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Abstract. In this paper the Cross-Power Spectral density function and the Cross-correlation
function are reconstructed by the (complex) Fractional Spectral Moments. It will be shown that
with the aid of Fractional spectral moments both Cross-Power Spectral Denstity and Cross-
Correlation function may be represented in the whole domains of frequency (for Cross-Power
Spectral Density) and time domain (for Cross-Correlation Function).

Sommario. Nel presente articolo la funzione Densità Spettrale di Potenza Incrociata e la Fun-
zione di Correlazione Incrociata sono ricostruite attraverso i Momenti (complessi) Spettrali
Frazionari. Sarà mostrato che con l’ausilio dei Momenti Spettrali Frazionari sia la Densità
Spettrale di Potenza Incrociata che la Funzione di Correlazione Incrociata possono essere rap-
presentate nell’intero domino della frequenza (per la Densità Spettrale di Potenza Incrociata)
e del tempo (per la Funzione di Correlazione Incrociata).

1 INTRODUCTION

The spectral moments (SMs) introduced by Vanmarcke [1] are the moments of order k ∈ N
of the one-sided Power Spectral Density (PSD). Such entities for k large may be divergent
quantities [2] and then they are not useful quantities for reconstructing the PSD. Recently [2] the
representation of the PSD and correlation function has been pursued by using fractional spectral
moments. The latter are fractional moments of order γ ∈ C. The appealing of such moments is
related to the fact that <(γ) remains constant and =(γ) runs, then no diverge problems occur.
The second important fact is that the Correlation function (CF)and the PSD are reconstructed
in all the domain by means of such complex fractional moments. These important results have
been obtained by using Mellin transform theorem and the achieved results, when discretization
is performed along the imaginary axis, give rise to very accurate results for both CF and PSD.
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In this paper the extension to the Cross-Correlation function (CCF) and the Cross-Power
Spectral Density (CPSD) is presented. The CCF is not even nor odd and then as the first step the
CCF is decomposed into an even and an odd function. Then the Mellin transform is applied for
such functions. The Mellin transform is strictly related to the (complex) fractional moments of
the even and the odd part of CCF. Inverse Mellin transform gives rise to the CCF as a generalized
Taylor series of the type

∑m
k=−m ckt−γk where γk = ρ + ik∆η and ck are strictly related to Riesz

fractional integrals of CCF in zero. It is also shown that such coefficients are related to the
complex fractional spectral moments that are the moments of the one-sided CPSD. This is a
very interesting result because in some cases the exact Fourier transform of some PSD is not
known in analytical form while PSD is already known (see e.g. PSD of the type s0t−α with
α ∈ R) and then the fractional spectral moments may be evaluated either in time or in frequency
domain without any difficulty.

2 CROSS-CORRELATION FUNCTION BY FRACTIONAL MOMENTS

Let X1(t) and X2(t) two stationary zero mean random processes, for which we can define the
cross-correlation function RX1X2(τ) or its Fourier transform named as cross-power spectral den-
sity function S X1X2(ω). The cross-correlation function CCF is defined as

RX1X2(τ) = E [X1(t)X2 (t + τ)] =

∞∫
−∞

∞∫
−∞

px1 x2(x1(t), x2(t + τ))x1x2dx1dx2 (1)

where E [·] means ensemble average. Usually, the CCF is neither even nor odd, then, for sim-
plicity we decompose RX1X2(τ) into an even function u(τ) and an odd function v(τ) as follows

RX1X2(τ) =
1
2

[
RX1X2(τ) + RX1X2(−τ)

]
+

1
2

[
RX1X2(τ) − RX1X2(−τ)

]
= u(τ) + v(τ). (2)

In this way we define the Mellin transform [3, 4, 5] of the even function u(τ), in particular for
the positive half-plane of τ in the form

Mu+(γ − 1) =M{u(τ)U(τ), γ} =

∞∫
0

u+(τ)τγ−1dτ (3)

where U(t) is the unit step function and γ ∈ C with γ = ρ+ iη, while for the negative half-plane
we have

Mu−(γ − 1) =M{u(τ)U(−τ), γ} =

0∫
−∞

u−(τ)(−τ)γ−1dτ (4)

the terms Mu+(γ−1) and Mu−(γ−1) may be interpreted as the fractional moments of half-function
u+(τ) and u−(τ) respectively.

From Eqs. (3) and (4) it may be observed that Mu+(γ − 1) = Mu−(γ − 1), because the u(τ) is
even, whereby the u(τ) may be obtained as the inverse Mellin transform as:

u(τ) =
1

2πi

ρ+i∞∫
ρ−i∞

Mu+(γ − 1)|τ|−γdγ; τ ∈ R. (5)
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Moreover we define the Mellin transform of odd part of CCF v(τ), for which we have for
the positive half-plane of τ

Mv+(γ − 1) =M{v(τ)U(τ), γ} =

∞∫
0

v+(τ)τγ−1dτ (6)

and for negative value of τ we get

Mv−(γ − 1) =M{v(τ)U(−τ), γ} =

0∫
−∞

v−(τ)(−τ)γ−1dτ. (7)

From Eqs. (6) and (7) it may be observed that Mv+(γ − 1) = −Mv−(γ − 1) because v(τ) is an odd
function. By using the inverse Mellin transform theorem we can restore the given function v(τ)
by its fractional moments, that is

v(τ) =
sgn(τ)

2πi

ρ+i∞∫
ρ−i∞

Mv+(γ − 1)|τ|−γdγ; τ ∈ R. (8)

Based on the previous results and remembering Eq. (2) the CCF can be represented in the
whole domain by using the fractional moments Mu+(γ−1) andMv+(γ−1) in the following form

RX1X2(τ) =
1

2πi

ρ+i∞∫
ρ−i∞

[
Mu+(γ − 1) + sgn(τ)Mv+(γ − 1)

]
|τ|−γdγ

=
1

2π

∞∫
−∞

[
Mu+(γ − 1) + sgn(τ)Mv+(γ − 1)

]
|τ|−γdη

(9)

in Eq. (9) we take into account that the integral in the inverse Mellin transform is performed
along the imaginary axis while ρ = <{γ} remains fixed for which we have that dγ = idη.
The representation of the CCF is valid provided ρ belongs to the so called fundamental strip of
Mellin transform, since both Mu+(γ − 1) and Mv+(γ − 1) are holomorphic in the fundamental
strip [3, 4, 5].

It is useful to note that the relation between the fractional moments and fractional operators
exist. In order to show this we introduce the Riesz fractional integral denoted as

(
IγRX1X2

)
(τ),

defined as

(
IγRX1X2

)
(τ) =

1

2Γ(γ) cos
(
γπ

2

) ∞∫
−∞

(
RX1X2

)
(τ̄)|τ − τ̄|γ−1dτ̄, ρ > 0, ρ , 1, 3, . . . (10)

and the complemetary Riesz fractional integral, denoted as
(
HγRX1X2

)
(τ), defined as

(
HγRX1X2

)
(τ) =

1

2Γ(γ) sin
(
γπ

2

) ∞∫
−∞

(
RX1X2

)
(τ̄)sgn(τ − τ̄)
|τ − τ̄|1−γ

dτ̄, ρ > 0, ρ , 1, 3, . . . (11)
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Based on the definition of Riemann-Liouville fractional integral, denoted with
(
Iγ±RX1X2

)
(τ) [4,

5] we get an useful relationship between Riesz and Riemann-Liouville fractional operators, that
is

(
IγRX1X2

)
(τ) =

(
Iγ0+RX1X2

)
(τ) +

(
Iγ0−RX1X2

)
(τ)

2 cos
(
γπ

2

) ;
(
HγRX1X2

)
(τ) =

(
Iγ0+RX1X2

)
(τ) −

(
Iγ0−RX1X2

)
(τ)

2 sin
(
γπ

2

) .

(12)

From Eqs. (12) it is easily to demonstrate the relation between fractional operators of CCF at
the origin and fractional moments, indeed we have

(
IγRX1X2

)
(0) =

MR+
X1X2

(γ − 1) + MR−X1X2
(γ − 1)

2Γ(γ) cos
(
γπ

2

) =
Mu+(γ − 1)

Γ(γ) cos
(
γπ

2

) (13a)

(
HγRX1X2

)
(0) =

MR+
X1X2

(γ − 1) −MR−X1X2
(γ − 1)

2Γ(γ) sin
(
γπ

2

) =
Mv+(γ − 1)

Γ(γ) sin
(
γπ

2

) . (13b)

In this way, the CCF may be expressed in the form:

RX1X2(τ) =
1

2π

∞∫
−∞

Γ(γ)
[
cos

(
γπ

2

) (
IγRX1X2

)
(0) + sgn(τ) sin

(
γπ

2

) (
HγRX1X2

)
(0)

]
|τ|−γdη. (14)

The integrals in Eq. (9) and Eq. (14) may be discretized by using the trapezoidal rule in order
to obtain the approximate form of given function RX1X2(τ), namely

RX1X2(τ) ≈
∆η

2π

m∑
k=−m

[
Mu+(γk − 1) + sgn(τ)Mv+(γk − 1)

]
|τ|−γk

=
∆η|τ|−ρ

2π

m∑
k=−m

Γ(γk)
[
cos

(
γkπ

2

) (
IγkRX1X2

)
(0) + sgn(τ) sin

(
γkπ

2

) (
HγkRX1X2

)
(0)

]
|τ|−ik∆η

(15)

where the exponent γ is discretized in the form γk = ρ+ ik∆η, ∆η is the discretization step of the
imaginary axis, and m is the truncation number of the summation, that is chosen in such a way
that any term n > m in the summation has a negligible contribution. Notice that the Eq. (15) is
a not-divergent summation, because ρ remains fixed, and this is a very important aspect if we
want to restore the given function in a large domain of τ.

From Eq. (14) we recognize that Eq. (14) is a sort of a Taylor series since by knowing the
(fractional) operators in zero of the given function then the function may be reconstructed. The
appealing of the expansion in Eq. (15) does not diverge for τ → ∞, since the real part of the
exponent γ remains fixed and only the imaginary part runs.

3 CROSS-POWER SPECTRAL DENSITY FUNCTION BY FRACTIONAL SPEC-
TRAL MOMENTS

In this section the introduced representation by fractional moments will be applied to restore
the cross-power spectral density function.
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Let S X1X2(ω) be a Fourier transform of CCF that is so called Cross-Power Spectral Density
(CPSD), that is

S X1X2(ω) = F
{
RX1X2(τ); ω

}
=

∞∫
−∞

RX1X2(τ)eiωτdτ =

∞∫
−∞

RX1X2(τ) [cos(ωτ) + i sin(ωτ)] dτ

= 2


∞∫

0

u(τ) cos(ωτ)dτ + i

∞∫
0

v(τ) sin(ωτ)dτ

 = Û(ω) + iV̂(ω)

(16)

where Û(ω) and V̂(ω) are the Fourier transform of even and odd part of CCF, respectively, and
they represent the real and the imaginary part of CPSD.

Another expression of S X1X2(ω) may be obtained starting from Eq. (9) and by performing
the Fourier transform of it, obtaining the following relationship

S X1X2(ω) =
1

2π

∞∫
−∞

Γ(1−γ)
[
sin

(
γπ

2

)
Mu+(γ − 1) + isgn(ω) cos

(
γπ

2

)
Mv+(γ − 1)

]
|ω|γ−1dη (17)

which can be discretized, obtaining

S X1X2(ω) ≈
∆η

2π

m∑
k=−m

Γ(1−γk)
[
sin

(
γkπ

2

)
Mu+(γk − 1) + isgn(ω) cos

(
γkπ

2

)
Mv+(γk − 1)

]
|ω|γk−1

(18)

Eq. (15) and (17) are the extension of the previous results [2] in terms of autocorrelation and
power spectral density to the case of cross-correlation and cross-power spectral density.

Another way to represent the CPSD by using fractional spectral moments (FSMs). The
spectral moments have been introduced by Vanmarcke [1], and the generalization of these quan-
tities with fractional exponent, just call fractional spectral moments, has been performed by
Cottone & Di Paola in [2]. The FSMs for the CPSD are defined as

Λu+(−γ) =

∞∫
0

<
{
S X1X2(ω)

}
ω−γdω =

∞∫
0

Û(ω)ω−γdω (19a)

Λv+(−γ) =

∞∫
0

=
{
S X1X2(ω)

}
ω−γdω =

∞∫
0

V̂(ω)ω−γdω. (19b)

By using the definitions of FMs, in Eqs. (3) and (6), and using some properties of Fourier
transform of fractional operators (see Appendix B), it may be easily demonstrated that the
following identities

Mu+(γ − 1) =
Γ(γ) cos(γπ/2)

π
Λu+(−γ); Mv+(γ − 1) =

Γ(γ) sin(γπ/2)
π

Λv+(−γ). (20)
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hold true. This is a very useful result since in many cases of engineering interest the stochastic
process like for wind or wave actions is defined by the spectral properties in frequency do-
main rather than by the correlation or cross correlation in time domain. As a consequence the
fractional moments, in virtue of Eq. (20), may be easier calculated by Eq. (19).

By using the Eqs. (20) we can obtain the following expression, that shown another exact
representation of CPSD

S X1X2(ω) =
1

2π2

∞∫
−∞

[
Λu+(−γ) + isgn(ω)Λv+(−γ)

]
cos

(
γπ

2

)
sin

(
γπ

2

)
Γ(γ)Γ(1−γ)|ω|γ−1dη (21)

Eq. (21), taking into account that cos (γπ/2) sin (γπ/2) Γ(γ)Γ(1− γ) = π/2 may be rewritten as

S X1X2(ω) =
1

4π

∞∫
−∞

[
Λu+(−γ) + isgn(ω)Λv+(−γ)

]
|ω|γ−1dη (22)

or in discretized form

S X1X2(ω) ≈
∆η

4π

m∑
k=−m

[
Λu+(−γk) + isgn(ω)Λv+(−γk)

]
|ω|γk−1

=
∆η|ω|ρ−1

4π

m∑
k=−m

[
Λu+(−γk) + isgn(ω)Λv+(−γk)

]
|ω|i∆η.

(23)

The FSMs can be also used to represent the CCF, obtaining the following expression

RX1X2(τ) =
1

2π2

∞∫
−∞

Γ(γ)
[
cos

(
γπ

2

)
Λu+(−γ) + sgn(τ) sin

(
γπ

2

)
Λv+(−γ)

]
|τ|−γdη (24)

or in discretization form

RX1X2(τ) ≈
∆η

2π2

m∑
k=−m

Γ(γk)
[
cos

(
γkπ

2

)
Λu+(−γk) + sgn(τ) sin

(
γkπ

2

)
Λv+(−γk)

]
|τ|−γk . (25)

4 NUMERICAL EXAMPLE

Let us consider two linear oscillators forced by a white noise process W(t) Ẍ1(t) + 2ζ1ω1Ẋ1(t) + ω2
1X1(t) = p1W(t)

Ẍ2(t) + 2ζ2ω2Ẋ1(t) + ω2
2X2(t) = p2W(t)

(26)

The cross-power spectral density S X1X2(ω) is defined as

S X1X2(ω) =
p1 p2S 0[(

ω2
1 − ω

2
)
− 2iζ1ω1ω

] [(
ω2

2 − ω
2
)

+ 2iζ2ω2ω
] (27)

where the S 0 is the PSD of the white noise W(t). The cross-correlation function RX1X2(τ) is
evaluated by making the inverse Fourier transform of the cross PSD, that is

RX1X2(τ) =
1

2π

∞∫
−∞

p1 p2S 0e−iωτdω[(
ω2

1 − ω
2
)
− 2iζ1ω1ω

] [(
ω2

2 − ω
2
)

+ 2iζ2ω2ω
] (28)
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For the numerical application the following parameters have been selected ω1 = 2ω2 = π,
ζ1 = 2ζ2 = 1/2 and p1 = 4p2 = 2. Starting from the knowledge of u(t) and v(t) we can
define the fractional moments Mu+(γ − 1) and Mv+(γ − 1). These FMs are complex quantities
and their real and imaginary parts, for fixed value of ρ, are shown in Figure 1(a) and 1(b)
respectively. Moreover in these figures are shown the discretized fractional moments Mu+(γk−1)
and Mv−(γk − 1) obtained by discretization of that are used for approximated forms on CCF in
Eq. (18) and CPSD in Eq. (18). While real part Û(ω) and imaginary part V̂(ω) of CPSD are
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(a) Fractional moments of u(τ)
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(b) Fractional moments of v(τ)

Figure 1: Real and imaginary part of fractional moments of even and odd function for ρ = 1/2

derived from Eq. (27). By knowing U(ω) and V(ω) the trend of fractional spectral moments
Λu+(−γ) and Λv+(−γ) are determined and they are shown in Figure 2(a) and 2(b) respectively.
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(a) Fractional spectral moments of u(τ)
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(b) Fractional spectral moments of v(τ)

Figure 2: Real and imaginary part of fractional spectral moments of even and odd function for ρ = 1/2

By using approximate representation by FMs (Eqs. (15) and (18)) or by FSMs (Eqs. (25) and
(23)) we may restore the CCF and CPSD, as well shown in Figure 3(a) and 3(b), respectively.
In particular Figure 3(a) shows the comparison between the exact CCF and the approximation
form obtained by FMs or FSMs, while in Figure 3(b) the overlap of exact and approximate
representation, obtained by FMs or FSMs, of real and imaginary part of CPSD are shown. In
both figures the approximate representation of CCF and CPSD are performed with fixed value
of truncation length η̄ = m∆η and different value of considered terms m. In the example the
chosen truncation parameters are m = 15, 50 and η̄ = 30.
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Exact CCF

Approximate CCF Hm = 50L
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(b) Exact and approximate CPSD

Figure 3: Cross-correlation function and cross-power spectral density function

It is noted that the perfect coalescence between exact and approximate representation is obtained
for m = 50 that corresponds to ∆η = 3/5.

5 CONCLUSIONS

In this paper the usefulness of (complex) fractional spectral moments of the CPSD function or
of the CCF has been highlighted. It has been shown that such a fractional spectral moments may
be evaluated either by starting from the CCF or by the CPSD. Very exact simple relationships
allow us to work in time or in frequency domain by using such a fractional spectral moments.
The second obtained goal is that, by using Mellin transform theorem, the fractional spectral
moments may be evaluated by the Riesz and the complementary Riesz integrals in zero. The
third goal is that integration is performed along the imaginary axis and then no divergence
problems occur for both τ → ∞ (in time domain) or for ω → ∞ (in frequency domain).
Accuracy of the results is provided with the aid of the numerical example and the accuracy of
the results is impressive in all time or frequency ranges.
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