis, the cinematic and the mechanic relations read 

respectively: 
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where  xI z  is the moment of inertia of the cross section with respect to the x-axis. 

At this point, to capture the dynamic behaviour of a viscoelastic beam we need to introduce 

the appropriate constitutive law. For fractional Kelvin-Voigt model the law between the axial 

strain,  , ,y z t and the stress  , ,y z t  is: 

        
0

, , , , , ,Cy z t E z y z t C D y z t

     (4) 

Then introducing relation (4) into (2,3) to carry out the relation of bending moment 

 ,xM z t  useful for Eq. (1), we obtain the flexural motion equation for this case: 

 
 

            
2 2 2 2 2
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v z t
z E z I z v z t C I z D v z t q z t

t z z z z



 

       
                 

 (5) 

Once it has been obtained the governing equation of motion, the flexural vibrations, 

solution of this differential equation, are, in any case, the linear combination of the 

eigenfunctions  k z  that are dependent on the constraints only (boundary conditions). 

     
1

, k k

k

v z t y t z




   (6) 

The coefficients of this linear combination, which are functions of time, are the modal 

coordinates  ky t  and depend on the initial conditions. In the next section numerical solution 

will be commented through a given example. We will use four eingenfunctions because 

results obtained with four eingenfunctions are perfectly identical than those obtained with 

forty eingenfunctions. 

3 NUMERICAL SOLUTION AND REMARKS 

Let us consider a fractional viscoelastic cantilever beam with span L of 5 meters subjected to 

an acceleration at the base: Gaussian white noise. 

Choosing the more general viscoelastic constitutive law as the fractional Kelvin-Voigt 
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model, the starting general equation is given in the form (5), which assumes the following 

form if, the stiffness  E z , the density ( )z , and the moment of inertia ( )xI z , are all 

constant quantities: 

  

 
  

   2 44

2 4 40

, , 
,

g
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  


 
    
   

  (7) 

where the coefficient C  is selected as: 

C E
E





 
  

 
 (8) 

 

 
Figure 3: Cantilever viscoelastic beam 

 

As aforementioned, flexural vibrations are expressed through, the linear combination of the 

eigenfunctions  k z  that for a cantilever beam are given as:  
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with 1, 2, ,k   .  

Indeed, the general form of eingenfunctions is: 

  sin cos sinh coshk k k k kz A z B z C z D z           (10) 

introducing appropriate boundary conditions for this case: 
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Solving this transcendental equation we determine 
k L  and so the  k-eigenfunctions. The 

trend of the first four eigenfunctions is shown in Fig. 4. Regarding the evaluation of the modal 

coordinates  ky t , introduce Eq. (6) into the motion equation (7) we get 
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(13) 

then, multiplying both sides by  j z  and integrating  from 0 to L, we obtain: 
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(14) 

 
Figure 4: Eingenfunctions for cantilever beam 

 

farther, using the relations of orthogonality 
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 The governing differential equation in terms of  ky t  is derived as 
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Where  
0

 =  

L

k jP z dz  represents the modal coefficient of participation. In time domain, 
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the equation (16) is solved starting from the initial conditions of quiet and discretizing the 

operator of fractional derivative according to the binomial coefficients of the formulation of 

Grunwald-Letnikov [3,4]. It is possible to operate in frequencies domain obtaining the same 

results in terms of statistics. Considering Eq. (16), and using Fourier transform, we obtain: 

                 2

   Zk k k k k k g

C I EI
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And then:  
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(19) 

is the transfer function of the viscoelastic considered system. The next step is to determine the 

power spectral density matrix as regards the modal responses  kY  . As known it is an 

hermitian matrix whose diagonal elements are: 
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And in a similar manner the elements outside the main diagonal appear to be: 
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is the power spectral density of Gaussian white noise. In particular the parameters have been 

selected as: 5 2210000 10E daN m  , 
6 48.226 10I m  , 

37850 daN m  , 
89.56 10   , 

0.3  , 
2

0 1  S N s .  

Considering these parameters, we obtain the numerical co-spectrum, i.e. the real part of the 

power spectral density matrix, and the numerical quad-spectrum, i.e. the imaginary part of the 

power spectral density matrix.  
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Now, considering the Eq. (6) in frequencies domain, it is possible to determine the power 

spectral density of the transversal displacement of the beam, in fact: 
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(23) 

It is a real function and below it shows his space-time evolution: 

 
Figure 5: Power spectral density of the transversal displacement of the beam 

 

Also we show the power spectral density of the transversal displacement of the beam for 

fixed cross section z, in particular at z = 1,2,3,4,5 meters: 

 
Figure 6: Power spectral density of the transversal displacement of the beam for fixed 

cross section z 

 

Finally, the variance  2

v z  of the transversal displacement of the beam is determined 

according to the relation: 

   2

0

,  v vz S z d  


   (24) 
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In conclusion we show the trend of statistics along the axis of the beam: 

                          
a) Variance     b) Standard Deviation 

 

Figure 7: Statistics of the response (transversal displacement of the beam) 

 

It is evident by observing these graphs that the variance of the transversal displacement of 

the beam is greater at the free end. 

4 CONCLUSIONS 

We propose the dynamic analysis of a viscoelastic continuous beam under stochastic loads. 

Viscoelastic behaviour has been taken into account by fractional Kelvin-Voigt model that is 

the proper model for capturing the viscoelasticity phenomena since it exhibits an intermediate 

behaviour between elastic and viscous. In particular this model is made by perfect spring in 

parallel with fractional springpot and it involves the fractional operators in stress-strain 

relation. 

The present analysis regards a viscoelastic beam under the Euler-Bernoulli hypothesis 

forced by stochastic loads and the dynamical study is performed in the frequency domain. 

Moreover dynamic analysis in frequency domain of a continuous cantilever beam under 

Gaussian white noise is shown in the numerical example. 
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