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The inclusion of vibroacoustic treatments at early stage of product development through
the use of poro-elastic media with periodic inclusions, which exhibit proper dynamic filter-
ing effects, is a powerful strategy for the achievement of lightweight sound packages and
represents a convenient solution for manufacturing aspects. This can have different appli-
cations in transportation (aerospace, automotive, railway), energy and civil engineering
fields, where weight, space and vibroacoustic comfort are still critical challenges. This
paper develops the shift cell operator approach as a numerical tool to investigate the dis-
persion characteristics of periodic poro-elastic media. It belongs to the class of the k xð Þ
(wave number as a function of the angular frequency) methods and leads to a quadratic
eigenvalue problem, even when considering frequency-dependent materials, contrarily
to the x kð Þ approach that would lead to a non-linear eigenvalue problem for frequency-
dependent materials.
The full formulation is detailed and the approach is successfully validate for a homoge-

neous poro-elastic material and a more complex periodic system containing periodic per-
fectly rigid circular inclusions.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Fast urbanization and transport development cause serious noise-induced health risks, such as annoyance, sleep distur-
bance, or even ischemic heart disease [1]. Therefore, nowadays, environment noise control is becoming a subject of great
interest. Generally, common sound absorbing materials could be divided into two categories: resonant [2] and poro-
elastic materials. Resonant materials for sound absorption mainly involve Helmholtz resonators [3] and/or perforated panels
[4]. These materials show good performances at low frequencies, but they often have the disadvantage of narrow frequency
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stop-bands [5]. Poro-elastic materials for acoustic applications are composed of channels, cracks or cavities that allow the
sound waves entering the materials. Sound energy is dissipated by thermal and viscous losses; these energy consumption
principles assure sound absorption over broader frequency ranges [6,7]. Poro-elastic materials suffer from a lack of perfor-
mance at low frequencies compared to their efficiency at higher ones [8]. This difficulty is usually overcome by multi-
layering [9]; however, the efficiency of such devices relies on the allowable thickness [10,11].

An efficient way to enhance the low frequency performances of sound packages consists in embedding periodic inclusions
in a poro-elastic layer [12,13], in order to create wave interferences or resonance effects that may be advantageous for the
dynamics of the system. In this context of increasingly complex material systems, numerical tools to properly design sound
packages are more and more useful. Several theoretical models are available to estimate the physical behavior of poro-elastic
materials, and the most complex of them require the definition of more than ten parameters. For example, one of the most
accurate models is the Biot theory of poro-elasticity [14], which takes into account both the mechanical and the acoustical
behaviors of the material [15]. Furthermore, the measurement of all the necessary parameters, which usually constitutes the
first step in the definition of a model, is already a specific issue in the case of poro-elastic.

In addition, numerical simulations, usually carried out through the Finite Element Method (FEM), are often problematic,
in terms of computational times and convergence. On the other hand, analytical models constitute a powerful instrument to
quickly catch physics and general trends of the problem, but they are partially limited by restrictive approximating hypothe-
ses and come short considering non-trivial geometries. In this context, the present work investigates the application of the
shift cell approach to poro-elastic media; this allows to obtain dispersion characteristics of frequency-dependent damped
materials through the resolution of a quadratic eigenvalue problem, whose accuracy only depends on the FEMmeshing. This
technique has already been successfully applied to describe the mechanical behavior of periodic structures embedding visco-
elastic materials [16,17], piezoelectric materials [18] and foams modeled as equivalent fluids [19]. The main novelty of the
present work consists in the formulation and application of the shift cell technique to Biot-modeled poro-elastic media.
Materials modeled in this way account for wave propagation and interaction in both fluid and solid phases, thus leading
to the fact that diphasic models are the most comprehensive ones in order to describe the vibroacoustics of porous media.
However, compared to equivaled fluid models, they require more parameters to be used (a set for each of the two phases),
and therefore the process of extension of the shift cell technique is definetly not trivial and requires a specific dissertation,
which is herein provided for the first time in literature.

This paper is organized as it follows. Section 2 recalls the fundamentals of Biot theory and introduces the shift cell oper-
ator formulation for Biot-modeled foams. Section 2.2.2 defines a weak formulation of the problem, and Section B describes its
FE implementation. In Section 3 two validations of the method are shown. At last, Section 4 provides conclusions and future
perspectives.

2. Shift cell operator technique for Biot-modeled foams

2.1. Biot theory

Although for many porous materials the frame can be considered almost rigid for a wide range of acoustical frequencies,
thus allowing the use of models with motionless skeleton assumption [20,21], this is not generally true: for example, for a
poro-elastic material attached to a vibrating structure and for many other similar situations, frame vibrations are induced by
those of the elastic structure.

The wave propagation through a poro-elastic media can be analyzed only considering a solid-fluid coupled behavior; such
description is provided by the Biot theory of sound propagation in poro-elastic media [14]. In this context, two compres-
sional waves and a shear wave propagate. The parameters that characterize a poro-elastic material are: / is the open poros-
ity; r is the static flow resistivity; a1 is the tortuosity; K is the viscous characteristic length; gvisc is the viscosity; q0 ¼ gvisc

r is
the static viscous permeability; mvisc ¼ gvisc

q0
; mtherm ¼ mvisc

Pr ; Pr is the Prandtl number. Furthermore, additional quantities are

defined in Appendix A [22]. Zienkiewicz et al. proposed a simplified u� p formulation [23], where u is the solid phase dis-
placement and p is the pressure of the fluid phase.

In particular, by neglecting the second time derivatives of the relative fluid displacement from the original Biot u� U for-
mulation [15], the u� p formulation [22,24] is deduced in order to reduce the primary variables in the context of finite ele-
ment analysis; indeed, if one considers a 3D model, instead of the 3 + 3 nodal variables that are in the u� U formulation, in
the case of the u� p one there are only 3 + 1 nodals variables. In addition, the solid displacement u and the pore fluid pres-
sure p are always the most interesting quantities. In an infinite homogeneous isotropic poro-elastic media, three waves prop-
agate (two compressional waves and one shear wave):
kshear ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q11~q22 � ~q2

12

N~q22

s
; ð1Þ
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A1 ¼ x2 ~q11R� 2~q12Q þ ~q22P

RP � Q2 ; A2 ¼ x4 ~q11~q22 � ~q2
12

RP � Q2 : ð3Þ
The symbols introduced in Eqs. (1)–(3) are defined in Appendix A. The two phases present in a poro-elastic mate-
rial behave in a different manner, respect to the pure elastic case (where the only compressional wave is fluid-born):
the main difference is the existence of a second (solid-born) compressional wave, which is highly attenuated in the
low frequency range. Each of the waves propagates both in the solid and in the fluid phases of the poro-elastic med-
ium [25].

2.2. Shift cell operator technique

2.2.1. Introduction
Herein, the shift cell operator technique applied to Biot-modeled foams is presented, providing details on its implemen-

tation [26]. The shift cell approach provides a reformulation of classical Floquet-Bloch periodic conditions [27], and its major
advantage is that it allows the introduction of a generic frequency dependence of visco-elastic material behavior [16]; this is
fundamental, if one looks for the computation of the dispersion curves of a porous material, modeled as an equivalent fluid
or with the Biot theory. Indeed, even if the usage of Floquet-Bloch (F-B) periodic conditions actually allows it, a very powerful
non-linear solver is required in that case.

The shift cell operator [16,19], instead, leads to a quadratic eigenvalue problem even in the presence of frequency-
dependences and/or damping. The main mathematical difference with respect to the classical F-B approach is that, in
the case of the shift cell operator, the phase shift of the boundary conditions and the exponential amplitude decrease,
related to wave propagation, are integrated into the partial derivative operator. As a consequence, the periodicity is
included in the overall behavior of the structure, while simple continuity conditions are imposed at the edges of
the unit cell.

Considering a poro-elastic layer modeled through Biot’s theory [14], the coupled starting system is constituted by the
equation of motion of the solid part and the classical Helmholtz equation, respectively:
$ � br uð Þ þx2~quþ ~c$p ¼ 0

Dpþx2 ~q22
R p�x2 ~q22

/2 ~c$ � u ¼ 0

8><>: ; ð4Þ
where u ¼ u;v ;wð Þ is the solid phase displacement vector and p ¼ p x;xð Þ is the acoustic pressure [28]. The following quan-
tities are defined [22]: x is the angular frequency; br uð Þ ¼ Ce uð Þ is the stress tensor of the frame in vacuum, whose generic

element can be written as rij ¼ l1 � Q2

R

� �
dijekk þ 2l2eij, where dij is the Kronecker delta and ekk ¼ tr e

� �
¼ eux þ evy þ ewz; C is

the Hooke elasticity tensor with C11 ¼ l1 � Q2

R þ 2l2 and C12 ¼ l1 � Q2

R ; e uð Þ ¼ 1
2 $uþ $uT
� �

is the symmetric strain tensor;

l1 ¼ 2m
1�2mN and l2 ¼ N are respectively the first and second Lamé parameters.

For each physical property of the system, the periodicity is described by a x� rnð Þ � a xð Þ ¼ 0, where a is a generic physical
property, n is a vector of integers normal to the face considered, r ¼ r1; r2; r3ð Þ is a matrix containing the three vectors defin-
ing the cell periodicity directions and lengths, and X is the domain of interest. This applies everywhere except on the dis-
continuity surfaces, where appropriate boundary conditions apply [19].

By further developing the latter equation and applying the Bloch theorem [29], which extends Floquet’s theory to 3D sys-
tems, one obtains:
$þ jkð Þ � C 1
2 $þ jkð Þuþ $þ jkð ÞuT
� �þ

þx2~quþ ~c $þ jkð Þp ¼ 0

$þ jkð ÞT � $þ jkð Þpþx2 ~q22
R p�x2 ~q22

/2 ~c $þ jkð Þ � u ¼ 0

8>>>><>>>>: ; ð5Þ
with the wave vector k defined as:
k ¼ kh ¼ k
hx
hy
hz

0B@
1CA ¼ k

cos h cos/
cos h sin/

sin h

0B@
1CA ð6Þ
and k ¼ �jk, where k is an eigenvalue of the problem.

2.2.2. Weak formulation
The solution approach follows a common weak formulation of a differential problem in a discrete coordinate scheme. A

u;pð Þ formulation, in its classical form, can be found in literature [24]:
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R
X
br uð Þ : e duð ÞdX�x2

R
X
~qu � dudXþ

� RX ~cþ / 1þ Q
R

� �� �
$p � dudX� RX / 1þ Q

R

� �
p$ � dudXþ

� RC rT u;pð Þ � nð Þ � dudC ¼ 0R
X

/2

x2 ~q22
$p � $dpdX� RX /2

R pdpdXþ
� RX cþ / 1þ Q

R

� �� �
$dp � udX� RX / 1þ Q

R

� �
dp$ � udXþ

� RC / Un � unð ÞdpdC ¼ 0

8>>>>>>>>>><>>>>>>>>>>:
; ð7Þ
where du and dp are admissible variations of the solid phase displacement vector and the interstitial fluid pressure of the
poro-elastic medium, respectively. Considering that r uð Þ ¼ Ce uð Þ ¼ C 1

2 $uþ $uT
� �

, and introducing the shift cell operator
as explained above, one obtains:
R

X C 1
2 $þ jkð Þuþ $þ jkð ÞuT
� �� �

: $� jkð Þduþ $� jkð ÞduT
� �

dXþ
�x2

R
X
~qu � dudX� RX ~cþ / 1þ Q

R

� �� �
$þ jkð Þp � dudXþ

� RX / 1þ Q
R

� �
p $� jkð Þ � dudX ¼ 0R

X
/2

x2 ~q22
$þ jkð Þp � $� jkð ÞdpdXþ

� RX /2

R pdpdX� RX ~cþ / 1þ Q
R
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$� jkð Þdp � udXþ

� RX / 1þ Q
R

� �
dp $þ jkð Þ � udX ¼ 0

8>>>>>>>>>>>><>>>>>>>>>>>>:
; ð8Þ
where the boundary condition caused the integral on the boundary to vanish. Therefore, one can define the following
quantities:

� brh uð Þ ¼ Ceh uð Þ, whose generic term is brhij ¼ l1 � Q2

R

� �
dijehkk þ 2l2ehij;

� eh uð Þ ¼ 1
2 huþ huT
� �

.

Therefore:
R
X
br uð Þ : e duð ÞdXþ jk

R
X
brh uð Þ : e duð ÞdXþ

�jk
R
X
br uð Þ : eh duð ÞdXþ k2

R
X
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�x2
R
X
~qu � dudX� RX ~cþ / 1þ Q

R
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$þ jkð Þp � dudXþ

� RX / 1þ Q
R

� �
p $� jkð Þ � dudX ¼ 0R

X
/2

x2 ~q22
$p � $dpdXþ jk

R
X

/2

x2 ~q22
h � p$dpdXþ

�jk
R
X

/2

x2 ~q22
h � $pdpdXþ k2

R
X

/2

x2 ~q22
pdpdX� RX /2

R pdpdXþ
� RX ~cþ / 1þ Q

R

� �� �
$dp � udXþ jk

R
X

~cþ / 1þ Q
R
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h � dpudXþ

� RX / 1þ Q
R

� �
dp$ � udX� jk

R
X / 1þ Q

R

� �
h � dpudX ¼ 0

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

; ð9Þ
which can be written in a more structured form, as:
R
X
br uð Þ : e duð ÞdXþ jk

R
X
brh uð Þ : e duð Þ � br uð Þ : eh duð Þ
� �

dXþ
þk2

R
X
brh uð Þ : eh duð ÞdX�x2

R
X
~qu � dudX� RX ~c$p � dudXþ

�jk
R
X
~ch � pdudX� RX / 1þ Q

R

� �
$p � duþ p$ � duð ÞdX ¼ 0R

X
/2

x2 ~q22
$p � $dpdXþ jk

R
X

/2

x2 ~q22
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R
X
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R
X
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$dp � uþ dp$ � uð ÞdX ¼ 0

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
: ð10Þ
Finally, one can discretize the weak formulation through the FE Method: considering that us and uf are the eigenvectors
of the solid and fluid parts respectively, the system of equations can be written in its matrix form:
Ks þ jkLs þ k2Hs �x2Ms

� �
us � Ns þ jkOs þ Ts

� �
uf ¼ 0

Kf þ jkLf þ k2Hf �x2Mf

� �
uf �x2 Nf � jkOf þ Tf

� �
us ¼ 0

� ;

8><>: ð11Þ
with the following matrices (/ means ‘‘proportional to”):
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� Ks /
R
X
br uð Þ : e duð ÞdX;

� Ls /
R
X
brh uð Þ : e duð Þ � br uð Þ : eh duð Þ
� �

dX;

� Hs /
R
X
brh uð Þ : eh duð ÞdX;

� Ms /
R
X
~qu � dudX;

� Ns /
R
X
~c$p � dudX;

� Os /
R
X
~ch � pdudX;

� Ts /
R
X / 1þ Q

R

� �
$p � duþ p$ � duð ÞdX;

� Kf /
R
X

/2

~q22
$p � $dpdX;

� Lf /
R
X

/2

~q22
h � p$dp� h � $pdpð ÞdX;

� Hf /
R
X

/2

~q22
pdpdX;

� Mf /
R
X

/2

R pdpdX;

� Nf /
R
X
~c$dp � udX;

� Of /
R
X
~ch � dpudX;

� Tf /
R
X / 1þ Q

R

� �
$dp � uþ dp$ � uð ÞdX.

Here, Ms;f and Ks;f are respectively the symmetric mass and symmetric stiffness matrices, Ls;f are skew-symmetric matrices,

Hs;f are symmetric matrices and Ns ¼ NT
f ;Os ¼ OT

f and Ts ¼ TT
f are the matrices that couple the solid and fluid behaviors; all of

them are complex and frequency-dependent. Therefore, the coupled system can be written as it follows:
Ks þ jkLs þ k2Hs �x2Ms

� �
� Nf � jkOf þ Tf

� �
� Ns þ jkOs þ Ts

� �
1
x2 Kf þ jkLf þ k2Hf �x2Mf

� �
264

375 us

uf

 !
¼ 0

0

� �
: ð12Þ
The details of the FE implementation are given in B.
3. Validation of the method

In order to validate the shift cell technique implementation for Biot-modeled foams and for waves propagating along the
x-axis, two different comparisons are provided: one with an application of the shift cell approach to an equivalent fluid [19],
and another one with a WFEM analysis performed on a Biot-modeled foam [25].
3.1. Biot model with shift cell vs. JCA model with shift cell

The first considered system is a homogeneous foam with material properties shown in Table 1, represented by a cubic
unit cell having a volume of 8 cm3, with periodicity in three directions and mesh composed by 10 thetraedral elements along
each side of the cube. The second case is constructed by introducing a rigid cylindrical inclusion with radius equal to 0.5 cm
at the center of the previous unit cell, as shown in Fig. 1.

In Figs. 2 and 3, dispersion curves of two different systems with an artificially high value of frame Young modulus
(E ¼ 1015 Pa) and nullified loss factor, such that the rigid frame assumption would be valid, are calculated using the shift cell
approach and compare the results obtained through the Biot model with those calculated using a Johnson-Champoux-Allard
(JCA) [30,31] equivalent fluid [19]. Therefore, the elasticity of the skeleton is neglected and the Biot model essentially
describes the behavior of the equivalent fluid one. The distinction between propagative and evanescent waves is obtained,
in a first approximation, through the application of the 1st classifying criterion described by Magliacano et al. [19] for equiv-
alent fluids.
Table 1
Properties of a PU 60 foam.

Porosity 0.98 Density [kg/m3] 22.1
Tortuosity 1.17 Young modulus [kPa] 70 + j9
Resistivity [Pa*s/m2] 3750 Shear modulus [kPa] 25 + j7
Viscous char. length [mm] 0.11 Loss factor 0.265
Thermal char. length [mm] 0.742 Poisson ratio 0.39



Fig. 1. 3D unit cell constituted by a 2 cm cube, homogeneous (on the left) and with a 5 mm radius cylindrical hole (on the right).
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Fig. 2. Dispersion curves validation with JCA plots; here, the Biot curves are computed for a homogeneous PU 60 foam, with E ¼ 1015 Pa and structural loss
factor = 0.
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Fig. 3. Dispersion curves validation with JCA plots; here, the Biot curves are computed for a PU 60 foam with a perfectly rigid cylindrical inclusion, with
E ¼ 1015 Pa and structural loss factor = 0.
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Looking at Figs. 2 and 3, it can be noticed that the comparison shows an almost perfect agreement between the results of
the shift cell technique applied on the two different foam models. The advantage of using Biot model, for which the shift cell
approach is developed herein, relies on the fact that, as already introduced in Section 1, in some cases (for example:
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low-frequency acoustic loads, or mechanical excitations) waves can propagate in both fluid and solid phases. In those con-
texts, motionless skeleton models cannot be used and a more general diphasic model (like Biot’s one) is required in order to
describe the poro-elastic behavior of the foam [32]. Moreover, if the frequency range of the study is under the decoupling
frequency, which is located at high frequencies for foams with high value of flow resistivity, the equivalent fluid model pre-
diction deviates significantly from the Biot theory; therefore, also in these cases it is necessary to use the latter, in order to
have an accurate overview of the wave propagation in the medium. In addition, as it is more clear in Figs. 4 and 5, the shift
cell approach is capable to catch the behavior of the three types of waves propagating in a porous material with elastic frame.

3.2. Biot model with shift cell vs. Biot model with WFEM

In this validation case, shift cell results are compared to those obtained by Serra et al. [25] using the Wave Finite Element
Method [33] (labeled as ‘‘reference” in Figs. 4 and 5). Parameters of foam and air used in this validation case can be found in
Appendix B of Serra et al. [25], and are reported here in Tables 2 and 3. In the case of poro-elastic media the rigidity of the
material is very low, leading to very small wavelengths, and a high dissipation rate occurs within the pores; despite these
difficulties, in the paper by Serra et al. [25] it is shown that the WFEM provides an efficient tool to compute the waves prop-
agating through poro-elastic media.

This validation is also performed with curves computed through the analytical model described in Section 2.1. As it is
clear in Figs. 4 and 5, wavenumbers calculated using the shift cell approach applied to a Biot-modeled foam completely agree
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Fig. 4. Dispersion curve comparison with the reference (WFEM by Serra et al. [25]), and analytical model; real part of the wavenumber.

200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency [Hz]

-30

-25

-20

-15

-10

-5

0

Im
(k

) 
[1

/m
]

Fast wave (reference)
Shear wave (reference)
Slow wave (reference)
Fast wave (analytical)
Shear wave (analytical)
Slow wave (analytical)
Shift cell
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Table 2
Properties of the foam used in the validation with the work by Serra et al. [25].

Porosity 0.96 Density [kg/m3] 30
Tortuosity 1.7 Young modulus [kPa] 733 + j73
Resistivity [Pa*s/m2] 32000 Shear modulus [kPa] 264 + j26
Viscous char. length [mm] 0.09 Loss factor 0.1
Thermal char. length [mm] 0.165 Poisson ratio 0.387

Table 3
Properties of the air used in the validation with the work by Serra et al. [25].

Ambient fluid density [kg/m3] 1.21
Ambient fluid dynamic viscosity [N/(m*s)] 1.84*10�5

Standard pressure [Pa] 101325
Heat capacity ratio 1.4
Prandtl’s number 0.71
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with those calculated through the analytical model; moreover, it can be seen that the slow compressional wave is highly
attenuated.

The shift cell approach has several advantages, in terms of linearity and convergence, compared to the WFEM. Indeed, as
described by Serra et al. [25], the WFEM applied to Biot-modeled foams leads to a transcendental eigenvalue problem that
can be solved only by using a nonlinear solver. However, there are still a lot of numerical difficulties, and robust solutions
have not yet been developed [34].

In the case of WFEM, the use of 10 elements per wavelength in the three directions is recommended as a rule of the
thumb [25]. Under the hypotheses of plane wave, the use of the shift cell approach leads directly to a quadratic eigenvalue
problem, with no assumption on the nature of the waves, whose accuracy only depends on the mesh chosen to discretize the
system.
4. Conclusions

An efficient way to enhance the low frequency performances of sound packages consists in embedding periodic inclusions
in a poro-elastic layer, in order to create wave interferences or resonance effects that may be advantageous for the dynamics
of the system. This work develops the shift cell technique as a numerical tool to investigate the dispersion characteristics of
periodic Biot-modeled poro-elastic media, providing details on its FEM implementation too; this approach allows to obtain
dispersion characteristics of frequency-dependent damped materials through the resolution of a quadratic eigenvalue prob-
lem, whose accuracy only depends on the FEM meshing. A first validation of the shift cell approach for Biot-modeled poro-
elastic materials has been obtained through a comparison with the results obtained on a JCA-modeled 3D unit cell, both in a
homogeneous configuration and with a perfectly rigid cylindrical inclusion. For this purpose, the elasticity of the foam skele-
ton has been neglected and therefore the Biot model essentially described the behavior of an equivalent fluid, thus allowing
the comparison between dispersion curves obtained through the application of the shift cell approach to Biot-modeled foams
and equivalent fluids.

An additional validation has then been carried out through a comparison of the shift cell results with those obtained using
the Wave Finite Element Method, and those computed through an analytical model that is valid for infinite homogeneous
isotropic poro-elastic media; in this context, compared to the WFEM, the shift cell technique shows significant computa-
tional advantages. The outcome of this research is very promising, since the methodological basis and its validations are
given in order to trace future characterizations and applications of periodic poro-elastic media in acoustics.
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Appendix A. Quantities defined in Biot model of poro-elasticity

� A1 ¼ x2 ~q11R�2 ~q12Qþ ~q22P
RP�Q2 ;

� A2 ¼ x4 ~q11 ~q22� ~q12
2

RP�Q2 ;

� ~q11; ~q12 and ~q22 are parameters depending on the nature and the geometry of the poro-elastic medium and the density of
the fluid; in particular: ~q11 ¼ q1 þ qa þ b

jx ; ~q12 ¼ �qa � b
jx ; ~q22 ¼ /q0 þ qa þ b

jx;

� q0 is the bulk density of the fluid phase;
� q1 is the bulk density of the solid phase;
� qa ¼ /q0 a1 � 1ð Þ is an inertial coupling term;
� b ¼ r/2G xð Þ is the viscous drag;

� G xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ja21gviscq0x

rK/ð Þ2

r
is the relaxation function, as predicted by JCA model [30,31];

� ~q ¼ ~q11 � ~q12
2

~q22

� �
;

� P;Q ;R are elasticity coefficients to be determined by ‘‘gedanken experiments” [21]; in particular [20]:

P ¼ 1�/ð Þ 1�/�KB
KSð ÞKSþ/KBKS

KF

1�/�KB
KSþ/KS

KF
� 2

3N ffi 1þ m
1�2m

� �
2N þ 1�/2

/ KF;Q ¼ 1�/�KB
KSð Þ/KS

1�/�KB
KSþ/KS

KF
ffi 1� /ð ÞKF;R ¼ /2KS

1�/�KB
KSþ/KS

KF
ffi /KF;

� N ¼j N j 1þ jgð Þ ¼ Y
2 1þmð Þ is the complex shear modulus of the frame;

� Y ¼j Y j 1þ jgð Þ is the complex Young modulus of the frame;
� g is the loss factor of the frame;
� m is the Poisson’s ratio of the frame;
� KB ¼ 2N mþ1ð Þ

3 1�2mð Þ is the bulk modulus of the solid phase in vacuum;

� KS ¼ KB
1�/ is the bulk modulus of the solid phase;

� KF is the bulk modulus of the fluid phase, computed starting from the equivalent one (e.g.: KF ¼ /KJCA);

� ~c ¼ /
~q12
~q22
� Q

R

� �
;

� li ¼ Pd2i �x2 ~q11

x2 ~q12�Qd2i
; i ¼ 1;2 is the ratio of the velocity of the air over the velocity of the frame for the two compressional waves

and indicates in what medium the waves propagate preferentially.

Appendix B. Finite element implementation

In order to numerically implement the shift cell technique for Biot-modeled foams, the vector equation related to the
motion of the solid part is split into three scalar equations. The following matrices are defined accordingly:
u ¼
u

v
w

0B@
1CA; $u ¼

@u
@x

@v
@x

@w
@x

@u
@y

@v
@y

@w
@y

@u
@z

@v
@z

@w
@z

264
375; hu ¼

hxu hxv hxw

hyu hyv hyw

hzu hzv hzw

264
375; ð13Þ

e uð Þ ¼

@u
@x

1
2

@u
@y þ @v

@x

� �
1
2

@u
@z þ @w

@x

� �
1
2

@u
@y þ @v

@x

� �
@v
@y

1
2

@v
@z þ @w

@y

� �
1
2

@u
@z þ @w

@x

� �
1
2

@v
@z þ @w

@y

� �
@w
@z

266664
377775; ð14Þ

eh uð Þ ¼
hxu 1

2 hyuþ hxv
� �

1
2 hzuþ hxwð Þ

1
2 hyuþ hxv
� �

hyv 1
2 hzv þ hyw
� �

1
2 hzuþ hxwð Þ 1

2 hzv þ hyw
� �

hzw

264
375; ð15Þ

br uð Þ ¼

C11
@u
@x þ C12

@v
@y þ @w

@z

� �
C11 � C12ð Þ 1

2
@u
@y þ @v

@x

� �
C11 � C12ð Þ 1

2
@u
@z þ @w

@x

� �
C11 � C12ð Þ 1

2
@u
@y þ @v

@x

� �
C11

@v
@y þ C12

@u
@x þ @w

@z

� �
C11 � C12ð Þ 1

2
@v
@z þ @w

@y

� �
C11 � C12ð Þ 1

2
@u
@z þ @w

@x

� �
C11 � C12ð Þ 1

2
@v
@z þ @w

@y

� �
C11

@w
@z þ C12

@u
@x þ @v

@y

� �
266664

377775 ð16Þ
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brh uð Þ ¼
C11hxuþ C12 hyv þ hzw

� �
C11 � C12ð Þ 1

2 hyuþ hxv
� �

C11 � C12ð Þ 1
2 hzuþ hxwð Þ

C11 � C12ð Þ 1
2 hyuþ hxv
� �

C11hyv þ C12 hxuþ hzwð Þ C11 � C12ð Þ 1
2 hzv þ hyw
� �

C11 � C12ð Þ 1
2 hzuþ hxwð Þ C11 � C12ð Þ 1

2 hzv þ hyw
� �

C11hzwþ C12 hxuþ hyv
� �

264
375 ð17Þ
The numerical model is based on the following matrix weak formulation, proposed to provide an expression optimized for
the FE implementation:

� Ks;u / RX C11
@u
@x þ C12

@v
@y þ @w

@z

� �� �
@du
@x þ C11 � C12ð Þ 1

4
@u
@y þ @v

@x

� �
@du
@y þ @dv

@x

� �
þ @u

@z þ @w
@x

� �
@du
@z þ @dw

@x

� �� �� �
dX;

� Ls;u / RX C11hxuþ C12 hyv þ hzw
� �� �

@du
@x þ C11 � C12ð Þ 1

4 hyuþ hxv
� �

@du
@y þ @dv

@x

� �
þ hzuþ hxwð Þ @du

@z þ @dw
@x

� �� �
�

�
C11

@u
@x þ C12

@v
@y þ @w

@z

� �� �
hxdu� C11 � C12ð Þ 1

4
@u
@y þ @v

@x

� �
hyduþ hxdv
� �þ @u

@z þ @w
@x

� �
hzduþ hxdwð Þ

� ��
dX;

� Hs;u / RX C11hxuþ C12 hyv þ hzw
� �� �

hxduþ C11 � C12ð Þ 1
4 hyuþ hxv
� �

hyduþ hxdv
� �þ hzuþ hxwð Þ hzduþ hxdwð Þ� �� �

dX;

� Ms;u / RX ~qududX;

� Ns;u / RX ~c @p
@x dudX;

� Os;u / RX ~ch1pdudX;

� Ts;u / RX / 1þ Q
R

� �
@p
@x duþ p @du

@x

� �
dX;

� Ks;v / RX C11
@v
@y þ C12

@u
@x þ @w

@z

� �� �
@dv
@y þ C11 � C12ð Þ 1

4
@u
@y þ @v

@x

� �
@du
@y þ @dv

@x

� �
þ @v

@z þ @w
@y

� �
@dv
@z þ @dw

@y

� �� �� �
dX;

� Ls;v / RX C11hyv þ C12 hxuþ hzwð Þ� �
@dv
@y þ C11 � C12ð Þ 1

4 hyuþ hxv
� �

@du
@y þ @dv

@x

� �
þ hzv þ hyw
� �

@dv
@z þ @dw

@y

� �� ��
� C11

@v
@y þ C12

@u
@x þ @w

@z

� �� �
hydv � C11 � C12ð Þ 1

4
@u
@y þ @v

@x

� �
hyduþ hxdv
� �þ @v

@z þ @w
@y

� �
hzdv þ hydw
� �� ��

dX;

� Hs;v / RX C11hyv þ C12 hxuþ hzwð Þ� �
hydv þ C11 � C12ð Þ 1

4 hyuþ hxv
� �

hyduþ hxdv
� �þ hzv þ hyw

� �
hzdv þ hydw
� �� �� �

dX;

� Ms;v / RX ~qvdvdX;

� Ns;v / RX ~c @p
@y dvdX;

� Os;v / RX ~ch2pdvdX;

� Ts;v / RX / 1þ Q
R

� �
@p
@y dv þ p @dv

@y

� �
dX;

� Ks;w / RX C11
@w
@z þ C12

@u
@x þ @v

@y

� �� �
@dw
@z þ C11 � C12ð Þ 1

4
@v
@z þ @w

@y

� �
@dv
@z þ @dw

@y

� �
þ @u

@z þ @w
@x

� �
@du
@z þ @dw

@x

� �� �� �
dX;

� Ls;w / RX C11hzwþ C12 hxuþ hyv
� �� �

@dw
@z þ C11 � C12ð Þ 1

4 hywþ hzv
� �

@dw
@y þ @dv

@z

� �
þ hzuþ hxwð Þ @du

@z þ @dw
@x

� �� ��
� C11

@w
@z þ C12

@u
@x þ @v

@y

� �� �
hzdw� C11 � C12ð Þ 1

4
@w
@y þ @v

@z

� �
hydwþ hzdv
� �þ @u

@z þ @w
@x

� �
hzduþ hxdwð Þ

� �
ÞdX;

� Hs;w / RX C11hzwþ C12 hxuþ hyv
� �� �

hzdwþ C11 � C12ð Þ 1
4 hywþ hzv
� �

hydwþ hzdv
� �þ hzuþ hxwð Þ hzduþ hxdwð Þ� �� �

dX;

� Ms;w / RX ~qwdwdX;

� Ns;w / RX ~c @p
@z dwdX;

� Os;w / RX ~ch3pdwdX;

� Ts;w / RX / 1þ Q
R

� �
@p
@z dwþ p @dw

@z

� �
dX;

� Kf /
R
X

/2

~q22

@p
@x

@dp
@x þ @p

@y
@dp
@y þ @p

@z
@dp
@z

� �
dX;

� Lf /
R
X

/2

~q22
p @dp

@x h1 þ @dp
@y h2 þ @dp

@z h3
� �

� @p
@x h1 þ @p

@y h2 þ @p
@z h3

� �
dpdX;

� Hf /
R
X

/2

~q22
pdpdX;

� Mf /
R
X

/2

R pdpdX;

� Nf /
R
X
~c u @dp

@x þ v @dp
@y þw @dp

@z

� �
dX;

� Of /
R
X
~c h1uþ h2v þ h3wð ÞdpdX;

� Tf /
R
X / 1þ Q

R

� �
@dp
@x uþ @dp

@y v þ @dp
@z w

� �
þ dp @u

@x þ @v
@y þ @w

@z

� �� �
dX.

References

[1] L. Cao, Q. Fu, Y. Si, B. Ding, J. Yu, Porous materials for sound absorption, Compos. Commun. 10 (2018) 25–35.
[2] X.D. Zhao, Y.J. Yu, Y.J. Wu, Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate

combined with helmholtz resonators, Appl. Acoust. 114 (2016) 92–98.
[3] C. Cai, C.M. Mak, Noise attenuation capacity of a helmholtz resonator, Adv. Eng. Softw. 116 (2018) 60–66.

http://refhub.elsevier.com/S0888-3270(20)30475-1/h0005
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0010
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0010
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0015


D. Magliacano et al. /Mechanical Systems and Signal Processing 147 (2021) 107089 11
[4] F. Yildiz, A.G. Parlar, Z. Parlar, M. Bakkal, Properties of sound panels made from recycled footwear treads, Acta Phys. Pol. A 132 (3) (2017) 936–940.
[5] L. Lv, J. Bi, C. Wei, X. Wang, Y. Cui, H. Liu, Effect of micro-slit plate structure on the sound absorption properties of discarded corn cob husk fiber, Fibers

Polym. 16 (7) (2015) 1562–1567.
[6] U. Berardi, G. Iannace, Acoustic characterization of natural fibers for sound absorption applications, Build. Environ. 94 (2015) 840–852.
[7] X. Xinzhao, L. Guoming, L. Dongyan, S. Guoxin, Y. Rui, Electrically conductive graphene-coated polyurethane foam and its epoxy composites, Compos.

Commun. 7 (2018) 1–6.
[8] J.-P. Groby, B.N.C. Lagarrigue, B. Brouard, O. Dazel, et al., Using simple shape three-dimensional inclusions to enhance porous layer absorption, J.

Acoust. Soc. Am. 136 (1139)..
[9] Y. Yang, B.R. Mace, M.J. Kingan, Wave and finite element method for predicting sound transmission through finite multi-layered structures with fluid

layers, Comput. Struct..
[10] T. Weisser, Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions by a multiple scattering approach, J. Acoust. Soc.

Am. 139 (2) (2016) 617–629.
[11] M. Gaborit, O. Dazel, P. Gransson, A simplified model for thin acoustic screens, J. Acoust. Soc. Am. 144 (1) (1962) 76–81.
[12] J.-P. Groby, A. Wirgin, L.D. Ryck, W. Lauriks, R.P. Gilbert, Y.S. Xu, Acoustic response of a rigid-frame porous medium plate with a periodic set of

inclusions, J. Acoust. Soc. Am. 126 (2) (2009) 685–693.
[13] L. Xiong, B.Y. Nennig, Aurriodiques fonctionnels pour lgan, W. Bi, Sound attenuation optimization using metaporous materials tuned on exceptional

points, J. Acoust. Soc. Am. 142 (4) (2017) 2288–2297.
[14] M. Biot, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 33 (4) (1962) 1482–1498.
[15] E. Detournay, A.H.-D. Cheng, Fundamentals of poroelasticity, Comprehensive Rock Eng.: Principles Practice Projects 2 (1993) 113–171.
[16] M. Collet, M. Ouisse, M. Ruzzene, M.N. Ichchou, Floquet-bloch decomposition for the computation of dispersion of two-dimensional periodic, damped

mechanical systems, Int. J. Solids Struct. 48 (20) (2011) 2837–2848.
[17] K. Billon, M. Ouisse, E. Sadoulet-Reboul, M. Collet, P. Butaud, G. Chevallier, A. Khelif, Design and experimental validation of a temperature-driven

adaptive phononic crystal slab, Smart Mat. and Struct. (2019) 1–23 (in review).
[18] M. Collet, M. Ouisse, F. Tateo, Adaptive metacomposites for vibroacoustic control applications, IEEE Sens. J. 14 (7) (2014) 2145–2152.
[19] D. Magliacano, M. Ouisse, A. Khelif, S.D. Rosa, F. Franco, N. Atalla, M. Collet, Computation of dispersion diagrams for periodic porous materials modeled

as equivalent fluids, Mech. Syst. Signal Process. 130 (2019) 692–706.
[20] E. Deckers, S. Jonckheere, D. Vandepitte, Modelling techniques for vibro-acoustic dynamics of poroelastic materials, Arch. Comput. Methods Eng. 22

(2015) 183–236.
[21] J.F. Allard, N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, second ed., Wiley, 2009.
[22] N. Atalla, R. Panneton, P. Debergue, A mixed displacement-pressure formulation for poroelastic materials, J. Acoust. Soc. Am. 103 (3) (2002) 1444–

1452.
[23] O.C. Zienkiewicz, T. Shiomi, Dynamic behaviour of saturated porous media; the generalized biot formulation and its numerical solution, Int. J. Rock

Mech. Min. Sci. 21(3)..
[24] N. Atalla, M.A. Hamdi, R. Panneton, Enhanced weak integral formulation for the mixed (u, p) poroelastic equations, J. Acoust. Soc. Am. 109 (6) (2002)

3065–3068.
[25] Q. Serra, M.N. Ichchou, J. Deu, Wave properties in poroelastic media using a wave finite element method, J. Sound Vib. 335 (2015) 125–146.
[26] K. Billon, Composites périodiques fonctionnels pour l’absorption vibroacoustique large bande, 2017..
[27] G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques [On the linear differential equations with periodic coefficients], Ann. Sci.

l’École norm. Supérieure 12(2)..
[28] A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis of Periodic Structures, Elsevier, 1978.
[29] F. Bloch, Uber die quantenmechanik der elektronen in kristallgittern [On the quantummechanics of the electrons in crystal lattices], Z. Phys. 52 (1928)

555–600.
[30] D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech. 176 (1) (1987) 379–

402.
[31] Y. Champoux, J.F. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous media, J. Appl. Phys. 70 (4) (1991) 1975–1979.
[32] M.R. Stinson, The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional

shape, J. Acoust. Soc. Am. 89 (2) (1991) 550–558.
[33] W.X. Zhong, F.W. Williams, On the direct solution of wave propagation for repetitive structures, J. Sound Vib. 181 (3) (1995) 485–501.
[34] N. Dauchez, S. Sahraoui, N. Atalla, Convergence of poroelastic finite elements based on biot displacement formulation, J. Acoust. Soc. Am. 109 (2001)

33–40.

http://refhub.elsevier.com/S0888-3270(20)30475-1/h0020
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0025
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0025
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0030
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0035
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0035
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0050
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0050
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0055
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0060
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0060
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0065
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0065
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0070
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0075
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0080
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0080
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0085
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0085
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0090
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0095
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0095
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0100
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0100
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0105
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0105
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0110
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0110
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0120
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0120
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0125
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0140
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0140
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0145
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0145
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0150
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0150
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0155
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0160
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0160
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0165
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0170
http://refhub.elsevier.com/S0888-3270(20)30475-1/h0170

	Formulation and validation of the shift cell technique for acoustic applications of poro-elastic materials described by the Biot theory
	1 Introduction
	2 Shift cell operator technique for Biot-modeled foams
	2.1 Biot theory
	2.2 Shift cell operator technique
	2.2.1 Introduction
	2.2.2 Weak formulation


	3 Validation of the method
	3.1 Biot model with shift cell vs. JCA model with shift cell
	3.2 Biot model with shift cell vs. Biot model with WFEM

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Quantities defined in Biot model of poro-elasticity
	Appendix B Finite element implementation
	References


