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Abstract
Egocentric (self-centered) and allocentric (viewpoint independent)
representations of space are essential for spatial navigation and wayfinding.
Deficits in spatial memory come with age-related cognitive decline, are marked
in mild cognitive impairment (MCI) and Alzheimer’s disease (AD), and are
associated with cognitive deficits in autism. In most of these disorders, a
change in the brain areas engaged in the spatial reference system processing
has been documented. However, the spatial memory deficits observed during
physiological and pathological aging are quite different. While patients with AD
and MCI have a general spatial navigation impairment in both allocentric and
egocentric strategies, healthy older adults are particularly limited in the
allocentric navigation, but they can still count on egocentric navigation strategy
to solve spatial tasks. Therefore, specific navigational test should be
considered for differential diagnosis between healthy and pathological aging
conditions. Finally, more research is still needed to better understand the
spatial abilities of autistic individuals.
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Introduction
Successful navigation is a fundamental cognitive function that 
is crucial for survival. Humans, like other animals, must learn  
about the layout of their environments to return home, or move 
between known locations. The spatial reference frame used to  
locate positions and directions in a complex environment are 
commonly divided into two main systems: egocentric (subject- 
centered) and allocentric (object-centered)1,2. During navigation, 
information in both egocentric and allocentric reference frames 
can be integrated to provide a coherent representation of the  
environment and proper orientation.

Egocentric frames define spatial positions using the body, or a 
specific part of the body (head or trunk) as a point of reference  
(Figure 1)3–5. Allocentric reference frame codes the position of 
the target relative to surrounding visual cues or landmarks and  
their spatial relationships, independently of the observer’s  
current position6. Such information can be used to build a “cogni-
tive map”, a sort of internal representation of the environment7.

Typically, the egocentric strategy relies upon kinesthetic and 
vestibular sensory information as well as motor command  
efferent copies, and optokinetic flow information as the sub-
ject moves past surrounding objects8. Egocentric learning abil-
ity has been demonstrated in paradigms in which animals must  
repeat a sequence of responses or movements toward a target, 
e.g., turning to the left, or reaching a fixed goal from a fixed  
starting point. Egocentric spatial orientation is likely to occur 
in the absence of external allothetic visual cues—e.g., in total  
darkness or in water maze with high and opaque walls that do 
not allow the use of extramaze cues. However, learning occurs  
relatively slowly in the water maze in darkness9,10, due to cumu-
lative errors of the vestibular system, which are not corrected 
by visual inputs11. Egocentric navigation is also associated with  
path integration, a strategy of spatial navigation that uses  
vestibular and proprioceptive cues generated during locomo-
tion to keep track of position relative to a known starting point12.  
Path integration or dead reckoning is, for example, used by  
foraging animals, such as desert ants and honeybees, to search 
for food along novel routes extending hundreds of meters13. After  
reaching the site, those animals show an impressive level of  

accuracy at returning back to the nest using only the idiothetic  
cues generated by their movements. Environmental allothetic  
cues can be used to correct heading direction. Path integration 
can also be assessed in human subjects walking blindfolded to a  
previously seen target or asking them to estimate the distance  
and direction traveled while walking blindfolded14.

Neuronal basis of egocentric navigation
Behavioral and brain imaging studies indicate that egocentric 
and allocentric strategies are mediated by a different cognitive- 
neural system, with some degree of overlapping. Egocentric- 
based navigation relies mainly on the posterior parietal cortex  
(PPC; Figure 2) whereas hippocampus and parahippocampal  
cortex are crucial for allocentric navigation15,16. The activity in 
the caudated nucleus has also been associated with egocentric  
tasks requiring a response strategy, such as following a well- 
learned route in a virtual city17.

Role of the posterior parietal cortex
The importance of PPC in egocentric navigation has been  
demonstrated by lesion studies in rodents and humans as well as  
by functional MRI (fMRI) studies in healthy subjects. Rogers and 
Kesner18 have found that rats with selective lesions of the right  
posterior parietal cortex were impaired in the acquisition of the  
egocentric version of the water maze task, in the absence of 
extramaze cues, but had no difficulty in learning the allocentric  
version of the task, when extramaze cues were available. Rats 
with PPC lesions are also strongly impaired in path integration- 
based navigation under conditions in which visual inputs are  
irrelevant19. For example, they are unable to locate the escape  
platform in a water maze when tested in complete darkness or 
to return directly to the refuge after searching for a randomly 
located food reward on a circular arena surrounded by a curtain,  
suggesting that the PPC plays an important role in idiothetic  
processing during path integration. Furthermore, single-unit  
recording data have demonstrated that a substantial fraction of 
cells in PPC of rats responds selectively to head orientation or to  
locomotion such as forward motion to the left or right20–22.

The involvement of PPC in egocentric spatial processing has also 
been observed in humans as they navigated to goal destinations  

Figure 1. To reach the goal (bridge on the river), the subject can reproduce a sequence of left-right body turns (egocentric strategy) 
or use environmental cues (allocentric strategy).
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in the virtual simulation of London23. Analysis of the fMRI data 
revealed that the activity in bilateral PPC was significantly cor-
related with the egocentric direction to the goal. Additional  
evidence in support of a role of PPC in egocentric based spatial 
navigation comes from patients with PPC damage following  
cerebral infarction or hemorrhage in the right hemisphere24,25. 
Lesion of PPC can result in a contralateral neglect i.e. inattention  
to objects and space on the body opposite to the brain damage. 
Patients with neglect lose the ability to represent the location 
of objects (and landmarks) with respect to the self, though the  
landmarks are still recognizable. Indeed, they can get lost in 
their homes as they ignore left-hand turns or doorway. Neglect of  
representational space has been clearly described by Bisiach  
and Luzzatti26. They asked patients with left-sided neglect to 
recall the layout of the Piazza del Duomo in Milan, a place very  
familiar to them. When imagining themselves facing the  
cathedral in the middle of the piazza, such patients neglected the 
left side of the piazza, recalling only the right side; however, when 
asked to view the piazza from the opposite end, they recalled 
the previously neglected buildings. An impairment of egocen-
tric processing of remote spatial memory has also been observed 
in patients with focal lesion of PPC without clinical signs of  
neglect25. In particular, when examined on mental navigation  
tasks in a very familiar environment (i.e., downtown Toronto), 
such patients were impaired on tasks that involved egocentric  
mental views of places such as describing an efficient route 
from one specific Toronto landmark to another. However, they  
showed preserved allocentric knowledge of the same environ-
ment, as they were able to indicate the location of landmarks on  
a map of Toronto or draw a map of the streets of Toronto.

Anatomical studies support the important role of PPC in  
processing egocentric spatial information27. Indeed, PPC receives 
and integrates signals from cortical areas representing all main 
sensory modalities, such as vision, audition, proprioceptive, and  
vestibular. In addition, it is connected to cortical regions involved 
in goal-directed behavior such as the orbitofrontal, and medial 
prefrontal cortices and the striatum28. The parietal cortex is also  
reciprocally connected with the hippocampal formation via the  
retrosplenial and the postrhinal cortex29.

Role of the striatal complex
Potegal30 was the first to suggest that the striatal complex is  
involved in processing egocentric information; he based his  
hypothesis on the observation that patients with Huntington’s  
disease, which are affected by neurodegeneration of striatal  
neurons, were impaired when using the egocentric frame of  
reference.

The striatal complex is part of the basal ganglia nuclei, which 
receive information from the whole cortical mantle (Figure 2). It 
was initially thought that these nuclei were selectively involved 
in the movement control, but more recent evidence clearly  
indicates that the basal ganglia, and in particular the striatum, 
also have important cognitive functions, including learning and 
memory31–36. Neuroanatomical evidence suggests that the striatal 
complex can be further distinguished in at least three differ-
ent sub-regions including the dorsolateral and the dorsomedial  
striatum, corresponding to the putamen and the caudate in 
non-human and human primates, respectively, and the nucleus 
accumbens, which is located in the ventral striatum37. The role 
of these different components in spatial navigation seems to  
follow lateromedial and dorsoventral gradient. The dorsolateral 
striatum is involved in all forms of egocentric navigation strat-
egies with little involvement in allocentric navigation32,33,38–43.  
These findings are in line with neuroanatomical evidence show-
ing that this part of the striatal complex receives dense projec-
tions from the PPC and the dorsolateral prefrontal cortex, as 
well as from the vestibular system, which is crucial for egocen-
tric spatial information processing44–46. Both the medial and the 
ventral striatum are involved in egocentric spatial processing.  
However, these brain regions seem to be recruited in egocen-
tric spatial tasks only when complex visuospatial tasks require a 
flexible updating system, like locating the position of a displaced 
object based on its position related to the subject body axes33. The  
medio-ventral striatum receives a direct input from the hip-
pocampal formation47,48 and has been particularly implicated in  
allocentric spatial information processing33,49.

The role of the dorsal striatum in egocentric spatial navigation 
has been attributed to its specific contribution to the formation  

Figure 2. Brain regions involved in egocentric spatial representation.
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of stimulus-response based habit learning50; however, more  
recent evidence in rodents using one-trial learning tasks, such 
as the identification of a displaced object based on the subject  
position, suggests that habit learning and egocentric spatial  
information processing are two distinct functions involving the 
dorsal striatum32,33. This dissociation has been confirmed using an 
outcome evaluation protocol; habit responses are, by definition, 
controlled by the releasing stimulus, and not by the outcome. For 
example, if the subject always takes the same route from home to 
work, it may happen that the subject continues to take the same 
route for days even after the goal has been changed (such as  
moving to another place). This situation has been modeled in  
rodent studies, applying an outcome devaluation protocol after 
a maze learning. Egocentric strategy is initially used to navigate 
in relatively constant environments in a flexible manner35; with 
increasing practice, the egocentric responses become habitual 
and resistant to changes in the environment and in the outcome  
value. Indeed, animals continued to turn right (or left) after  
learning even if their starting position has been changed by  
180° or the food they obtained when turning right induced  
malaise. Furthermore, in the same study it was shown that  
deactivation of the dorsomedial striatum and the dorsolateral  
striatum mimicked and abolished, respectively, the effects of  
practice in the shift from egocentric to habit learning35.

Cerebellum and egocentric based motor sequence
Functional neuroimaging studies in humans have demonstrated  
that the cerebellum is activated during virtual navigation tasks 
that can be solved using either sequence-based strategy or place- 
based strategy51. However, the two strategies appeared to involve 
different cerebellar lobules and cortical areas: place-based  
responses revealed the activation of the left cerebellar lobule  
VIIA Crus I, the right hippocampus and the medial parietal  
cortex, whereas for sequence-based response, right lobule VIIA 
Crus I, left hippocampus and medial prefrontal cortex medial  
were coactivated and functionally connected.

Experiments carried out in transgenic mouse model with selec-
tive inhibition of protein kinase C inhibitor (PKCI) in Purkinje  
cells, have brought new insights regarding the role of cerebellum 
in spatial navigation52,53. L7-PKCI transgenic mice lack parallel  
fiber–Purkinje cell long-term depression (LTD), which is consid-
ered the main neural correlate of cerebellar motor learning54–56.  
Interestingly, L7-PKCI mice exhibited disrupted hippocampal 
place cell properties when forced to use self-motion cues, such 
as navigation in total darkness. Consistently with their hippocam-
pal place cell alteration, L7-PKCI mice were unable to navigate 
efficiently toward a goal in the dark, suggesting that the  
cerebellum may shape hippocampal activity during spatial navi-
gation. The main hypothesis is that the cerebellum contributes  
to the formation of spatial representation by combining vestibu-
lar with proprioceptive inputs to generate appropriate informa-
tion about body location in space57–59. The cerebellum appears 
to also be connected with the posterior parietal cortex, that  
encodes self-motion and acceleration22. The interaction between 
PPC and cerebellar lobules has been shown in humans and  
monkeys and is believed to play an important role in planning  
and execution of navigation behavior.

Egocentric navigation in childhood and aging
Studies on spatial abilities in childhood suggest that infants 
use mainly an egocentric reference system and that a gradual 
ability to use allocentric representations is acquired with age.  
Egocentric representation is considered a more elementary mean 
of representing the location of an object than an allocentric 
representation and, therefore, is already present early60,61.  
Acredolo and Evans62 found that 6-month-old infants, trained 
to anticipate the appearance of a face at either their left or right 
and then turned around, continued to look in the same egocentric  
direction after they were rotated to the opposite side of the  
room. The correct use of allocentric representations develops  
progressively with increasing age. A further study carried out in 
children of 5, 7, and 10-year-olds has demonstrated that a high  
percentage of children spontaneously used the egocentric strat-
egy on the virtual reality adaptation of the StarMaze task, repro-
ducing the same sequence of body turns during the probe trials 
as during the training trials63. The allocentric strategy, based on  
landmark guidance, was spontaneously used to solve the task in 
a few percentage of children at 7 and 10 years, but not at 5 years 
of age. However, when the allocentric strategy was imposed, 
the 5- year-olds were able to use allocentric behavior but their  
performance was below that of the 10-year-olds.

The shift from egocentric to allocentric strategy preference  
with increasing age is consistent with the heterogeneity in  
developmental trajectories of subcortical and cortical structures; 
decrease of subcortical and increase of cortical gray matter  
volumes have been described after age 764.

After 60 years of age, there is a clear decline in spatial navigation 
abilities65. Such decline is often related to functional changes of 
the posteromedial, the medial-temporal and the frontal areas66,67.  
Older adults present spatial navigation deficits particularly in  
allocentric navigation, being less effective in forming and using 
the cognitive maps when examined in both virtual and real-life  
versions of the human Morris maze68,69. On the other hand, the  
egocentric spatial navigation and learning is preserved in older 
age. The same results have been confirmed in studies testing 
older adults (71–84 years old) in a real-space human analog of the  
Morris Water Maze70.

Behavioral studies on rodents have confirmed the effect of aging 
on the spatial task performance requiring the use of allocentric  
strategy71. For example, aged mice were impaired in the water  
maze task in which they must remember the location of a  
submerged platform in relation to a series of extra-maze or  
distal cues, with the position of the starting point changing from 
trial to trial72. However, the aged mice performed correctly the  
egocentric spatial task in a T-maze, remembering a sequence of 
movements (such as rotation to the left). These results suggest 
that aging can affect the allocentric and egocentric processing of  
spatial information in a differently way.

These findings are in line with an increased sensitivity of  
brain regions of the medial temporal lobe, including the hippoc-
ampus, to the insult of ageing and associated neurodegenerative  
disorders such as AD.
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Egocentric spatial deficits in developmental disorders: 
the case of autism
Based on neuropsychological literature showing that the use  
egocentric develops before allocentric spatial strategies73,  
altered egocentric spatial ability can be considered an early sign 
of neuro- and psychiatric developmental disorders. This issue is  
generally little explored. However, some studies have addressed  
egocentric spatial information processing in Autism spectrum 
disorder (ASD). ASD is a multifactorial neurodevelopmental  
disorder that can also be secondary to genetic syndromes,  
including DiGeorge syndrome, Optiz syndrome or Fragile X 
syndrome74. ASD manifests with impaired eye contact and com-
munication skills, as well as impaired social interaction75.  
Furthermore, children with autism often present stereotyped  
behavior and self-injury. Visuo-spatial abilities in subjects 
with autism have been investigated. Although in one study, no  
impairment was observed76, more recent studies suggested that 
autistic adults show impaired performance in egocentric spatial 
tasks, when they have to use their body as reference frame77,78.

These deficits have never been directly associated to altered brain 
activation patterns. Interestingly, structural alteration of sub-
cortical regions has been widely identified in autistic children. 
For example, the largest brain morphometric study in ASD to  
date shows that autism is associated with smaller subcortical  
volumes of the pallidum and putamen. Cerebellar cell loss and  
atrophy has also revealed in ASD children79–83.

Impaired subcortical functions in animal models of autism 
have been mainly associated to social behavior impairment, 
with little attention to the possible effects of spatial information  
processing. Behavioral investigation of MID1-null mouse model 
of Opitz G/BBB syndrome (OS), a genetic disorder charac-
terized by mental retardation and brain abnormalities such as  
hypoplasia of the anterior cerebellar vermis, has demonstrated  
that these mice can promptly learn to locate the food in a  
T-maze if the position of the food remains constant relatively to 
extra-maze cues (allocentric strategy), but they are impaired if 
the position of the food is anchored to the animal position in the 
maze (egocentric strategy)84. Impairment of egocentric spatial 
information processing has been also observed in children 
with Williams syndrome (WS), a neurodevelopmental disorder  
resulting from a hemizygous microdeletion of ~25 genes on  
chromosome 7q11.2373,85.

Egocentric spatial abilities impairment correlates with altered  
social performance in ASD. Therefore, understanding the nature 
and the neuronal correlates of egocentric spatial abilities in ASD 
might be relevant to shed light on the nature of other cognitive 
and social deficits characterizing ASD, as evidenced by studies  
linking spatial and social cognitive abilities in ASD86,87.

Egocentric impairments deficits in Alzheimer’s 
disease
Alzheimer’s disease (AD) is a neurodegenerative disorder  
characterized by the accumulation of amyloid plaques and  
neurofibrillary tangle accompanied by neuronal loss88. In the early 
phase of the disease, most patients show cognitive impairments, 

such as memory deficits, language impairment, poor judgment 
and decision making89–91. As the disease progresses, reasoning,  
visual-spatial skills, and sensory processing become increasingly 
affected. The cognitive impairment in patients with AD is closely 
associated with the progressive degeneration of medial temporal 
lobe, including hippocampal formation and entorhinal cortex, 
frontal and parietal cortex and the basal forebrain92,93. Spatial  
navigation deficits, such as becoming disoriented or feeling 
lost in familiar places, represent the first sign of AD, and have,  
therefore, an important clinical utility for the early detection of 
AD94,95. Several studies in recent years have focused on spatial 
deficits in patients with amnestic Mild Cognitive Impairment  
(aMCI), which is considered an intermediate stage between 
the expected cognitive deficit of normal aging and the serious  
decline of dementia. Patients with amnestic MCI, especially those 
with the hippocampal type of amnestic syndrome, are at very  
high risk of AD. The conversion rate from MCI to dementia 
range is about 10% per year; in contrast to conversion rate from  
healthy elderly subjects to dementia which is about 1–2 percent  
per year96. Interestingly, MCI patients are impaired in both  
allocentric and egocentric navigation, as documented by a series 
of study on virtual as well as real navigation. In one of the first  
studies, Hort and collaborators97 tested a group of AD and aMCI 
patients on a goal-directed navigation task within a circular  
arena. The goal was invisible and could be identified either by 
its position relative to the starting position (egocentric subtest) 
or relative to cues on the wall (allocentric subtest). Each subtest 
began with an overhead view of the arena on a computer moni-
tor. Both AD and aMCI were similarly impaired in all types of 
experiments, suggesting that spatial navigation impairment is not 
limited to AD, but begins to decline earlier in MCI. To under-
stand the neural mechanisms behind spatial navigation of AD,  
Weniger and collaborators98 examined a group of patients with 
aMCI on two virtual reality tasks, a virtual park containing  
several landmarks (allocentric memory) and a landmark-free  
virtual maze (egocentric memory) while undergoing an fMRI scan. 
They showed that aMCI patients were significantly impaired on 
both virtual reality tests, getting more frequently lost than controls 
and being unable to find a navigation strategy to learn the maze.  
Importantly, the allocentric and egocentric memory of aMCI 
patients were associated with size reduction of hippocampus,  
precuneus, and right-sided parietal cortex. These results have been 
recently confirmed by Boccia et al.99. In their studies, patients 
with aMCI were challenged on an intensive learning paradigm,  
during which participants were shown two paths using either 
video clips or maps of a real city. The video clips were used to  
encourage participants to develop an egocentric representation 
of the city, whereas the maps were used to encourage them to  
develop an allocentric representation. After learning, they were 
asked to retrieve each of these paths, using an allocentric or  
egocentric frame of reference, while undergoing fMRI scan.  
Behavioral results indicated that aMCI showed a reduction in 
the rate of learning on the allocentric task. In addition, patients 
with aMCI showed a selective impairment in retrieving topo-
graphical memory using an egocentric perspective. Imaging data 
suggest that this general decline was correlated with hypoacti-
vation of the brain areas generally involved in spatial naviga-
tion, e.g. medial temporal lobe structures, angular gyrus, and  
orbitofrontal cortex.
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Furthermore, there is a strong evidence that patients with mild  
AD and aMCI are also impaired on path integration task, in 
which they are required to return to the starting point follow-
ing an enclosed triangle pathway with a mask over their eyes100.  
Such deficit appeared to be correlated to a reduced size of  
hippocampus, entorhinal and parietal cortices.

These findings suggest that neuropsychological screening  
designed to assess navigational deficit may represent an impor-
tant tool for detecting the prodromal symptoms of aMCI and 
early stage of AD, and therefore, allow appropriate diagnosis and  
intervention.

Conclusions
Many interesting points emerge from spatial navigation studies 
presented in this review. First of all, it appears that, unlike  
allocentric, the egocentric spatial strategy is quite preserved  
under physiological aging. But there are conditions such as AD 
in which egocentric ability is also impaired and this determines  

devastating effects on spatial navigation so that individual get lost 
even in a familiar environment. Secondly, the egocentric spatial 
deficits in brain disorders such as AD are often correlated with 
a reduced size of brain areas involved in egocentric information 
processing. Overall, these findings suggest that neuropsycho-
logical screening designed to assess navigational deficit may  
represent an important approach for detecting neurological and  
psychiatric disease progression, thus allowing an appropriate  
intervention.
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