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Abstract

Diabetic macular edema (DME) is still one of the main causes of visual impairment. Repeated intravitreal injections of
ranibizumab are considered the gold standard treatment, but the efficacy in patients with prominent cystic characteristics remains
uncertain. In diabetic retinas, the identification of both antero-posterior and, particularly, tangential tractions is crucial to prevent
misdiagnosis of tractional and refractory DME, and therefore to prevent poor treatment outcomes. The treatment of tractional
DME with anti-VEGF injections could be poorly effective due to the influence of a tractional force. Pars plana vitrectomy (PPV)
is a surgical procedure that has been widely used in the treatment of diffuse and refractory DME. Anatomical improvement,
although stable and immediate, did not result in visual improvement. PPV with internal limiting membrane (ILM) peeling for the
treatment of non-tractional DME in patients with prominent cysts (> 390 wm) causes subfoveal atrophy, defined as “floor effect”.
Epiretinal tangential forces and intraretinal change evaluation by SD-OCT of non-tractional DME are essential for determining

appropriate management.
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Introduction

Diabetic macular edema (DME) is the main cause of visual
impairment in working-age populations in developed coun-
tries [1]. Since the published data by the Early Treatment
Diabetic Retinopathy Study Research Group (ETDRS) in
1985, the focal/grid laser photocoagulation was considered
the gold standard treatment for DME [2]. However, later stud-
ies have shown that, although this approach prevented further
visual loss, it did not confer a significant improvement in
visual acuity to the majority of cases treated [3].

The pioneering research by Ferrara et al. led to the introduc-
tion of ranibizumab, first anti-vascular endothelial growth fac-
tor (anti-VEGF) drug licensed for intravitreal use, for the treat-
ment of neovascular diseases [4]. Prospective clinical trials with
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different dosing regimens and treatment algorithms of intravit-
real ranibizumab (IVR) established the rapid and sustained im-
provements in vision and retinal anatomy in patients with
DME, with minimal systemic absorption, thus reducing the risk
of side effects associated with biological therapies [5—8].

The RESTORE Study compared the use of IVR, alone or in
combined use with laser therapy, against laser monotherapy.
The results showed that IVR, alone or in combined use, was
more effective than laser alone in improving and maintaining
best-corrected visual acuity (BCVA), as well as the central
retinal thickness (CRT) [5]. The safety and efficacy profile
was also proven with long-term follow-up and established in
clinical practice by the progressively declining number of in-
jections needed over 3 years of individualized dosing [9].

The RISE and RIDE studies compared the effect of early
use of ranibizumab versus placebo. The study confirmed an
increase in BCVA in the ranibizumab treatment group up to
36 months. However, when patients in the control arm were
given ranibizumab at 24 months, the improvements in BCVA
were limited. The hypothesis suggested for this result is that
chronic retinal edema might lead to a degree of retinal atrophy,
therefore expedient treatment is crucial to prevent such chang-
es and achieve the best outcomes [10].
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The recent LUCIDATE study compared the functional and
structural effects of ranibizumab versus standard laser therapy
[11]. The group receiving ranibizumab injections showed an
improvement in visual acuity, retinal sensitivity in the central
4 and 12 degrees on microperimetry, and increased color con-
trast sensitivity in protan and tritan axis compared with the
laser treatment group. Electophysiological testing (ERG, pat-
tern ERG, and multifocal ERG) demonstrated an improve-
ment in the visual function in the same group [11].

Browning and Massin investigated the morphological char-
acteristics of refractory DME. They showed that eyes with
refractory DME exhibit short-term fluctuation in macular
thickness larger than OCT measurement variability. In this
group of patients with prominent cystic characteristics, the
efficacy of IVR injections was uncertain. Information about
short-term fluctuation might, therefore, be clinically important
in deciding whether subsequent treatment with anti-VEGF is
indicated [12, 13].

The vitreo-retinal interface
and the anomalous posterior vitreous
detachment

The vitreous gel and the retina join anatomically at the vitreo-
retinal interface. In such complex structure, the vitreous cortex
adheres to the internal limiting membrane (ILM) of the retina
through an extracellular glue-like matrix composed of fibro-
nectin, laminin, opticin, and other extracellular matrix constit-
uents [14]. These attachments are particularly stronger at the
anterior vitreous base and the optic nerve and less firm at the
macula surface.

Normal aging causes progressive changes in vitreous mac-
romolecules, with liquefaction (synchisis), weakening of
vitreo-retinal adhesion and eventually total collapse of colla-
gen fibrils (synaeresis). The initial separation of the vitreous
from the ILM, with residual attachment at either the optic disk
or macula, is defined as “incomplete” posterior vitreous de-
tachment (PVD); the total separation of the fibrils from ILM is
defined as “complete” PVD [15].

High glucose levels, commonly found in diabetes mellitus,
alter the structure and function of the vitreo-retinal interface
by accumulation of advanced glycosilation end-products
(AGEs). AGEs generate a non-enzymatic glycation, abnormal
cross linking of collage fibrils that lead to stronger adhesions
between the posterior vitreous cortex to the ILM [16, 17].
Such changes can also lead to an “anomalous” PVD, even at
younger age [18].

Gella et al. have considered the anomalous PVD the major
risk factor in sight-threatening diabetic retinopathy [19].
Anomalous PVD generates antero-posterior and tangential
traction forces at the vitreo-retinal interface that act upon the
inner and outer retinal layers. In physiological complete PVD,
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the separation between the posterior vitreous cortex and the
retina is total, with no residual adhesions at the macular sur-
face. In anomalous PVD, strong bonds are created at the mac-
ular interface, whereas the peripheral vitreous can be
completely separated. The anomalous PVD is defined as
vitreo-macular adhesions (VMA) if there are no changes of
foveal profile. With the progressive increment in antero-
posterior vector of tractions, the macular structure changes,
leading to the changes of foveal profile, formation of
intraretinal cysts with initial onset of visual symptoms. This
condition, which can be easily detected by optical coherence
tomography (OCT) scans, is defined as vitreo-macular trac-
tion (VMT) [20].

The anomalous PVD can also result in vitreoschisis, char-
acterized by a splitting of the posterior vitreous cortex in two
layers. The outermost part remains attached to the retina,
whereas the remaining vitreous collapses forward [21].

Following the splitting, the hyalocytes left on the retinal
surface stimulate migration and proliferation of reticulo-
endothelial cells, whose contractile properties generate tan-
gential forces on the retina [22]. Supporting data was added
by Sebag et al., with the detection of vitreoschisis by com-
bined OCT/SLO imaging in patients with macular hole and
also in those with epiretinal membrane (ERM), suggesting a
common pathophysiological basis for the two different
conditions.

According to Sebag’s work, if the split of the posterior
vitreous cortex occurs posterior to the level of hyalocytes, a
thin hypocellular membrane (layer of vitreous) remains at-
tached to the macula. This finding, in turn, may induce out-
ward (centrifugal) tangential contraction causing a macular
hole. If the split is instead anterior to the level of hyalocytes,
a relatively thick, hypercellular, and contractile membrane
(layer of vitreous) may induce inward (centripetal) tangential
traction upon the underlying retina leading to ERM [23].

Another common consequence of anomalous PVD is the
persistence of adhesions at the borders of the optic disk de-
fined as vitreo-papillary adhesions (VPA). In presence of
vistreoschisis, VPA may influence the vectors of forces
exerted on the macular interface, inducing tangential epiretinal
traction and intraretinal changes such as cysts [24]. The iden-
tification of both antero-posterior and particularly tangential
tractions is crucial to prevent misdiagnosis of tractional and
refractory DME, and therefore to prevent poor treatment out-
comes. The tractions are, however, very difficult to detect both
clinically and with OCT. In order to investigate the optimal
indication for the treatment of DME, Abe et al. suggested the
use of en face SD-OCT imaging pre- and postoperatively [25].

We believe that the tangential traction in DME is currently
under-estimated, leading to treat tractional DME as non-
tractional DME, thus with anti-VEGF treatments. Looking
mainly to the antero-posterior traction, we lose the major com-
ponent of the anomalous PVD: the tangential traction.
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The ectopic inner foveal layer
and the ganglion cell complex thickness

ERM formation is a common retinal condition characterized by
fibrocellular proliferation at the vitreo-retinal interface, above the
ILM, mostly associated with an anomalous PVD. After PVD,
glial cells migrate through microscopic defects of ILM and then
proliferate on the surface of the retina, forming an ERM [26, 27].
It is important to underline the different intraretinal anatomical
changes between idiopatic (i) and diabetic (d) ERM; in fact, these
aspects could modify visual prognosis after surgery.

Tractional stress that ERM leads on inner retinal layers of
the macula could significantly alter the inner foveal micro-
anatomy. In fact, the chronic antero-posterior and centripetal
traction of ERM may cause the displacement and reorganiza-
tion of the inner retinal layers leading a continuous floor of
inner retinal tissue across the central fovea and referred to as
ectopic inner foveal layers.

The presence of continuous ectopic inner foveal layers in
ERM:s is a newly described OCT finding associated with sig-
nificant vision loss [28] (Fig. 1).

The development of ectopic inner foveal layers may result
from the combination of both physical displacement of the
inner retinal layers and Miiller cell activation.

EMR exerts a stress on Miiller cells, which in this condition
overexpress glial fibrillary acid protein (GFAP). GFAP is in-
volved in cell adhesion mechanisms, interacting with the cy-
toskeleton, surface receptors, and extracellular matrix
[29-32]. In addition, the formation of epiretinal traction in-
volves intraretinal glial proliferation, which has been consid-
ered predominantly epiretinal [33]. Glial proliferation could
be responsible for the appearance in OCT of ectopic inner
foveal layers in the evolved iEMR, and it may result in poor
post-surgical visual recovery.

Retinal modifications of iIEMRs may not be present in
dEMRs, due to the early damage of Miiller cells. Diabetic
retinopathy (DR) is characterized by inner neuroretinal de-
generation; this is observed structurally, as neural apoptosis,
ganglion cell (GC) loss, reactive gliosis, and thinning of the
inner retina [34] (Fig. 2).

A recent study showed that neuroretinal degeneration pre-
cedes micro-vasculopathy in people with diabetes mellitus

Fig. 1 Optical coherence
tomography intraretinal changes
under idiopathic epiretinal
membranes. The epiretinal
traction is responsible Muller cell
activation with increase of GFAP
and intraretinal gliosis visible as
ectopic hypereflective inner
foveal layers between INL and
IPL

(DM), and these findings were confirmed in two different
mouse models of DM using both OCT image analysis and
immunohistochemistry. The retinal neurodegeneration is not
mediated by retinal microvascular disease in the form of micro-
scopic capillary loss or the earliest manifestation of DR [35].

Tien et al. have described that high glucose (HG) induces
mitochondrial dysfunction and promotes apoptosis in retinal
rat retinal Miiller cells. In DR, injury to or loss of retinal
Miiller cells may lead to disruption in the exchange of essen-
tial metabolic nutrients necessary to protect retinal neurons.
When Miiller cells become activated and undergo reactive
gliosis, this protective mechanism may be compromised
[36]. This could explain the lack of presence in OCT of ectop-
ic inner foveal layers in evolved dEMR.

Treatment based on neuroprotection could be new approach
for preventing or arresting DR development. In fact, neurode-
generation is the initial damage in diabetic patient which pro-
gressively leads to neuron loss, breakdown of the BRB,
vasoregression, and the impairment of neurovascular coupling.

Anti-VEGF therapy and fibrosis

Multiple studies have suggested that anti-VEGF injections in pres-
ence of tractions can induce metaplasia of the epiretinal cells caus-
ing an increase of fibrosis and tractional complications [37, 38].

A biochemical and ultrastructural study by Walsh et al. has
highlighted the presence of atypical chronically contractile
myofibroblastic cells in preretinal membranes of patients affect-
ed by proliferative retinal diseases. These cells have a strong
smooth muscle differentiation supported by the presence of o-
smooth muscle actin (SMA) and desmin and are thought to be
responsible for tractional phenomena in the tissues [39].

We believe that the multiple anti-VEGF injections in case
of proliferative diabetic retinopathy (PDR), in presence of
anomalous PVD or ERMs, could increase the tangential con-
traction, mainly acting through the SMA.

In support of anti-VEGF, induced fibrosis hypothesis has
described a case of a patient with DME, in which the forma-
tion of a lamellar macular hole occurred following treatment
with intravitreal bevacizumab (IVB). In this case, the lamellar

@ Springer



Graefes Arch Clin Exp Ophthalmol

Fig. 2 Optical coherence
tomography intraretinal changes
in diabetic vs idiopathic epiretinal
membrane. The epiretinal traction
is not able to induce the increase
of GFAP and intraretinal gliosis in
diabetic epiretinal traction (a),
whereas is able to induce the
intraretinal gliosis with the
ectopic inner foveal layer in
idiopathic membranes (b)

macular hole occurred despite the absence of ERM in previ-
ous OCT scans [40].

Furthermore, in patients with PDR, high vitreal levels of
connective tissue growth factor (CTGF) combined with low
levels of VEGF after intravitreal therapy lead to an
angiofibrotic switch that results in vitreo-retinal traction and
fibrosis. This observation may suggest the existence of a crit-
ical balance between the VEGF and the CTGF [41].

In conclusion, the treatment of tractional DME with an-
ti-VEGF, under the influence of a tractional force, tangen-
tial contraction, and angiofibrotic switch, could be could
be poorly effective.

Surgical approach and role of ILM peeling

Pars plana vitrectomy (PPV) is a surgical procedure that has
been widely used in the treatment of diffuse and refractory
DME unresponsive to other therapies.

The mechanisms that underpin the surgical approach in
DME can be essentially summarized as follows: (1) removal
of inflammatory mediators present in the pathological vitreous,
which cause persistent edema, (2) elimination of clinical and
subclinical tractions that are often not visible by conventional
means, and (3) increased oxygenation of the inner retinal layers.

The use of PPV in tractional DME has already been eval-
uated by the Diabetic Retinopathy Clinical Research Network
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(DRCR.Net) Group. Their study has shown only a slight im-
provement of visual function after surgical intervention at 6-
month follow-up, despite significant reduction of retinal sub-
field thickness [42]. Similar results have also emerged from
the work of Navarrete-Sanchis et al. They evaluated the effi-
cacy of PPV in non-tractional DME at 1-year follow-up.
Anatomical improvement, although immediate and stable,
did not result in visual improvement. The lack of correlation
between macular thickness and vision after surgery suggests
that other factors must affect functional status [43].

Romano et al. have compared three different treatments on
the anatomy and functional results of patients with non-
tractional DME (IVB vs laser photocoagulation vs vitrectomy
with ILM peeling). In all three groups the central macular
thickness was significantly reduced, while a visual improve-
ment occurred only in the group treated with IVB.

Of interest, subgroup analysis revealed those with large
intraretinal cysts (IC) and treated with vitrectomy and ILM
peeling had the worst functional outcomes. The authors have
identified a negative correlation between postoperative BCVA
with a baseline IC size higher than 390 pm. At this threshold
size, they speculated that ILM peeling in this subgroup of
patients may lead to macular hypotrophy and damage to the
outer retinal layers [44].

It is well known that the peeling of the ILM is a traumatic
procedure that can cause retinal damage, especially in patho-
logically impaired retinas [45, 46].
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Even in non-diabetic retinas, early and late anatomical chang-
es after ILM peeling were described [47, 48]. The earliest chang-
es in the macula were reported by Clark et al. as the presence of
postoperative swelling of the arcuate retinal nerve fiber layer
(SANFL), as visualized by autofluorescence (AF), infrared
(IR), and SD-OCT imaging [49]. These alterations did not cause
any reduction of BCVA and disappeared 3 months after surgery.
To explain these changes, the authors proposed two hypotheses.
The first a direct surgical damage to the inner retina caused by
forceps when the ILM is grasped prior to being peeled. The
second, a subclinical acute trauma to the inner layers due to
damaged Miiller cell endplates attached to the ILM [49].

Three months after surgery, with the disappearance of the
SANFL, late changes become evident. Numerous slightly
dark arcuate striac within the posterior pole, in the same di-
rection as the optic nerve fibers, have been visualized by blue
filter photography. These have been named dissociated optic
nerve fiber layer (DONFL) [50]. These defects correspond to
“dimples” in the inner retinal layers detected by SD-OCT
imaging. They consist of small depressions in the contour of
the retina limited to the retinal nerve fiber layer [51].

The same late changes have also been studied by en face
SD-OCT that showed a different pattern of multiple dark dots
along the course of the optic nerve fiber layer in the area of
ILM peeling. These have been defined as “concentric macular
dark spots” (CMDS) [52].

In addition, a diabetic retina presents some alterations that
predispose to further damage after ILM peeling. The diabetic
ILM appears thicker than non-diabetic ILM due to the prolif-
eration of cell populations including neutrophilis, macro-
phages, lymphocytes, and fibroblast-like cells [53].

Moreover the Muller cells and astrocytes of ILM in pres-
ence of epiretinal retinal gliosis are associated with an in-
creased expression of the intermediate filament GFAP. This
GFAP increases the interactions between the cytoskeleton,
surface receptor, and glial extracellular matrix, thereby acting
as a bridge between Miiller cells and ILM [54].

These stronger adhesions may be responsible for further inju-
ry to the cells of Miiller after [LM peeling leading to structural
collapse of the retina with damage of the outer retinal layers.

This subfoveal atrophy was defined by Romano as “floor
effect” [44]. They proposed that this subfoveal atrophy was
responsible for the significant reduction in CMT after vitrec-
tomy with ILM peeling in patients with IC greater than
390 um. The BCVA worsened despite the reduction of the
IC size. Vitrectomy with ILM peeling in these patients is not
recommended, while the most appropriate treatment is with
anti-VEGEF injections [44].

A recent study has compared 23 eyes with idiopatic
epiretinal membranes iERMs and 19 with diabetic epiretinal
membrane dERMs, undergoing ERM-ILM peeling, evaluated
with SD-OCT preoperatively, 1 and 6 months postoperatively.
The following parameters were examined: CMT, intraretinal

cysts (IC), ectopic fovea layers, and GFAP expression in
peeled ILMs. The ectopic fovea is associated with functional
worsening and it is more present in the eyes with iERM, while
the IC and GFAP in those with dERM [55, 56].

In conclusion, tomographic retinal evaluation by SD-OCT
of non-tractional DME is essential for determining appropriate
management.

Surgical indications consist of (i) refractory DME, unre-
sponsive to anti-VEGF treatment, (ii) presence of subclinical
tangential traction associated with VPA or vitreoschisis, (iii)
DME with intraretinal cysts smaller than 390 pm in early
unresponsive stage.

Microvascular changes in deep
and superficial vascular plexus after macular
peeling

DR alterations of the blood retinal barrier (BRB) are the con-
sequence of factors such as ischemia, changes in blood flow,
increased VEGF, oxygen-free radicals, endothelial and
pericyte dysfunction, and inflammation [57].

Central visual loss is caused by DME, may not only be due
to the macular edema itself, but also may be due to alterations
in the foveal avascular zone (FAZ).

Different imaging modalities may be utilized to diagnosis
and follow up of DME, the most important are fluorescein
angiography (FA) and OCT. FA requires intravenous dye in-
jection to image perfusion of the retina vessels and dye leak-
age from increased vascular permeability. OCT is a non-
invasive method that allows to evaluate the presence of ede-
ma, the effectiveness of intravitreal therapies, and the thick-
ness of the different retinal layers [58].

Optical coherence tomography angiography (OCTA) is a
newly available retinal vascular imaging technique, which is
able to separately visualize superficial and deep macular cap-
illary plexus. Several studies have shown OCTA as a better
imaging modality to examine the capillary perfusion. Spaide
et al. demonstrated that OCTA is superior in delineating the
retinal capillary networks compared with FA [59].

Emerging evidence suggests that neurodegeneration partic-
ipates in early microvascular changes that occur in DR such as
the breakdown of the BRB, vasoregression, and the impair-
ment of neurovascular coupling [60—62]. Vasoregression is
the primary response of retinal microvessels to chronic hyper-
glycemia and is characterized by the loss of perycites followed
by the formation of acellular, non-perfused capillaries [63].

The foveal capillary plexus forms a ring at the margin of
the fovea, producing a capillary-free region called FAZ.
Previous studies have suggested that the mechanism behind
the FAZ enlargement in diabetic retinopathy is associated with
capillary closure [59, 64].
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In a recent study, Takase et al. demonstrated that diabetic
eyes show retinal microcirculation impairment in the macula
even before retinopathy develops. Evaluation of the FAZ area
OCTA showed that diabetic eyes presented significant FAZ
enlargement regardless of the presence of DR. Then, diabetic
eyes exhibit impairment of the retinal microcirculation in the
macula even before the retinopathy actually develops and that
en face OCTA is a useful noninvasive screening tool that can
be used for the detection of early microcirculatory disturbance
in patients with diabetes [65].

Romano et al. described changes in deep and superficial
perifoveal capillary plexus after macular peeling in iIERM and
dERM. OCTA images were obtained to quantify the deep and
superficial layers of FAZ. The deep FAZ area only significant-
ly increased in dERM at the end of the follow-up period
(6 months). No statistically significant differences were found
between preoperative and postoperative superficial vascular
plexus in iERM or dERM. This may be because the impaired
diabetic perifoveal capillary plexus is more sensitive to the
iatrogenic damage induced on the Miiller cells by ILM peel-
ing. This could be a result of early damage to the retinal mi-
crovasculature, caused by hyperglycemia. The preoperative
size of deep FAZ may be considered as a prognostic factor,
influencing the surgical plan of ILM peeling [66].

Combined surgical therapies

Combined treatment was suggested to improve the beneficial
effects of PPV. Liu et al. conducted a meta-analysis of ran-
domized controlled trials (RCTs) [67]. They evaluated BCVA
and CMT after intravitreal triamcinolone acetonide (IVTA)
injection as adjunctive treatment to panretinal photocoagula-
tion (PRP) and macular photocoagulation (MPC) in patients
with PDR and DME. At 12-month follow-up, they reported a
significant improvement of both BVCA and CMT, without
significant ocular complications [67].

In a retrospective study, Kim et al. evaluated combined
therapy in 35 patients with non-tractional DME unresponsive
to prior treatments [68]. The combination of PPV with ILM
peeling, IVTA, PRP laser, and grid/focal laser photocoagula-
tion resulted in functional and anatomical recovery that
persisted for 3 years after treatment. An improvement of
BVCA from the baseline was achieved in 65% of cases by
two lines on a Snellen Chart. A gradual reduction in CMT and
improvements of DME (of CMT less than 250 pum) was
achieved in 87.5% of the subjects [68].

Similar results were reported by Boyer et al. in a prospective
study of 55 eye patients with non-tractional DME [69]. They
evaluated the safety and efficacy of the combined therapy with
Ozurdex (dexamethasone intravitreal implant) 0.7 mg in associa-
tion with PPV and focal laser. The peak of improvement in BCVA
and CMT was reached 8 weeks after treatment and persisted at 1-
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year follow-up. An increased IOP occurred in 12% of patients
successfully controlled with medical therapy [69].

In conclusion, the intraretinal changes caused by hypergly-
cemia may lead to poor efficacy of the treatments. High glu-
cose levels, commonly found in diabetes mellitus, can lead to
an “anomalous” PVD, that can cause antero-posterior vector
of tractions, with changes of foveal profile, formation of
intraretinal cysts with initial onset of visual symptoms.

It is important to underline that in the presence of tractions,
anti-VEGEF injections could induce metaplasia of the epiretinal
cells causing an increase of fibrosis and tractional phenomena.

SD-OCT is decisive for appropriate surgical management.
Indications are in case of refractory DME, presence of sub-
clinical tangential traction associated with VPA or
vitreoschisis, and DME with small intraretinal cysts in early
unresponsive stage.

In the future, it would be interesting to identify OCT pa-
rameters can allow us to decide the correct surgical timing for
a better prognosis.
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