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1. Introduction

The methodological framework of this paper is the Web Usage-Struc-
ture Mining (Pecoraro and Siciliano, 2008; D’Ambrosio, Pecoraro, and Si-
ciliano, 2008) as defined in the first contribution to the analysis of web
visit histories (Siciliano, D’Ambrosio, Aria, and Amodio, 2016). The aim
is to explore large web data repositories to predict the users’ behavior de-
rived from log-files or tracking applications, and especially visits informa-
tion such as connection time, visited pages, downloaded documents, etc. At
the same time, we are interested in detecting the most relevant connections
between pages contents (e.g. of various websites or within one web portal).
The traditional goal of Web Usage Mining process is just to extract infor-
mation about how each page is related to the others in terms of navigation
behavior.

Web Usage-StructureMining is essential in defining successful strate-
gies for the personalization of web application in which users’ preferences
must be supported, i.e. the presentation of news or promotional contents,
the launching of new e-marketing campaigns, etc. When dealing with web
mining the data can come from different sources, a single web site, a group
of them, a server (Etzioni, 1996; Cooley, Mobasher, and Srivastava, 1999;
Kosala and Blockeel, 2000; Srivastava, Cooley, Deshpande, and Tans, 2000;
Linoff and Berry, 2002; Chakrabarti, 2002; Giudici and Figini, 2009;
D’Ambrosio and Pecoraro, 2011). The size of such data is typically huge
and their complexity requires a data mining strategy for their statistical anal-
ysis.

Part I to the contribution to the analysis of web visit histories (Si-
ciliano et al., 2016) considered extending association rules theory to web
data and providing new concepts of web (patterns) association and prefer-
ence matrices, and of (indirect and direct) sequence rules (the so-called web
paths). Distance-based visualization methods have been introduced to de-
tect the most significant rules. In this paper, we focus our attention on web
event history analysis. In other words, we are interested in identifying a
prediction rule to explain the expected number of clicks for each naviga-
tion session up to the moment a surfer leaves the portal, click by click. Our
goal is exploratory and the main idea is to detect web paths through a tree
structure. Specifically, the regression tree framework is considered (Hastie,
Tibshirani, and Friedman, 2009; Siciliano and Mola, 2000) where the re-
sponse variable considered is the number of clicks and the predictors are the
web preferences click by click. The main issue is to take into account the
fact that at any click some navigators may leave the web while others con-
tinue the web navigation session. Therefore, a novel tree-based structure to
detect web preferences in the navigation paths at any click is introduced.
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The proposed methodology provides a hierarchy of stumps, that is
called Nested Stump Regression Tree, where a stump is a tree with only
one split or, equivalently, with two terminal nodes (Iba and Langley, 1992).
Properties are outlined to describe the main differences of this structure in
respect to standard tree structures.

It is worth noting that the most innovative aspect of this structure is
the definition of child root nodes. Typically, a tree structure can be inter-
preted as a recursive partitioning of objects into subgroups that are internally
homogeneous and externally heterogeneous with respect to a response vari-
able. In the proposed structure, this is still true but there is a great difference:
the groups of objects to be split include those objects which have not been
excluded in terms of some predicate to be fixed for the entire structure (i.e.
the so-called exclusion property). In our case, this property is specified by
considering the active navigators at any click, thus at any level of the tree.

The range of the proposed methodology is a single portal. As in Part
I, we consider as a real world case study, a data set coming from the UCI
Machine Learning Repository. These data consist of about a million naviga-
tion sessions collected in a single day on msnbc.com, an American general
purpose portal and from the news related portion of msn.com.

The rest of the paper is structured as follows. Section 2 reviews clas-
sification and regression tree structures. In Section 3, some basic definitions
of web visit histories are recalled. In Section 4, the proposed methodol-
ogy with the relevant notation is introduced, and the properties are outlined.
Moreover, the real world data set, used as a case study, is presented and the
results are shown. Section 5 ends the paper with some concluding remarks.

2. Recall on Tree-Based Methods

A tree is an oriented graph formed by a finite number of nodes de-
parting from each node, as shown in Figure 1. The first node is called the
root node. A distinction is made between terminal nodes, denoted by square
boxes, and non-terminal nodes, denoted by circles. A non-terminal node is
also known as a parent node, yielding two or more child nodes. Standard
tree structures typically satisfy two properties: the shape property, i.e. each
parent node has a fixed number, r, of child nodes (for a binary tree, r = 2)
and the heap property, i.e. each parent node is greater than its own children
nodes according to some comparison predicate that is fixed for the entire
data structure.

Trees can be used for exploratory analysis of the dependence rela-
tion of a response variable either categorical (classification trees) or nu-
meric (regression trees) on a set of predictors of numerical and/or cate-
gorical type. A binary tree can be built upon a recursive partitioning of
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Figure 1. Example of a tree-based structure

a sample of objects into two subgroups to reduce the impurity of the re-
sponse variable when passing from one node to its child nodes on the basis
of the predictor measurements. The impurity can be expressed as a measure
of variation/heterogeneity of the response variable distribution for regres-
sion/classification trees, respectively.

The comparison predicate states that when passing from the parent
node to its child nodes the impurity measure always reduces. The splitting
criterion maximizes the decrease of impurity by partitioning the objects in
the parent node into two subgroups. Candidate splits are defined on the ba-
sis of the set of all splits of any predictor’s modalities. As a matter of fact,
it can be shown that maximizing the decrease of impurity is equivalent to
maximizing the predictability power of the split. For this reason, known sta-
tistical indexes can be considered: the predictability tau index of Goodman
and Kruskal for classification and the Pearson correlation coefficient for re-
gression. This idea was introduced by the two-stage splitting criterion and
the FAST algorithm (Siciliano and Mola, 1996; Mola and Siciliano, 1997;
Siciliano and Mola, 2000). In the two-stage criterion, the predictor plays
a global role in the partitioning procedure: the best split is selected on the
basis of the set of splits generated by the best predictor that globally predicts
the response variable better than other predictors. It is also possible to define
a subset of best predictors that are ordered on the basis of their predictabil-
ity power. The FAST algorithm, on the other hand, iterates the two-stages
criterion until the global predictability power of the current best predictor is
not greater than the local predictability power of the current best split.

Each terminal node is labeled by the average/modal class of the re-
sponse variable and by the total node impurity for regression/classification.
To pass from the exploratory tree to the decision tree for predicting the re-
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sponse value/class for new cases, the CART methodology (Breiman, Fried-
man, Olshen, and Stone, 1984) suggests a pruning procedure and some se-
lection rule of the final decision tree. The main idea is that the exploratory
tree cannot be generalized as universal rule for new cases due to overfitting.
The pruning procedure starts by considering the maximal expanded tree and
by cutting off recursively the weakest link of the tree, which is the branch
of the tree corresponding to the minimum complexity parameter between
cost (in terms of increase of impurity) and benefit (in terms of reduced num-
ber of terminal nodes). This yields to a sequence of nested trees that are
candidates decision trees. The final tree is chosen on the basis of the test
sample estimate. Alternatively, ensemble methods, such as Bagging, Boost-
ing and Random Forests (Breiman, 1996; Freund and Schapire, 1997; Diet-
terich, 2000; Breiman, 2001), define more accurate prediction rules despite
the fact that no decision tree can be produced. It is worth noting that trees
were also useful considered for missing data imputation and for data fusion
(D’Ambrosio, Aria, and Siciliano, 2012).

3. Web Visit Histories: Some Basic Definitions

When dealing with web visit histories, the data set consists of N
web navigators, or browsing sessions, which record the web sections vis-
ited click by click within the set W = {w1, . . . , wj , . . . , wJ}. Let X =
{X1, . . . ,Xv, . . . ,XV } be the set of the V categorical variables describing
the web preferences at any click in the web navigation, where Xv is the
web preference variable at the v-th click. Typically, the number V of clicks
is chosen to be lower than the highest number of clicks during any of the
N navigation sessions to have a consistent number of web navigations to
analyze.

We consider the web navigation matrix X = {xlv} (where l =
1, . . . , N and v = 1, . . . , V ) of N rows and V columns, where the general
entry xlv denotes the web page in the setW that is visited in the l-th naviga-
tion session at the v-th click, thus it can be equal to any j (for j = 1, . . . , J)
and xlv = 0 if no web section is visited. By definition, the l-th navigation
session includes non zero column entries till the exit from the website, while
the remaining column entries are equal to zero.

As an example of the web navigation matrix, we consider a well
known data set from the UCI Machine Learning Repository. It consists of
about a million navigation sessions collected in a single day on msnbc.com,
an American general purpose portal, and from the news related portion
of msn.com. The set W includes seventeen main-pages or web sections
({Front− page, News, Tech, Local, Opinion, Onair,Misc,Weather,
MSN−news,Health, Living,Business,MSN−sports,Sport, Sum−
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Table 1. The web navigation matrix (case study from the UCI Machine Learning Repository)

First Second Third Fourth Fifth Sixth
Session section section section section section section ...

visited visited visited visited visited visited
1 Frontpage Sports News News Weather
2 Frontpage Opinion Local Tech Opinion Opinion Living
3 Weather Travel Tech
4 News News News Local On-air Frontpage
5 BBS Travel Business Travel Living Living Living
6 Frontpage Sports Local Sports News Opinion
... ... ... ... ... ... ... ...

mary,BBS, Travel}). Each navigation session is associated to a web user
of the portal. In principle, the same person can access more than once to the
same web portal, but each time the navigation session is recorded as distinct.
Table 1 describes the structure of the data. Each row describes the clicking
path of each navigation session or browsing session, registering, column by
column, the visited pages from the entry till the exit from the website.

Being that the number of web pages visited in each navigation ses-
sion are not fixed, each row may have a different number of entries. For
example, the first navigation session goes on till the fifth click on the portal
visiting respectively {Frontpage}, {Sport}, {News}, again {News} and
{Weather}; the third session goes on till the third click, etc.

We consider the web click matrix Q = {qlv} (where l = 1, . . . , N
and v = 1, . . . , V ) of N rows and V columns, where the general entry qlv
denotes the remaining number of clicks in the l-th navigation session at the
v-th click. By definition, ql(v) = ql(v−1) − 1, with ql(1) counting the total
number of non-zero entries in the l-th row of the web navigation matrix X.
At any v there are N(v) active navigators and L(v) = N − N(v) navigators
who left the web at the v-th click, the latter corresponds to the number of
zero rows of the v-th column ofQ.

Siciliano et al. (2016) introduced suitable definitions and a method-
ology for web discovery analysis through association and sequence rules
(Agrawal and Srikant, 1994; Zhang and Zhang, 2002; Blane and Giudici,
2002). Specifically, an association rule is a statement such as wi ⇒ wj ,
where wi is the Antecedent web section and wj is the Consequent web sec-
tion. A sequence rule of order v is defined as wi

(v′) ⇒ wj
(v) (v′ < v),

where the Antecedent web section wi
(v′) is preferred at time v′ and the Con-

sequent web section wj
(v) at time v. For v′ = v − 1 these sequence rules

are direct, whereas for v′ < v − 1 they are indirect sequence rules. For
example, the association rule {Frontpage} ⇒ {News} indicates that if a
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navigator clicks on {Frontpage} then also {News} is preferred; instead
the sequence rule {Frontpage(v

′) ⇒ News(v)} says that the navigator has
chosen {Frontpage} at the v′-th click and then {News} at the v-th click.
In case v′ = v − 1 the navigator chose the two pages in direct sequence, in
the other cases for v′ < v − 1 the navigator selected other pages in between
them.

The web navigation data matrix can be summarized in terms of the
longitudinal web preference matrix, which describes the presence or ab-
sence of each web section preference sequentially (click by click), namely
Z̃ = {Z1| . . . |Zv| . . . |ZV } of N rows and J × V columns, where the v-th
matrix Zv = [zlj(v)] of N rows and J columns (for v = 1, . . . , V ) describes
in disjoint coding the web preference variable Xv at the v-th click, namely
zlj(v) = 1 if the web page wj of the set W has been visited in the l-th
navigation session at the v-th click, and zlj(v) = 0 otherwise.

The co-occurrences between any couple of web sections in the set
W click by click can be recorded by the J × V square longitudinal web
association matrix S̃ = Z̃′Z̃. The upper triangular blocks of the symmetric
S̃matrix allow to derive the support measures for all sequence rules between
single web sections, i.e. wi

(v′) ⇒ wj
(v), being

Supwi
(v′)⇒wj

(v) = si(v′)j(v)/N(v). (1)

If we consider only the matrices with v′ = v − 1, we can derive the support
measures for the direct sequence rules between single web sections click by
click, i.e. wi

(v−1) ⇒ wj
(v). As an example, at click v = 3 the entries of the

block association matrix S2,3 divided by N(3) provide the support measures
of direct rules between the row antecedent web section preferred at second
click and the column consequent web section preferred at the third click.
Confidence and lift measures can be derived in a straightforward way as

Confwi
(v′)⇒wj

(v) = si(v′)j(v)/si(v′)+(v), (2)

where si(v′)+(v) =
∑

j si(v′)j(v), and

Liftwi
(v′)⇒wj

(v) =
si(v′)j(v)/si(v′)+(v)

s+(v′)j(v)/N(v)
, (3)

where s+(v′)j(v) =
∑

i si(v′)j(v).

For further details on the construction of the longitudinal web preference
matrix and the longitudnal web association matrix and their properties, we
refer to Siciliano et al. (2016, Section 2.5).
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Figure 2. Example of Nested Stump Tree

4. Web Visit Histories: Exploratory Tree-Based Approach

4.1 Nested Stump Tree: The Structure and Its Properties

The case study data set suggested developing a new method for ex-
ploratory analysis of web data through a tree structure that is not a standard
one. Indeed, when dealing with tree partitioning of web data, one must
take into account that at any click some web navigators leave the web. We
built up a hierarchy of stumps, where a stump is a tree with only one split,
or equivalently with only two terminal nodes. This structure results in the
Nested Stump Tree as depicted in Figure 2.

The Nested Stump Tree is characterized by levels that correspond to
each click time (v = 1, . . . , V ). It describes a recursive partitioning of
the objects, i.e. the web navigators, into homogeneous subgroups with re-
spect to a response variable taking into account that, at each level of the
tree, some of them leave. Indeed, there are terminal nodes in the structure
that generate new nodes, called child root nodes, when considering only the
active navigators. We can build up a Nested Stump Regression Tree for a
numerical response variable and a Nested Stump Classification Tree for a
categorical response variable. At the bottom of the structure there is the root
node that includes all web navigators that are considered for the analysis.
The first stump yields the left and the right terminal nodes according to the
split criterion. These nodes can be declared either final terminal node or
local terminal node according to a stopping rule. Any local terminal node
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generates a child root node yielding a new stump. The partitioning proce-
dure finishes when all terminal nodes are declared final. Terminal nodes are
denoted by square boxes and parent nodes, such as the root node and the
child root nodes, by circles. Any parent node t yields the left terminal node
numbered 2t and the right terminal node numbered 2t + 1. The size of all
terminal nodes is denoted by Ñt. The size of any child root node t is de-
noted byNt. The number of navigators who leave the web page at any local
terminal node is denoted by Lt. It can be shown thatNt = Ñt−Lt. At level
v, there are N(v) active navigators partitioned into the child root nodes for
t = 2v, . . . , 2v+1 − 1. It can be shown that

N(v) =

2v+1−1∑

t=2v

Ñt (4)

for v = 1, . . . , V ∗, where V ∗ is the maximum number of levels of the hier-
archy where all terminal nodes are final. Let H∗ be the maximum number
of final terminal nodes. Furthermore, from level v − 1 to level v there are
L(v) navigators who leave the web, where L(v) = N(v) −N(v−1) and at any
level v it holds

N(v) =

2v−1∑

t=2(v−1)

Nt, (5)

for v = 2, . . . , V ∗.
At level v, let Yv be the response variable and let X̃v be the predictor

that is measured in each learning sample of the child root nodes and the root
node, i.e. Lnt

= {yntv, x̃ntv;nt = 1, . . . , Nt} with t = 2v , . . . , 2v+1 − 1.
Let iYv

(t) be the impurity measure of the variable Yv in the node t satisfy-
ing some properties as in CART methodology. The split of the objects can
be induced by the split of either a predictor categories into two subgroups
(simple split) or a compound predictors categories (multiple split), where a
compound predictor is a cross-classification of more predictors categories in
order to consider their interaction. In the former, the predictor X̃v is one;
whereas, in the latter it is a compound variable. For sake of brevity, we will
consider only simple splits.

The splitting criterion can be defined by searching for the split s of
navigators which maximizes the relative decrease of impurity or the so-
called Impurity Proportional Reduction when passing from the node t to
its child nodes 2t and 2t+ 1, namely
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γYv|s(t) =
ΔiYv |s(t)
iYv

(t)
=

iYv
(t)− [iYv

(2t)p(2t) + iYv
(2t+ 1)p(2t + 1)]

iYv

,

(6)
where p(2t) and p(2t + 1) are the proportions of navigators falling respec-
tively into the left child, 2t, and the right child, 2t+1. The stopping rule can
be defined by choosing both a threshold value for the maximum of the im-
purity proportional reduction and a minimum percentage of objects falling
in a terminal node with respect to the root node. Let T ∗ be the final Nested
Stump Tree resulting from the partitioning procedure. The Nested Stump
Tree satisfies the shape and heap property, which are standard properties of
a tree structure. In particular, the structure is a hierarchy of stumps that are
binary trees with only one split (i.e. r = 2) and each parent node is greater
than or equal to its own child nodes in terms of node size and impurity mea-
sure. In addition, two more properties are satisfied, namely the exclusion
property and the level property. The exclusion property allows to identify
the child root nodes, by cutting off those navigators abandoning the web.
The level property allows to determine the number of stumps at each level
of the tree, which is at most two times the number of stumps generated by
the previous level. The following statistical ratios within any node t and any
click-level v (for v = 1, . . . , V ∗) help the interpretation of the Nested Stump
Tree:

• the Impurity Proportional Reduction (IPR) is the maximum value of
the splitting rule (6) at any node, i.e. IPR(t) = γYv |s∗(t) where s

∗ is
the best split at node t that discriminates the objects belonging to the
left sub-node 2t from those belonging to the right sub-node 2t+ 1;

• the Within-Node Exclusion ratio (WNE) is the relative proportion of
objects that leave the partitioning procedure at the local terminal node
t, i.e.WNE(t) = Lt/Ñt;

• the Within-Level Exclusion ratio (WLE) is the relative proportion of
objects that leave the partitioning procedure at the current level v, i.e.
WLE(v) = L(v)/N(v−1);

• the Global Level Exclusion ratio (GLE) is the global proportion of
objects that leave the partitioning procedure with respect to the root
node, at the current level v, i.e. GLE(v) = L(v)/N1;

• the Tree Impurity (I(T ∗)) is the overall impurity measure of the final
tree T ∗ and it is obtained by summing up the impurities of the final
terminal nodes weighted by the proportions of objects falling in each
node, i.e. I(T ∗) =

∑
t∈H∗ iYv

(t)p(t), where H∗ is the set of final
terminal nodes.

It is also possible to consider a pruning procedure and a decision tree selec-
tion to identify a Nested Stump Decision Tree for predicting the response
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class/value of new objects. Analogously to the CART pruning, a sequence
of nested Nested Stump Trees can be considered by a selective algorithm
that cuts off, at each iteration, the weakest link. This weakest link can be
chosen as the branch Tt hold by the child root node t which minimizes the
cost-benefit parameter value

αt =

∑
hΔiYv |s∗(h)
HTt

− 1
, (7)

where h denotes any child root node that is present in the branch Tt and
HTt

is the number of terminal nodes in the branch Tt. Rather than CART,
the cost is evaluated in terms of impurity decrease (Cappelli, Mola, and
Siciliano, 2002). The decision tree selection can be based on considering
either an independent test sample of objects or a cross-validation estimate of
the Tree Impurity. The main idea is to find the tree of the sequence derived
from the pruning procedure to minimize the Tree Impurity Estimation.

4.2 Nested Stump Regression Tree for Web History Mining

The Nested Stump Regression Tree consists in a recursive binary par-
tition of the active navigators at each node of the current level in such a way
to obtain homogeneous subgroups of navigators in terms of the number of
remaining clicks to be done. The aim is to discover the web navigation paths
from one section to another such to identify the user’s choices discriminat-
ing between those navigators who leave early the web from those who keep
standing on the web.

At any click v, the response variable is the total number of remaining
clicks, i.e. Yv = Qv, and the predictor is the web choice, i.e. X̃v = Xv.
Thus, the response variables are by turns the columns of the web click ma-
trix; whereas, the predictors are by turns the columns of the web navigation
matrix. At any click v, the feature representing the predictor is always the
same, namely the web sections that can be visited (in the case study this
feature has seventeen modalities). This variable is nominal and so the total
number of candidate splits is equal to (2J−1 − 1), where J is the number
of categories. It is worth noting that this feature has different measurements
depending on the click. Analogously, the total number of remaining clicks
varies from click to click.

At any click v, there is a learning sample formed by the active nav-
igators N(v) for which the response variable Yv and the predictor Xv are
measured. Specifically, these variables are the non-zero values in the v-th
web click matrix Q and the corresponding web preferences of the set W
in the v-th column of the web navigation data matrix X. The within-node
sum of squares of the response variable Yv taking into account the sample
of objects falling in the node t is considered as impurity measure, namely
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iYv
(t) = dev(Yv(t)) =

Nt∑

nt=1

(yntv − ȳv(t))
2, (8)

where ȳv(t) is the mean of the response variable Yv within the node t.
At any node t of the level v the best split s∗t is found by maximizing

the Impurity Proportional Reduction (6), which is relative decrease in the
within-node sum of squares of the response variable Yv due to any split st
induced by the X̃v predictor modalities. It can be shown that for the impurity
measure (8), (6) yields the Pearson’s correlation coefficient

ηt(Yv|st) = devYv
(t)− [devYv

(2t)p(2t) + devYv
(2t+ 1)p(2t+ 1)]

devYv
(t)

. (9)

Hence, the best split s∗t is found by maximizing the between-group deviation
within the local terminal nodes or the decrease in the within-group deviation
when passing from the child root node to the terminal node of the stump
generated by the node t. As for the stopping rule, a node is declared to be
terminal if the percentage of the active navigators is below a fixed threshold.
The mean value of the variable Yv at any node is used as assignment rule for
the final terminal nodes. This value is an estimate of the expected number
of clicks that the visitors, which are still surfing the portal, will perform
before stopping their navigation session, with standard deviation measuring
the within node impurity. For example, by assuming that Figure 2 shows
a Nested Stump Regression Tree, we can deduce that, at the first level a
partition of the N1 navigators yields two subgroups that reduce the internal
variation of the response variable Y1 with respect to the first predictor X1.
Both the terminal nodes of the first stump are not final ones. They generate
two child root nodes by considering the learning samples of size N2 and
N3 respectively, thus omitting those navigators who left the web after the
first click. The latter are denoted by L2 and L3, with L(2) = L2 + L3. At
the second level, both the binary partitions of each of the active navigators
groupsN2 andN3, respectively within the child root nodes t = 2 and t = 3,
provide two subgroups reducing the variation of the response variable on the
basis of the second predictor X2. The best splits at each child root node at
the second level describe the web preferences of distinct navigators’ groups,
when passing from the first click to the second click, or the so-called web
paths, each coming from distinct choices at the first click level. The stump
at the third child root node generates two final terminal nodes, whereas the
stump at the second child root node yields the final terminal node 5 and
another node that is further partitioned. The recursive partitioning continues
until each terminal node is declared to be final terminal.
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Figure 3. Nested Stump Regression Tree for the case study

4.3 Sequence Rules Visualization and Web Usage Paths Analysis

For the case study, we considered the raw data of users that arrived till
the ninth navigation session (about the 90% of the data set). A partial view
of the web navigation matrix is shown in Table 1.

Figure 3 shows the Nested Stump Regression Tree. The horizontal
lines represents the level of the tree and they correspond to the clicking time.
The figure is the graphical representation of Tables 2, 3 and 4, that reports
the statistical information of any split at each level. The coding used for the
web-sections is: x1 = Frontpage, x2 = News x3 = Tech x4 = Local, x5
= Opinion, x5 = On air, x7 = Misc x8 = Weather, x9 = MSN-news, x10 =
Health, x11 = Living, x12 = Business, x13 = MSN-sports, x13 = Sport, x15
= Summary, x16 = BBS, x17 =Travel.

The statistical information reported is, at any level, the level impurity
reduction and the Within Level Exclusion, and at any node, the node size,
the mean and standard deviation of the response variable (i.e. the expected
remaining clicks), the IPR at any stump and the Within Node Exclusion
(WNE), the splitting rule at the child root node. The terminal node that is
not further partitioned is reported as terminal.
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Table 2. Nested Stump Regression Tree for the case study: Statistical Information for Levels
1, 2, 3, 4.

v1. Level impurity reduction: 6.377%

Node Size
Expected clicks

IPR WNE Splitting rule
Mean Std

Split 1
1 888056 2.951 2.415 6.377% -
2 466952 2.372 2.101 53.313% X �= x1, x5, x7, x8, x13, x15, x16

3 421104 3.593 2.573 27.704%
v2. Level impurity reduction: 4.610%. WLE: 41.170%. GLE=41.170%.

Split 2
2 218006 2.938 2.203 6.202% -
4 206287 2.808 2.146 38.422% X �= x7

5 11719 5.237 1.902 3.021%

Split 3
3 304440 3.586 2.364 3.470% -
6 175310 3.292 2.306 29.051% X = x1, x3, x4, x9, x12, x13, x15, x16

7 129130 3.986 2.345 17.890%
v3. Level impurity reduction: 1.876%. WLE: 29.409%. GLE=58.471%

Split 4
4 127027 2.936 2.042 2.978% -
8 122960 2.872 2.017 34.502% X �= x7

9 4067 4.865 1.833 Terminal

Split 5
5 11365 4.370 1.776 5.657% -
10 2176 3.505 2.079 Terminal X �= x7, x11, x14, x15, x17

11 9189 4.574 1.630 0.965%

Split 6
6 124381 3.231 2.112 1.143% -
12 96210 3.109 2.085 1.143% X = x1, x3, x4, , x15

13 28171 3.648 2.150 19.247%

Split 7
7 106029 3.636 2.135 1.011% -
14 59570 3.442 2.158 23.843% X �= x4, x5, x7, x8, x16

15 46459 3.884 2.081 13.849%
v4. Level IPR: 1.102%. WLE: 26.748%. GLE=70.094%

Split 8
8 80536 2.858 1.842 1.666% -
16 75946 2.800 1.822 32.681% X �= x7

17 4590 3.820 1.901 Terminal

Split 11
11 9104 3.608 1.601 0.462% -
22 195 2.918 1.823 Terminal X �= x7, x11, x14, x15, x17

33 8909 3.623 1.592 3.031%

Split 12
12 67803 2.993 1.877 0.746% -
24 58491 2.927 1.865 30.649% X = x1, x3, x4, x15

25 9312 3.407 1.901 19.534%

Split 13
13 22749 3.279 1.912 0.948% -
26 19688 3.205 1.914 24.528% X �= x4, x5, x7, x8, x16

27 3061 3.759 1.830 Terminal

Split 15
14 45367 3.207 1.914 0.773% -
28 43727 3.174 1.911 25.463% X = x1, x3, x4, x15

29 1640 4.080 1.785 Terminal

Split 15
15 40025 3.348 1.862 1.177% -
30 6586 2.888 1.901 Terminal X �= x4, x5, x7, x8, x16

31 33439 3.439 1.841 15.847%
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Table 3. Nested Stump Regression Tree for the case study: Statistical Information for Levels
5, 6.

v5. Level impurity reduction: 0.847%. WLE: 26.491%. GLE=79.346%

Node Size
Expected clicks

IPR WNE Splitting rule
Mean Std

Split 16
16 51127 2.674 1.610 1.095% -
32 50290 2.251 1.604 32.591% X �= x7

33 837 4.031 1.420 Terminal

Split 23
23 8639 2.705 1.547 0.301% -
46 6069 2.649 1.513 Terminal X �= x1, x4, x7, x10, x13, x15, x16, x17

47 2570 2.837 1.617 Terminal

Split 24
24 40564 2.778 1.628 0.690% -
48 35679 2.730 1.618 30.598% X �= x2, x7, x8, x10, x11, x14, x16, x17

49 4885 3.133 1.654 Terminal

Split 25
25 7493 2.991 1.656 0.952% -
50 6647 2.932 1.661 Terminal X �= x5, x7, x16

51 846 3.462 1.543 Terminal

Split 26
26 14859 2.921 1.661 0.793% -
52 14279 2.892 1.657 27.257% X �= x7

53 580 3.640 1.589 Terminal

Split 28
28 32593 2.917 1.653 0.758% -
56 31888 2.895 1.651 27.258% X �= x7

57 705 3.909 1.440 Terminal

Split 31
31 28140 2.898 1.642 0.892% -
62 25013 2.842 1.628 26.601% X �= x5, x7

63 3127 3.347 1.687 Terminal
v6. Level impurity reduction: 0.690%. WLE: 29.618%. GLE=87.546%

Split 32
32 33900 2.450 1.364 0.865% -
64 33464 2.436 1.359 33.908% X �= x7

65 436 3.505 1.286 Terminal

Split 48
48 24762 2.492 1.368 0.388% -
96 20862 2.445 1.363 33.808% X �= x2, x4, x5, x7, x10, x11, x14, x16

97 3900 2.744 1.365 3.031%

Split 52
52 10387 2.601 1.390 0.523% -
104 10154 2.544 1.389 29.762% X �= x7

105 233 3.313 1.266 Terminal

Split 56
56 23196 2.606 1.377 0.716% -
112 22813 2.590 1.375 29.119% X �= x7

113 383 3.520 1.184 Terminal

Split 62
62 18357 2.509 1.391 0.435% -
124 17911 2.497 1.389 33.549% X �= x7, x10

125 446 3.004 1.346 Terminal

In each table, within each level of v, the sum of the size of terminal
nodes is equal to the size of the respective parent node. For each local termi-
nal node, the within node exclusion ratio (WNE) is reported. If the terminal
node is not considered final terminal, at level v+1 the within-node size,
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Table 4 Nested Stump Regression Tree for the case study: Statistical Information for Levels
7, 8, 9.

v7. Level impurity reduction: 0.675%. WLE: 32,388%. GLE=91.990%

Node Size
Expected clicks

IPR WNE Splitting rule
Mean Std

Split 64
64 22117 2.173 1.093 0.750% -
128 21896 2.164 1.090 36.354% X �= x7

129 221 3.090 0.973 Terminal

Split 96
96 13809 2.183 1.093 0.736% -
192 12654 2.154 1.084 36.479% X �= x1, x4, x7, x10, x13, x15, x16, x17

193 1155 2.509 1.142 Terminal

Split 104
104 7132 2.256 1.109 0.676% -
208 3253 2.155 1.115 Terminal X �= x2, x7, x8, x10, x11, x14, x16, x17

209 3879 2.341 1.097 Terminal

Split 112
112 16170 2.243 1.097 0.613% -
224 15985 2.234 1.095 33.438% X �= x5, x7, x16

225 185 3.049 0.968 Terminal

Split 124
124 11902 2.253 1.097 0.546% -
248 748 1.961 1.079 Terminal X �= x7

249 11154 2.272 1.095 31.782%
v8. Level impurity reduction: 0.069%. WLE: 34.797%. GLE=95.471%

Split 128
128 13936 1.828 0.807 0.069% -
256 13875 1.826 0.807 42.775% X �= x7

257 61 2.246 0.741 Terminal

Split 192
192 8038 1.816 0.804 0.375% -
384 7745 1.805 0.801 Terminal X �= x2, x4, x5, x7, x10, x11, x14, x16

385 293 2.119 0.841 Terminal

Split 224
224 10640 1.854 0.807 0.445% -
448 4241 1.794 0.804 Terminal X �= x7

449 6399 1.894 0.806 Terminal

Split 249
249 7609 1.865 0.807 0.229% -
498 7948 1.859 0.807 Terminal X �= x7

499 111 2.279 0.741 Terminal
v9. Level impurity reduction: 0.300%. WLE: 42.775%. GLE=99.106%

Split 256
256 7940 1.443 0.497 0.300% -
512 7905 1.441 0.496 Terminal X �= x7, x10

513 35 1.857 0.349 Terminal
Tree impurity: 3.488%

adjusted for the ratio of leaving navigators, is reported. For example, the
first stump at node 1 at level v = 1 provides two terminal nodes which
are not declared to be final terminal. Within the left local terminal node 2
the WNE is equal to 53.31% of navigators leaving the web navigation; as a
result, at the level v = 2 the child root node 2 includes Ñ2 = 218006 active
navigators with the expected number of clicks equal to 2.938 and standard
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deviation equal to 2.203. The child root node 2 provides a new stump for
which the navigators that do not choose the seventh web section ({Misc})
go to the left child node 4 and the others to the right node 5.

A group of discriminant web sections, e.g. {Misc}, {Opinion},
{Weather}, {Health}, {BBS}), brings the surfers to leave the web. For
example, in the stump coded as Split 4 the navigators who choose {Misc}
go into the right child node 9 which is declared to be terminal, all the others
keep standing on the web. This prediction rule is valid till the last level of the
same path, and this is also true for all the other paths involving the above-
mentioned discriminant web sections. Table 4 reports in the last row the
relative impurity measure of the Nested Stump Regression Tree as the ratio
between the overall impurity measure and the impurity in the root node.

The tree-structure is also useful to inquire the direct sequence rules
through the paths identified by the nested stump regression tree. Tables
from 5 to 7 show an example of how the direct sequence rules can be asso-
ciated with a tree. In the computation of the sequence rules, we considered
a minimum support equal to 0.01 and a lift measure larger than 1.

Tables 5, 6 and 7 show the direct sequence rules from node 1 to node
2, from node 2 to node 4 and from node 5 to node 10 respectively. An-
tecedent items are the web sections that are visited at the previous level with
respect to level v, and the consequent items are the web sections visited at
level v + 1.

Data analyses were performed with our own program written in Mat-
Lab language in a Computer Intel Core i5-3317U 1.70 GHz and 4GB of
RAM. It can be noted that, in general, users tend to stay on the same pages
visited the previous time. On the other hand the sequence rules are consis-
tent with the splitting rules, even if these measures are not connected in any
way. For example, the direct sequence rules detected in Table 5 confirm the
splitting rule of Split 1 in Table 2. In other words, once the sample was par-
titioned Table 5 hows that significant sequence rules in passing from node
1 to node 2 involve as antecedents web sections visited by surfers moving
from node 1 to node 2. We get the same conclusion by comparing the direct
sequence rules showed in Tables 6 and 7 with the rules governing the split
of the stumps.

5. Concluding Remarks

This paper considers a newmethodological framework for web usage-
structure mining. Namely, it is possible to explore web navigation behavior
through sequence rules. The most interesting paths can be discovered by
considering the support, the confidence and the lift measures.

A novel tree-based structure, namely the Nested Stump Tree, is in-
troduced to deal with both numerical and categorical responses, yielding to
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Table 5. Direct sequence rules for the case study: node 1 - node 2

rule support confidence lift
x2 ⇒ x2 0.117 0.814 4.790
x3 ⇒ x3 0.061 0.606 5.801
x4 ⇒ x4 0.076 0.683 5.823
x6 ⇒ x9 0.018 0.428 1.503
x10 ⇒ x10 0.017 0.588 21.312
x11 ⇒ x11 0.015 0.544 18.256
x14 ⇒ x14 0.076 0.785 6.043
x6 ⇒ x15 0.024 0.741 2.602

Table 6. Direct sequence rules for the case study: node 2 - node 4

rule support confidence lift
x1 ⇒ x1 0.027 0.601 10.717
x2 ⇒ x2 0.117 0.764 4.966
x3 ⇒ x3 0.059 0.650 7.518
x4 ⇒ x4 0.084 0.748 6.401
x6 ⇒ x6 0.079 0.691 5.196
x6 ⇒ x7 0.018 0.552 4.152
x8 ⇒ x8 0.018 0.654 29.843
x9 ⇒ x9 0.023 0.528 12.073
x10 ⇒ x10 0.024 0.578 17.236
x11 ⇒ x11 0.016 0.494 17.982
x12 ⇒ x12 0.073 0.760 7.498
x13 ⇒ x13 0.012 0.563 29.811
x14 ⇒ x14 0.140 0.860 5.407

Table 7. Direct sequence rules for the case study: node 5 - node 10

rule support confidence lift
x4 ⇒ x2 0.021 0.692 2.222
x4 ⇒ x4 0.142 0.903 2.901
x6 ⇒ x6 0.141 0.948 1.552
x6 ⇒ x7 0.414 0.761 1.257
x9 ⇒ x9 0.011 0.526 31.053
x10 ⇒ x10 0.010 0.642 39.283
x6 ⇒ x15 0.026 0.938 1.536
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Nested Stump Regression Tree and Nested Stump Classification Tree re-
spectively. The proposed tree-based structure is formed by a hierarchy of
stumps and it is characterized by the shape and the heap properties which
hold for standard trees, in addition it satisfies new properties, namely the
exclusion and the level properties. The main issue is to consider, at each
node and at each level of the structure, a learning sample where some of the
objects leave the partitioning procedure for a given criterion. In web mining,
these objects are the users who may leave the web at any click. A general
definition of CART-like splitting criterion and of a stopping rule are defined
to build up the exploratory tree. It is worth nothing that it is not feasible
to define a measure of goodness (or badness) of fit of the entire tree-based
structure. At any level the statistical units are independent. A way to con-
sider the informative overall power of the structure is looking at the global
decrease of the impurity measure. For the case study, and in general in the
web mining framework, the statistical unit of the web navigation matrix is
always the navigation session. Indeed, it is only relevant to understand the
web pattern preferences, no matter who is the subject being in the naviga-
tion session. If a unique identifier for subjects can be retrieved, it could
be possible to use further variables, such as country, gender, age, etc. in
the analysis. In our case study this information was not available. On the
contrary, a possible strategy of data analysis in presence of personal infor-
mation could involve longitudinal tree-based methods approaches (Fu and
Simonoff, 2015; Fokkema et al., 2015) or ensemble methods dealing with
longitudinal data (Vezzoli, 2011).

In this paper, the regression case has been exploited. As case study,
a well known data set from the UCI Machine Learning Repository has been
considered to show the application of the proposed approach for exploring
web navigation behavior. Nested Stump Regression Trees are introduced
to investigate web paths preferences that lead the navigators to leave earlier
the web with respect to others who keep standing on the web. The remain-
ing number of clicks before leaving is the response variable and the web
preference at the current click is the predictor according to which the best
split is selected. Once the tree structure is built it is possible to interpret the
tree paths through direct sequence rules and also to derive their strength in
terms of support, confidence and lift measures. Classification Trees will be
considered in another paper.
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