
Soft Computing
 

Attribute Dependency Data Analysis For Massive Datasets By Fuzzy Transforms
--Manuscript Draft--

 
Manuscript Number: SOCO-D-19-01350R1

Full Title: Attribute Dependency Data Analysis For Massive Datasets By Fuzzy Transforms

Article Type: Original Research

Keywords: attribute dependency;  data mining;  fuzzy transform

Corresponding Author: Ferdinando Di Martino, Ph.D.
Universita degli Studi di Napoli Federico II Dipartimento di Architecttura
Napoli, ITALY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Universita degli Studi di Napoli Federico II Dipartimento di Architecttura

First Author: Ferdinando Di Martino, Ph.D.

First Author Secondary Information:

Order of Authors: Ferdinando Di Martino, Ph.D.

Salvatore Sessa

Funding Information:

Abstract: We present a numerical attribute dependency method for massive datasets based on
the concepts of direct and inverse fuzzy transform. In a previous work we used these
concepts for numerical attribute dependency in data analysis: therein the multi-
dimensional inverse fuzzy transform was useful for approximating a regression
function. Here we give an extension of this method in massive datasets because the
previous method could not be applied due to the high memory size. Our method is
proved on a large dataset formed from 402678 census sections of the Italian regions
provided by the Italian National Statistical Institute (ISTAT) in 2011. The results of
comparative tests with the well-known methods of regression, called Support Vector
Regression and Multilayer Perceptron, show that the proposed algorithm has
comparable performance with those obtained using these two methods. Moreover the
number of parameters requested in our method is minor with respect to those of the
cited in the above two algorithms.

Section/Category: Methodologies & Application

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Dear editors, 

We thank very much the reviewers for detailed and valuable comments which improved greatly the quality of the paper. 

According to the comments, we have made the due amendments to our paper. In red we add our comments and our 

changes in the paper. We hope that the new version can be suitable for publication. 

 

 

Reviewer 1 
 

In this paper, the authors provided an attribute dependency data analysis for massive datasets. Here are my comments: 

1.        I don't think the proposed dataset which contains 402678 data point can be called massive dataset or even big 

data, since as my experience, it just a small-medium datasets. If the author want to consider massive dataset problems, I 

think TB is the basic unit and parallel processes, such as SPARK or HADOOP framework should be considered. 

Clearly, it just a normal data mining problem. 

Thanks for these suggestions. The dataset considered in our test consists of a massive dataset composed of all socio-

economic census data relating to the resident population, foreigners, families, buildings and properties for all the census 

areas of all the municipalities of Italy. Each entity is made up of 140 numeric attributes. While not a very large dataset, 

it can represent a massive dataset; we preferred to use this dataset in our tests to be able to make a complete comparison 

of the algorithm with the FAD algorithm, which cannot be used in presence of a VL dataset. we intend in the future to 

experiment with MFADs on many massive datasets of different sizes in order to in the future we intend to experiment 

with MFADs on many massive datasets of different sizes in order to analyze its performances in detail and verify if the 

choice of the optimal values of the number of subsets and the of threshold value of the index of determinacy depend on 

the type of dataset. 

 

2.        I don't think the authors are the experts of soft computing. For example, multilayer perceptron should be 

abbreviated as MLP, rather than MP, and the references are not appropriate, since these they are not important papers to 

the field. 

We apologize to the reviewer. The abbreviation in MP instead of MLP dii Multilayer Perceptron is just a typo that we 

have corrected in the text. Furthermore, we have also completely updated the references to it in the bibliography. These 

references are highlighted in red in the references section. 

 

3.        The authors stated that SVR and MLP methods can't handle a high number of parameters. Actually, MLP can 

easily handle hundreds of features today. Besides, we have lots of skills, such as various autoencoders, to handle 

hundreds and hundreds of parameters in neural networks. 

Thanks for these suggestions, which allowed us to understand that we had misrepresented the problem we intended to 

highlight in the use of MLPs. We refer to the parameters to be set for the execution of an MLP. MLPs require the user 

to set various parameters need for training, as, for example, the number of hidden layers, the number of neurons per 

layer, the type of nonlinear activation function, etc. MFAD require to set only the number of subsets and the threshold 

value of the index of determinacy. This makes MFAD more user-friendly than MLP and SVR. MFAD could represent a 

trade-off between usability and high performance in the use of massive datasets. 

4.        The experiments only reflect how their methods process. There is no comparison with other methods and no 

justification to show their method is better. In addition, I still don't their method has a significant contribution or need in 

the soft computing field. 

In our tests ve’ve compared MFAD also with MLP and SVR, showing that MFAD algorithm has performances 

comparable with SVR and MLP.  MFAD. To compare the three algorithms, we’ve measured the index of determinacy 

given in eq. (14) in all test executed. The results shown that the difference between the index of determinacy obtained 

using SVR and the one obtained using MFAD is always under 0.02 and the difference between the index of 

determinacy obtained using SVR and the one obtained using MFAD is always under 0.016.  These results allow us to 

conclude that MFAD provides acceptable performance in the detection of attribute dependencies in the presence of 

massive datasets. Therefore, unlike FAD, it can be applied to massive data and can represent a trade-off between 

usability and high performance in detecting attribute dependencies in massive datasets. 
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5.        Typos and grammatical error are easily found in this paper. In my opinion, this paper is still far away to be 

considered in a journal. 

Thanks for these suggestions. All typos and grammatical errors have been corrected. 

  



 

Reviewer 3 

Brief Summary 

--------------- 

The paper named "Attribute Dependency Data Analysis For Massive Datasets By Fuzzy Transforms" proposed by 

Ferdinando Di Martino and Salvatore Sessa deals with identifying dependencies between attributes of a 

large dataset using direct and inverse fuzzy transform. They proposed an efficient algorithm (MFAD) 

designed to work on massive data, capable of identifying them. The algorithm was tested on a benchmark dataset, 

made available by ISTAT (Italian National Statistical Institute). The approach used by the authors allows the use of a 

smaller number of features, enhancing the operation of identifying the relationships between the features and therefore 

improving the Dimensionality Reduction operation. I found this contribution particularly interesting as it allows you to 

speed up a normal learning process that would normally be performed on multiple features. 

In my opinion the paper is well written. I think the contribution is interesting and it deserves to be published after a 

minor revision. 

We truly appreciate your encouragement, careful review, and valuable suggestions. 

---------------- 

General Comments 

---------------- 

1) I recommend to number the references and insert the number next to each one, it makes easier to finding the cited 

article. 

We’ve numbered the references and insert the corresponding number to cite them in the manuscript. All the number of 

the references are highlighted in red in the text. 

 

2) Number the references also in the references section 

All references are now numbered in the references section. 
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Abstract. We present a numerical attribute dependency method for massive datasets 

based on the concepts of direct and inverse fuzzy transform. In a previous work we 

used these concepts for numerical attribute dependency in data analysis: therein the 

multi-dimensional inverse fuzzy transform was useful for approximating a regression 

function. Here we give an extension of this method in massive datasets because the 

previous method could not be applied due to the high memory size. Our method is 

proved on a large dataset formed from 402678 census sections of the Italian regions 

provided by the Italian National Statistical Institute (ISTAT) in 2011. The results of 

comparative tests with the well-known methods of regression, called Support Vector 

Regression and Multilayer Perceptron, show that the proposed algorithm has 

comparable performance with those obtained using these two methods. Moreover the 

number of parameters requested in our method is minor with respect to those of the 

cited in the above two algorithms. 

  

Keywords: attribute dependency, data mining, fuzzy transform 

1. Introduction 

Data analysis and data mining knowledge discovery processes represent 

powerful functionalities that can be combined in knowledge based expert and 

intelligent systems in order to extract and build knowledge starting by data. In 

particular, attribute dependency data analysis is an activity necessary to 

reduce the dimensionality of the data and to detect hidden relations between 

features. Nowadays in many application fields data sources are massive (for 

example, web social data, sensor data, etc.) and it is necessary to implement 

knowledge extraction methods that can operate on massive data. Massive 

(Very Large (VL) and Large (L)) datasets [3] are produced and updated and 

they cannot be managed by traditional databases. Today the access via web to 

these datasets has led to develop technologies for managing them (cfr., e.g., 

[7], [25], [35]). 

Manuscript Click here to access/download;Manuscript;Di Martino
_Sessa_MFAD_attrib_dependencyRev01.doc
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We recall the regression analysis (cfr., e.g., [15], [18],[22], [23], [31]) for 

estimating relationships among variables in the datasets (cfr., e.g., [24], [26], 

[36], [39]) and fuzzy tools for attribute dependency ([38], [42]). 

Machine learning soft computing models were proposed in literature to 

perform nonlinear regressions on high dimensional data; two well known 

machine learning nonlinear regression algorithms are Support Vector 

Regression  (SVR) [16] and multilayer perceptron (MLP) (cfr., e.g., [5], [6], 

[19], [20], [21], [27], [33]) algorithms. The main problems of these algorithms 

are the complexity of the model due to the presence of many parameters to be 

set by the user, and the presence of overfitting, phenomenon in which the 

regression function fits optimally the training set data, but fails in predictions 

on new data. K-fold cross validation techniques are proposed in literature to 

avoid overfitting [1]. In [37] a pruning method based on variance sensitivity 

analysis is proposed to find the optimal structure of a multilayer perceptron in 

order to mitigate overfitting problems. In [17] a novel sparse-coding kernel 

algorithm is proposed to overcome overfitting in disease diagnosis.  

Some authors proposed variations of nonlinear machine learning regression 

models to manage massive data.   In ([34], [4]) a fast-local support vector 

machine (SVM) method to manage large datasets are presented in which a set 

of multiple local SVMs for low dimensional data are constructed. In [43] the 

authors proposed an incremental version of the vector machine regression 

model to manage large-scale data. In [28] the authors proposed a parallel 

architecture of a logistic regression model for massive data management. 

Recently variations of the Extreme Learning Machine (ELM) regression 

methods for massive data based on the MapReduce model are presented ([2], 

[41]). 

The presence of a high number of parameters makes SVR and MLP methods 

too complex to be integrated as components into an intelligent or expert 

system. In this research we propose a model of attribute dependency in 

massive datasets based on the use of the multi-dimensional fuzzy transform. 

We extend the attribute dependency method presented in [9] to massive 

datasets in which the inverse multi-dimensional fuzzy transform is used as a 

regression function. Our goal is to guarantee a high performance of the 

proposed method in the analysis of massive data, maintaining, at the same 

time, the usability of the previous multi-dimensional fuzzy transform attribute 

dependency. As in [23], we use a random sampling algorithm for subdividing 

the dataset in subsets of equal cardinality. 

The fuzzy transform (F-transform) method [29] is a technique which 

approximates a given function by means of another function unless an 

arbitrary constant. This approach is particularly flexible in the applications 

such as image processing (cfr., e.g., [8], [10], [12], [13], [14]), data analysis 

(cfr., e.g., [9], [11], [30]). In this last work an algorithm, called FAD (F-

transform Attribute Dependence), evaluates an attribute Xz depending from k 
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 3 

attributes X1. . . . .Xk. (predictors)  with z ∉ {1,2,…k},  i.e.  Xz = H(X1. . . . .Xk),  

and the (unknown) function H is approximated with the inverse multi-

dimensional F-transform via a procedure presented in [30]. The error of this 

approximation in [9] is measured from a statistical index  of determinacy 

([15], [22]). If it overcomes a prefixed threshold, then the functional 

dependency is found. Each attribute has an interval Xi= [ai,bi], i = 1,…,k, as 

domain of knowledge.  Then an uniform fuzzy partition (whose definition is 

given in Section 2) of fuzzy sets 1 2, ,...,Ai i ini
A A defined on [ai,bi] is 

created assuming ni ≥ 3. 

The main problem in the use of the inverse F-transform for approximating the 

function H consists in the fact that the data are not sufficiently dense with 

respect to the fuzzy partitions. The FAD algorithm solves this problem with 

an iterative process which shall been clearly in Section 3. If the data are not 

sufficiently dense with respect to the fuzzy partitions, the process stops 

otherwise an  index of determinacy is calculated. If this index is greater than a 

threshold α, the functional dependency is found and the inverse F- transform 

is considered as approximation of the function H, otherwise a finer fuzzy 

partition is set with n:= n+1. The  FAD algorithm is schematized in Fig. 1. 
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 4 

 
Fig. 1.  Flux diagram of the FAD algorithm  

 

In this paper we propose an extension of the FAD algorithm, called MFAD 

(Massive F-transform Attribute Dependency) for finding dependencies 

between numerical attributes in massive datasets. In other words, by using a 

uniform sampling method, we can apply the algorithm of [9] to several 

sample subsets of the data and hence we extend the results obtained to the 

overall dataset with suitable mathematical artifices. 

Indeed, the dataset is partitioned randomly in s subsets having equal 

cardinality to which we apply the F-transform method. 

Let ],,[...],[
11 klkllll

babaD   sl ,...,1 , be the Cartesian product of the 

domains of the attributes X1, X2,…, Xk, where 
il

a  and 
il

b  are the  minimum 

and maximum values of Xi in the lth subset.  Hence the multi-dimensional 

inverse F-transform 
F

nnn klll
H ...21

  is calculated for approximating the function 

H in the domain Dl and an index of determinacy  
2

clr  is calculated for 
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evaluating  the error in the approximation of H with 
...1 2

F

n n nl l kl
H  in Dl.  For 

simplicity, we put n1l = n2l = … = nkl = nl and thus ...1 2

F

n n nl l kl
H  = 

F

nl
H . In 

order to obtain the final approximation of H, we introduce weights for 

considering the contribute of the inverse F-transform 
F

nl
H  in the 

approximation of H. We calculate the weighted mean of 

1

F

n
H ,…,

F

ns
H replacing the weights with the indices of determinacy  

2

1cr ,…, 

2

csr . 

Calculate the approximated value of  F
H  in 1

1

( ,..., )
s

k l
l

x x D


  given by 

 

)x,...,x,(xw

)x,...,x,(xH)x,...,x,(xw

 )x,...,x,(x
s

1l
k21l

s

1l
k21

F

nk21l

k21

l











FH  

 

(1) 

where  

    
otherwise             0

 D )x,...,x,(x if           
)x,...,x,(x lk21

2

k21



 

 cl

l

r
w  

(2) 

For example, we consider two attributes, X1 and X2, as inputs  and suppose, 

for simplicity, that the dataset is partitioned in two subsets. Fig. 2 shows  two 

rectangles D1 (red)  and D2 (green).  The zone labeled as A of the input space 

is covered by the domain D2: in this zone the weight w1 is null and 

2
F F

H H . Conversely, in the zone C the contribute of 2
F

H  is null and 

1
F F

H H . In the zone labeled as B, the inverse F-transforms, calculated for 

both subsets, contribute to the final evaluation of H, with a weight 

corresponding to the index of determinacy.  
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 6 

 
Fig. 2.  Example of union of domains of the subsets in which the dataset is partitioned 

 

 
 

Fig. 3.  Schema of the MFAD method 
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Fig. 3 contains the schema of MFAD. We apply our method on a L dataset 

loadable in memory, so we can apply also the method of [9] and hence we 

compare the results obtained by using both methods. As test dataset we 

consider the last Italian census data acquired during 2011 by ISTAT (Italian 

National Statistical Institute). Section 2 contains the F-transform in one and 

more variables [30]. In Section 3 the F-transform attribute dependency 

method is presented, Section 4 contains the results of our tests. Conclusions 

are described in Section 5. 

 

2. F-transforms in one and k variables 

 
Following the definitions of [29]. We recall the main notations for making 

this paper self-contained. Let  n ≥ 2, x1, x2, …, xn be points (nodes) of [a,b], x1 

= a < x2 <…< xn = b. The fuzzy sets A1,…,An : [a,b] → [0,1] (basic functions)  

constitute a fuzzy partition of [a,b] if Ai(xi) =1  for i =1,2,…,n; Ai(x) = 0 if 

x(xi-1,xi+1) for i=2,…,n; Ai(x)  is a continuous on [a,b]; Ai(x) strictly 

increases on [xi-1, xi]  for  i = 2, …, n  and  strictly  decreases  on  [xi,xi+1]  for  

i = 1,…, n-1; 




n

i

i xA

1

1)(   for every x [a,b]. The partition{A1(x),…,An(x)} is 

said uniform if n ≥ 3, xi = a + h∙(i-1), where h = (b-a)/(n-1) and  i = 1, 2, …, n 

(equidistance); Ai(xi – x) = Ai(xi + x)  for  x [0,h]  and  i = 2,…, n-1; Ai+1(x) 

= Ai(x - h) for  x [xi, xi+1]  and  i = 1,2,…, n-1.   

We  know that the function  f   assumes  given values in the points p1,...,pm  of 

[a,b],. If the set P = {p1,...,pm} is sufficiently dense with respect to {A1, A2, 

…, An}, that is  for every i{1,…,n}  there exists  an index j{1,…,m}  such 

that Ai(pj) > 0, then the n-tuple ],...,,[ 21 nFFF  is the discrete direct F-

transform  of  f  with respect to {A1, A2, …, An }, where each  Fi   is  given  by  










m

j

ji

m

j

jij

pA

pApf

F

1

1

i

)(

)()(

 

 

(3) 

for i=1,…,n. Then we define the discrete inverse F-transform of f  with 

respect to the basic functions {A1, A2, …, An}  by setting 

)()(
1

, ji

n

i

ijnF pAFpf 


  
(4) 

for every j{1,…,m}. Now we recall concepts from (Perfilieva, Novak, & 

Dvorak, 2008). The F-transforms can be extended to k (≥2) variables 
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considering  the Cartesian product of intervals [a1,b1]× [a2,b2]×… ×[ak,bk]. Let 

111211 ,....,, nxxx  [a1,b1] ,…, 
kknkk xxx ,....,, 21  [ak,bk]  be  n1+…+ nk  assigned 

points (nodes) such that  xi1=ai<xi2 <…<
iinx = bi and  {

iinii AAA ,....,, 21 } be a 

fuzzy partition of [ai,bi] for i = 1,…,k. Let the function f (x1,x2,…,xk) be 

assuming  values in m points  pj = (pj1, pj2,…,pjk)   [a1,b1]×[a2,b2]×…×[ak,bk]  

for  j=1,…,m. The set  P={(p11, p12, …, p1k), (p21, p22, …, p2k),…,(pm1, pm2, 

…,pmk)} is said sufficiently dense with respect to  
111211 ,...,, nAAA ,…, 

 
kknkk AAA ,...,, 21  if for {h1,…,hk}{1,…,n1}×…×{1,…,nk} there exists  pj = 

(pj1,pj2,…,pjk)P with 0)(...)()( 2211 21
 jkhkjhjh pApApA

K
,  j  {1,…,m}. 

Then we define the (h1,h2,…,hk)th component 
KhhhF ...21

of the  discrete direct 

F-transform of f with respect to  
111211 ,...,, nAAA , …, 

kknkk AAA ,...,, 21   as 














m

j

jkkhjhjh

m

j

jkkhjhjhjkjj

hhh

pApApA

pApApApppf

F

K

K

K

1

2211

1

221121

...

)(...)()(

)(...)()(),...,(

21

21

21
               (5) 

Thus we define the discrete inverse F-transform of  f  with respect to 

 
111211 ,...,, nAAA , …,  

Kknkk AAA ,...,, 21  by setting for pj =(pj1, pj2,…,pjk)  

[a1,b1]× …× [ak,bk]: 

 
  


1

1

2

2

12121

1 1 1

11...21... )(...)(...),...,,(
n

h

n

h

n

h

jkhkjhhhhjkjj

F

nnn

k

K

KKK
pApAFpppf          (6) 

for  j=1,…,m.  The following Theorem holds [29]: 

 
Theorem 1.  Let f(x1,x2,…,xk) be  a  function assigned on the set of points P = 

{(p11,p12, …,p1k) ,(p21, p22, …, p2k),…,(pm1, pm2, …,pmk)} [a1,b1]× [a2,b2] × 

…×[ak,bk]. Then for every ε > 0, there exist k integers n1(ε),…, nk(ε) and 

related fuzzy partitions   

        11 12 1 ( )1
, ,..., nA A A  , …,   1 2, ,...,k k knk

A A A           (7) 

 

 

such that the set P is sufficiently dense with respect to fuzzy partitions (5) and 

for every pj = (pj1, pj2,…,pjk)   P, j=1,…,m, the following inequality holds: 

  ),...,,(...),...,,( 21)()()(21 21 jkjjn
F

nnjkjj pppfpppf
k

   (8) 
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3. Multi-dimensional algorithm for massive datasets 
 

3.1 FAD Algorithm 

 

We schematize a dataset in tabular form as   

 

 X1 ... Xi ... Xr 

  O1 p11                 . p1i . p1r 

   . . . . . . 

. . . . . . 

. . . . . . 

Oj pj1 . pji . pjr 

. . . . . . 

. . . . . . 

. . . . . . 

Om pm1 . pmi . pmr 

 

Here  X1,…,Xi ,…,Xr  are the involved attributes and O1,…,Oj ,…,Om  (m>r) 

are the instances and  pji  is the value of the attribute Xi for the instance Oj. 

Each attribute Xi can be considered as a numerical variable assuming values 

in the domain [ai,bi], where ai = min{p1i,…,pmi} and bi = max{p1i,…,pmi}.  We 

analyse the functional  dependency between attributes in  the  form: 

Xz = H(X1,…,Xk)   (9) 
 

 

where z{1,…, r}, k ≤ r < m, Xz ≠ X1, X2, ...,Xk,, H: [a1,b1]× 

[a2,b2]×…×[ak,bk]  [az,bz] is continuous. In [ai,bi],  i = 1,2,...,k, an uniform 

partition of  iniji AAA ,...,,...,1   is defined for   i = 1,…, k and  j = 2,…, k-1: 

  

otherwise                                             0

],[    x if            ))(cos1(5.0
)(

otherwise                                             0

   ]x,[x    x if             ))(cos1(5.0
)(

  

otherwise                                             0

]x,[x    x if            ))(cos1(5.0
)(

)1(

1)i(j1)-i(j

i2i11

1






































inniin

iin

ij

iij

i

ii

xxxx
hxA

xx
hxA

xx
hxA







 

 

 

 

   

(10) 

where  hi = (bi - ai)/(n - 1), xij = ai+ hi·(j-1). 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 10 

By setting H(pj1,pj2,…,pjk) = pjz  for  j=1,2,…,m,  the components of  H are 

given by 














m

j

jkhkjh

m

j

jkhkjhjz

hhh

pApA

pApAp

F

K

K

k

1

11

1

11

...

)(...)(

)(...)(

1

1

21

 

 

 (11) 

The inverse F-transform 
...1 2

F

n n nk
H  is defined as 

 
  


n

h

n

h

n

h

jkkhjhhhhjkjj

F

n

k

KK
pApAFpppH

1 1 1

11...21

1 2

121
)(...)(...),...,(  (12) 

 

 

The error of the approximation is evaluated in (pj1,pj2,…,pjm) by using the 

following statistical index of determinacy  (Draper & Smith, 1988; Johnson & 

Wichern, 1992): 

 

 

2

1 2...1 212

2

1

ˆ( , ,... )

ˆ

m
F

j j jk zn n nkj
c m

jz z
j

H p p p p

r

p p











 
 

(13) 

where zp̂  is the mean of the values of the attribute Xz. If 
2

c
r = 0 (resp., 

2

c
r = 

1) means that (11) does not fit (resp., fits perfectly) to the data. However we 

use a variation of (11) for taking into account both the number of independent 

variables and the scale of the sample used [9] given by 

  













1

1
11' 22

km

m
rr

cc
 

(14) 

.  

The pseudocode of the algorithm FAD is schematized below. 

 

Function FAD  
Functional dependency  Xz = H(X1,…,Xk) 

Input: DT - Dataset composed by m instances with  attributes 

X1, X2,..., Xr 

α – threshold value 

Output:  Direct F-transform components 
khhhF ...21

 

Index of determinacy 
2'cr   

1 n= 3 

2 0'2 cr  
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3 DO WHILE 2'cr  

4    Set F as a matrix of dimension  nk 

4    F = {0} //initialize to 0 the components of F 

5    FOR each combination {h1,..,hk} 

6 F[h1,...,hk] = DirectFtransformComponent(DT, n, k,z,h[1,...,k] }) // 

calculate    the F-Transform component 
khhhF ...21

 

7       IF F[h1,...,hk] = -1 RETURN F, 0   // the dataset is not sufficiently dense  

8    NEXT {h1,...,hk}  

9 2'cr  = IndexofDeterminacy(DT, n, k,z, F) // Calculate  the index of 

determinacy 
2'cr  

10     n:=n+1 

11   END DO 

12   RETURN F, 
2'cr  

13 END IF 

14 END 

  

 

The function DirectFuzzyTransform() is used to calculate each direct F-

transform component. The function BasicFunction() calculates the 

value )(xA
hii for an assigned x of the  hith basic function of the ith fuzzy 

partition. IndexofDeterminacy  calculates the index of determinacy. 

 

Function DirectFTransformComponent 
Description  The component of the direct F-transform 

khhhF ...21
 

Input: DT -  dataset analysed 

n -  number of fuzzy sets of the fuzzy partitions 

k -  number of the input attributes 

z – index of the of the output attribute Xz 

h[1,....,k] = array of indices of the combination  

{h1,..., hk} 

Output:  Direct F-transform component 
khhhF ...21

 

0 if the data points are not sufficiently dense with 

respect to the fuzzy partition 

 

1  Num = 0, Denum = 0, j 

2  FOR each p in DT 

3    val = 1       

4    xz = p.X[z] // value of the attribute Xz 

5    FOR i = 1 to k       

6       a = min(DT.X[i])  // inf of  [ai,bi] 

7       b = max(DT.X[i]) // sup of  [ai,bi] 
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8       j = h[i] // index of the hith fuzzy set of the fuzzy partition of [a,b] 

9       x = p.X[i] // value of the ith attribute Xi 

10       A = BasicFunction(a,b,n,x,j) 

11       val = val*A 

12    NEXT i 

13    H= val*F 

14    Denom = Denom + val 

15   NEXT p 

16   IF  Denom = 0  RETURN 0 

17   ELSE RETURN Num/Denum 

18   END IF 

19 END 

  

 

 

Function BasicFunction 
Description  An uniform fuzzy partition  is created for the interval 

[a,b]          

Input: a -  inf value of the interval [a,b] 

b - sup value of the interval [a,b]  

n – number of fuzzy sets in the fuzzy partition 

x – value of x  

k – index of the kth fuzzy set of the fuzzy partition 

Output:  Return the basic function value Ak(x)  

1 Set h = (b - a)/(n – 1) 

2 Set x[1..n] 

3 x[1] = a 

4 FOR i = 2 to n 

5     x[i] = x[i-1]+h 

6  NEXT i 

7  IF  k = 1 THEN x[k-1] = x[1] 

8      xmin = x[1] 

9      xmax = x[k+1] 

10  ELSE IF  k = n THEN x[k-1] = x[1] 

11                   xmin = x[k-1] 

12                   xmax = x[k] 

13             ELSE 

14                   xmin = x[k-1] 

15                   xmax = x[k+1] 

16             ENDIF 

17   ENDIF 

18   Set A = 0 

19   IF  xmin  ≤ x  ≤ xmax THEN 

20      
0.5 (1 cos ( [ ]))    A x x i

h


   

 

21  END IF 
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22  RETURN A 

23 END 

  

 

Function IndexofDeterminacy 
Description  The index of determinacy  

2'cr  is calculated  

Input: DT -  dataset analyzed 

n -  number of fuzzy sets of the fuzzy partitions 

k -  number of the input attributes 

z – index of the of the output attribute Xz 

F -  matrix of the direct F-transform components 

Output:  Direct F-transform component 
khhhF ...21

 

0 if the data points are not sufficiently dense with 

respect to the fuzzy partition 

 

1  Num = 0, Denum = 0, m = 0 

2  mz= mean(X[z])  // mean value of the attribute Xz in DT 

3  FOR each p in DT 

4    m = m + 1 //in m calculated the number of instances in DT       

5    val = 1       

6    xz = p.X[z] // value of the attribute Xz 

7    FOR each combination {h1..hk} 

8      val = 1       

9      FOR i = 1 to k       

10         b = max(DT.X[i]) // sup of  [ai,bi] 

11         j = h[i] // index of the hi-th fuzzy set of the fuzzy partition of [a,b] 

12         x = p.X[i] // value of the i-th attribute Xi 

13         A = BasicFunction(a,b,n,x,j) 

14         val = val*A 

15      NEXT i 

16      H = H + val* F[h1..hk] 

17    NEXT {h1..hk} 

18    num = num +  (H – mz)2 

19    denum = denum +  (xz – mz)2 

20   NEXT p 

21   RETURN (Num/Denum)*(m-1)/(m-k-1) 

22 END 

  

3.2  MFAD algorithm 

We consider a  massive dataset DT composed by r attributes where X1,…,Xi 

,…,Xr  and m instances O1,…,Oj ,…,Om  (m>r). We make a partition of DT in s 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 14 

subsets DTl,…, DTs with the same cardinality, by using an uniform random 

sample in such a way  each subset is loadable in memory. We apply the FAD 

algorithm to each subset, calculating the direct F-transform components, the 

inverse F-transforms  
1

F

n
H …

F

ns
H , the indices of determinacy 

2'

1cr ,…, 
2'csr . 

2'csr  and the domains Dl,…, Ds, where 1 1[ , ] ... [ , ],l l l kl klD a b a b    l = 1,…,s. All 

these quantities are saved in memory. If a dependency f is not found for the 

lth subset, the corresponding value of 
2'clr  is set to 0. The pseudocode of 

MFAD is given below. 

 

Algorithm MFAD 
Functional dependency  Xz = H(X1,…,Xk) 

Input: Massive dataset DT composed by m instances with  

attributes X1, X2,..., Xr 

Output:  Direct F-transform components found for each subset 

Domain products Dl,…, Ds 

Indexes of determinacy 
2'

1cr ,…, 
2'csr  

1 The dataset DT is randomly partitioned in s subsets equally sized DTl,…, DTs 

2 FOR l = 1 to s 

3     
2'

clr = 0 

4 

 F[l], 
2'

clr [l]  = FAD(DTl,α)  // the FAD algorithm is called to calculate the 

direct FTransform components and the index of determinacy for the l-th 

subset, 

5 Save in memory the direct F-transform components, and the domain product 

Dl 

6 NEXT l   

7 END 

 

Now we consider a point (x1,x2,…,xk)   
s

l

lD
1

. In order to approximate the 

function H(x1,x2,…,xk),  we calculate  the weights as: 

   s1,...,   
otherwise             0

 D )x,...,x,(x if           '
)x,...,x,(x lk21

2

k21

' 


 

  l
r

w cl

l
 

(15) 

If for any subset the functional dependency is not found, then 
'

l
w =0 for each l 

= 1,…,s. Otherwise, the approximated value of H(x1,x2,…,xk) is given by 
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)x,...,x,(xw

)x,...,x,(xH)x,...,x,(xw

 )x,...,x,(x
s

1l

k21
'
i

s

1l

k21
F
nk21

'
i

k21

l











FH  

 

 

(16) 

which is also the value of Xz. To analyse the performance of the MFAD 

algorithm we execute a set of experiments on a large dataset formed from 

402678 census tracts of the Italian regions provided by the Italian National 

Statistical Institute (ISTAT) in 2011. Therein 140 numerical attributes belong 

to each of the following categories: 

- inhabitants, 

- foreigner and stateless inhabitants, 

- families, 

- buildings, 

- dwellings. 

 

The FAD method is applied on the overall dataset, the MFAD method is 

applied by partitioning the dataset in s subsets and we perform the tests 

varying the value of the parameter s and by setting the threshold α = 0.7.  

In addition, we compare the MFAD algorithm with the Support Vector 

Regression (SVR) and Multilayer Perceptron (MP) algorithms.  

 

4. Experiments  

 
Table 1 shows the 402678 census tracts of Italy divided for each region. 

 

Table 1.  Number of census tracts for each Italian region 

ID 

region 

Description Number of census 

tracts 

001 Piemonte 35672 

002 Valle d'Aosta                1902 

003 Lombardia 53173 

004 Trentino Alto Adige 11712 

005 Veneto 33883 

006 Friuli Venezia Giulia 8278 

007 Liguria 11054 

008 Emilia Romagna 38603 

009 Toscana 28917 

010 Umbria 7480 
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011 Marche 11862 

012 Lazio 32065 

013 Abruzzo 9529 

014 Molise 2821 

015 Campania 24323 

016 Puglia 22514 

017 Basilicata 5107 

018 Calabria 13121 

019 Sicilia 36681 

020 Sardegna 13981 

 

Table 2 shows the approximate number of census tracts in each subset for 

each partition of the dataset in s subsets.  

 

Table 2.  Number of census tracts for each subset by varying s  

s Number of census  tracts 

8 5.0104 

9 4.5104 

10 4.0104 

11 3.7104 

13 3.1104 

16 2.5104 

20 2.0104 

26 1.5104 

40 1.0104 

 

In any experiment we apply the MFAD algorithm to analyze the attribute 

dependency explored of an output attribute Xz from a set of input attributes 

X1, X2,..., Xr. In all the experiments we set α = 0.7 and partition randomly the 

dataset in s subsets. We now show the results obtained in three experiments.  

 

Experiment A 

 

In this experiment we explore the relation between the density of resident 

population with laurea degree and the density of resident population 

employed. Generally speaking, a higher density of population with laurea 

degree should correspond to a greater density of population employed. The 

attribute dependency explored is Hz = H(X1), where 
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Input attribute: X1 =  Resident population with laurea degree 

 

Output attribute:  Xz = Resident population over 15 employed 

 
We apply the FAD algorithm on different random subsets of the dataset and 

then we calculate the index of determinacy (12). In Table 3 we show the value 

of the index of determinacy   '2clr obtained for different values of s. For s = 1, 

we have the overall dataset. 

 

Table 3.  Index of determinacy for values of s  in experiment A via FAD 

s Index of determinacy 

1 0.760 

8    0.745 

9    0.748 

10    0.750 

11 0.752 

13 0.754 

16 0.758 

20 0.752 

26 0.748 

40 0.744 

 

The results in Table 3 show that the dependency has been found. We obtain 

  '2clr = 0.760 by using FAD algorithm on the entire dataset, while the best 

value of   '2clr (reached by using MFAD) is 0.758 for s = 16. Hence the related 

smallest difference between the two algorithms is 0.02. Fig. 4 shows in 

abscissas the input X1  and in ordinates the output  )(x1
FH for s = 1, 10, 16, 

40. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 18 

 
Fig. 4.  Tendency of Hz  for dataset partitions in the experiment A 
 

Experiment B 

 

In this experiment we explore the relation between the density of residents 

with job or capital income and the density of families in owned residences. 

We expect that the greater the density of residents with job or capital income 

is, the resident families density in owned homes the greater is. The attribute 

dependency explored is Hz = H(X1), where: 

 

Input attributes: X1 = Resident population with job or capital income 

 

Output attribute Xz = Families in owned residences 

 

After some tests, we put α = 0.8. 

 

Table 4 shows   '2clr obtained for different values of s:   '2clr = 0.881 in FAD 

algorithm on the entire dataset,   '2clr = 0.878 in MFAD obtained for s = 13, 

16. The smallest index of dependency  difference is 0.003. 
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Table 4.  Index of determinacy for values of s  in experiment B via FAD 

s Index of determinacy 

1 0.881 

8    0.872 

9    0.872 

10    0.874 

11 0.875 

13 0.877 

16 0.878 

20     0.878 

26 0.875 

40 0.872 

 

Fig. 5 shows in abscissas the input X1  and in ordinates the output 

 )(x1
FH for s = 1, 10, 16, 40. 

 

 
Fig. 5.  Trend of Hz  for dataset partitions in the experiment B 
 

Experiment C 

 

In this experiment the attribute dependency explored is Hz = H(X1,X2), where 

 

Input attributes: 

 

X1 = Density of residential buildings built with reinforced concrete 
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X2  =  Density of residential buildings built after 2005 

 

Output attribute: 

 

Xz = Density of residential buildings with state of good conservation 

 

After some tests, we decided α = 0.75 in this experiment. In Table 5 we show 

  '2clr obtained for different values of s:   '2clr = 0.785 in FAD algorithm on the 

entire dataset.   '2clr = 0.781 in  MFAD algorithm obtained for s = 13, 16. The 

smallest index of dependency difference is  0.004. 

 

Table  5.  Index of determinacy for values of s in the experiment C via FAD 

s Index of determinacy 

1 0.785 

8    0.776 

9    0.776 

10    0.778 

11 0.780 

13 0.781 

16 0.781 

20 0.780 

26 0.779 

40 0.777 

 

Now we present the results obtained by considering all the experiments 

performed on the entire dataset in which the dependency was found (   '2clr > 

0.7).  We consider the index of determinacy in the FAD algorithm (s=1) and 

the minimum and maximum values of the index of determinacy obtained by 

using the MFAD algorithm for s = 9,10,11,13,16,20,26,40.  
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Fig. 6.  Trend of the difference between the max value   '2clr in MFAD 

and  FAD 
 

A functional dependency was found in 43 experiments. Fig. 6 (resp., 7) shows 

the trend of the difference between the  maximum (resp., minimum) value 

calculated for   '2clr in MFAD and in FAD for  the same experiment. In 

abscissae we have   '2clr  in the FAD method, in ordinates the difference 

between the two indices. For all the experiments this difference is always 

below 0.005 (resp., 0.0015).  

These results show that the MFAD algorithm is comparable with the FAD 

algorithm, independently of the choice of the number of subsets partitioning 

the entire dataset. 

Fig. 8 show the mean CPU time gain obtained by MFAD algorithm with 

different partitions, with respect to the CPU time obtained by using FAD 

algorithm (s = 1). The CPU time gain is given by the difference between the 

CPU time measured by using s = 1, and the CPU time measured by using a 

partition in s subsets, divided by the CPU time measured for s = 1.  The CPU 

time gain is always positive and the greatest value are obtained for s = 16. 

These considerations allow to apply the MFAD algorithm to a VL dataset not 

loadable entirely in memory to which the FAD algorithm is not applicable. 
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Fig. 7.  Trend of the difference between the min value of   '2clr in 

MFAD  and  FAD 
 

 
Fig. 8.  Trend of CPU time gain with respect to FAD method (s = 1) 

 
Now we compare the results obtained by using the MFAD method with the 

ones obtained by applying the SVR and MLP algorithms. For the comparison 

tests we have used the machine learning tool Weka 3.8.  
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In order to perform the tests by using the SVR algorithm we repeat each 

experiment using the following different kernel functions: linear, polynomial, 

Pearson VII universal kernel, and Radial Basis Function kernel, and varying 

the complexity C parameter in a range between 0 and 10. To compare the 

performances of the SVR and MFAD algorithms we measure the index of 

determinacy  and store it in every experiment.   

In Fig. 9 we show the trend of the difference between the max values of 

  '2clr in SVR and MFAD. 

 

 

Fig. 9.  Trend of the difference between the max value of   '2clr obtained 

in SVR and  MFAD 
 

Fig. 9 shows that the difference between the optimal value   '2clr in SVR and  

MFAD   is always under 0.02. In the comparison tests performed by using the 

MP algorithm, we vary the learning rate and the momentum parameter in 

[0.1,1]. We use a single hidden layer varying the number of nodes between 2 

and 8. Furthermore, we set the number of epochs to 500 and the percentage 

size of validation set to 0. 

In Fig. 10 we show the trend of the difference between the max value of 

  '2clr in MP and MFAD. 
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Fig. 10.  Trend of the difference between the max value of   '2clr in MLP 

and MFAD 
 

Fig. 10 shows that the difference between the max value of the index of 

determinacy in MLP and MFAD is under the value 0.016.  

These results show that the MFAD algorithm of attribute dependency in 

massive datasets has comparable performances with the SVR and MLP 

nonlinear regression algorithms.  Moreover, it has the advantage of having a 

smaller number of parameters compared to the other two algorithms, therefore 

it has greater usability and can be easily integrated into expert systems and 

intelligent systems for the analysis of dependencies between attributes in 

massive datasets. Indeed, the only two parameters for the execution of the 

MFAD algorithm are the number of subsets and the threshold value of the 

index of determinacy. 

 

6. Conclusions 
 

The FAD method presented in [9] can be used as a regression model for 

finding attribute dependencies in datasets: the inverse multiple F-transform 

can approximate the regression function. But this method can be expensive for 

massive datasets and for VL datasets not loaded in memory. Then we propose 

a variation of the FAD method for massive datasets called MFAD: the dataset 

is partitioned in s subsets equally sized, to each subset the FAD method is 

applied by calculating the inverse F-transform. approximated by a weighted 
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mean where the weights are given from the index of determinacy assigned to 

each subset. For testing the performance of the MFAD method, we compare 

tests with respect to the FAD method on an L dataset of the ISTAT 2011 

census data. The results show that the performances obtained in MFAD are 

well comparable in FAD. The comparison tests show that the MFAD 

algorithm has performances comparable with SVR and MLP algorithms, 

moreover it has greater usability due to the lower number of parameters to be 

selected. 

These results allow us to conclude that MFAD provides acceptable 

performance in the detection of attribute dependencies in the presence of 

massive datasets. Therefore, unlike FAD, MFAD can be applied to massive 

data and can represent a trade-off between usability and high performance in 

detecting attribute dependencies in massive datasets. 

The critical point of the algorithm is the choice of the number of subsets and 

the threshold value of the index of determinacy. Further studies on massive 

datasets are necessary to analyze if the choice of the optimal values of these 

two parameters depend on the type of dataset analyzed. Furthermore, we 

intend to experiment the MFAD algorithm in future robust frameworks such 

as expert systems and decision support systems. 
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