# REPRESENTATION CHALLENGES Augmented Reality and Artificial Intelligence in Cultural Heritage and Innovative Design Domain edited by Andrea Giordano Michele Russo Roberta Spallone FrancoAngeli OPEN @ ACCESS # diségno the Series of the UID – Unione Italiana per il Disegno director Francesca Fatta The Series contains volumes of the proceedings of the annual conferences of the Scientific Society UID — Unione Italiana per il Disegno and the results of international meetings, research and symposia organised as part of the activities promoted or patronised by UID. The topics concern the Scientific Disciplinary Sector ICAR/17 Drawing with interdisciplinary research areas. The texts are in Italian or in the author's mother tongue (French, English, Portuguese, Spanish, German) and/or in English. The international Scientific Committee includes members of the UID Scientific Technical Committee and numerous other foreign scholars who are experts in the field of Representation. The volumes of the series can be published either in print or in open access and all the authors' contributions are subject to double blind peer review according to the currently standard scientific evaluation criteria. #### Scientific Committee Giuseppe Amoruso Politecnico di Milano Paolo Belardi Università degli Studi di Perugia Stefano Bertocci Università degli Studi di Firenze Mario Centofanti Università degli Studi dell'Aquila Enrico Cicalò Università degli Studi di Sassari Antonio Conte Università degli Studi della Basilicata Mario Docci Sapienza Università di Roma Edoardo Dotto Università degli Studi di Catania Maria Linda Falcidieno Università degli Studi di Genova Francesca Fatta Università degli Studi Mediterranea di Reggio Calabria Fabrizio Gay Università IUAV di Venezia Andrea Giordano Università degli Studi di Padova Elena Ippoliti Sapienza Università di Roma Francesco Maggio Università degli Studi di Palermo Anna Osello Politecnico di Torino Caterina Palestini Università degli Studi "G. d'Annunzio" di Chieti-Pescara Lia Maria Papa Università degli Studi di Napoli "Federico II" Rossella Salerno Politecnico di Milano Alberto Sdegno Università degli Studi di Udine Chiara Vernizzi Università degli Studi di Parma Ornella Zerlenga Università degli Studi della Campania "Luigi Vanvitelli" # Members of foreign structures Caroline Astrid Bruzelius Duke University - USA Pilar Chías Universidad de Alcalá - Spagna Frank Ching University of Washington - USA Livio De Luca UMR CNRS/MCC MAP Marseille - Francia Roberto Ferraris Universidad Nacional de Córdoba - Argentina Glaucia Augusto Fonseca Universidade Federal do Rio de Janeiro - Brasile Pedro Antonio Janeiro Universidade de Lisboa - Portogallo Jacques Laubscher Tshwane University of Technology - Sudafrica Cornelie Leopold Technische Universität Kaiserslautern - Germania Juan José Fernández Martín Universidad de Valladolid - Spagna Carlos Montes Serrano Universidad de Valladolid - Spagna César Otero Universidad de Cantabria - Spagna Guillermo Peris Fajarnes Universitat Politècnica de València - Spagna José Antonio Franco Taboada Universidade da Coruña - Spagna Michael John Kirk Walsh Nanyang Technological University - Singapore This volume is published in open access format, i.e. the file of the entire work can be freely downloaded from the FrancoAngeli Open Access platform (http://bit.ly/francoangeli-oa). On the FrancoAngeli Open Access platform, it is possible to publish articles and monographs, according to ethical and quality standards while ensuring open access to the content itself. It guarantees the preservation in the major international OA archives and repositories. Through the integration with its entire catalog of publications and series, FrancoAngeli also maximizes visibility, user accessibility and impact for the author. Read more: http://www.francoangeli.it/come\_pubblicare/pubblicare\_I9.asp # REPRESENTATION CHALLENGES Augmented Reality and Artificial Intelligence in Cultural Heritage and Innovative Design Domain edited by Andrea Giordano Michele Russo Roberta Spallone #### Scientific Committee Salvatore Barba Università di Salerno Marco Giorgio Bevilacqua Università di Pisa Stefano Brusaporci Università dell'Aquila Francesca Fatta Università Mediterranea di Reggio Calabria Andrea Giordano Università di Padova Alessandro Luigini Libera Università di Bolzano Michele Russo Sapienza Università di Roma Cettina Santagati Università di Catania Alberto Sdegno Università di Udine Roberta Spallone Politecnico di Torino # Scientific Coordination Andrea Giordano Università di Padova Michele Russo Sapienza Università di Roma Roberta Spallone Politecnico di Torino ## **Editorial Committee** Isabella Friso Università IUAV di Venezia Fabrizio Natta Politecnico di Torino Michele Russo Sapienza Università di Roma The texts as well as all published images have been provided by the authors for publication with copyright and scientific responsibility towards third parties. The revision and editing is by the editors of the book. ISBN printed edition: 9788835116875 ISBN digital edition: 9788835125280 #### Peer Reviewers Marinella Arena Università Mediterranea di Reggio Calabria Salvatore Barba Università di Salerno Marco Giorgio Bevilacqua Università di Pisa Cecilia Bolognesi Politecnico di Milano Stefano Brusaporci Università dell'Aquila Francesca Fatta Università Mediterranea di Reggio Calabria Andrea Giordano Università di Padova Massimo Leserri Università di Napoli "Federico II" Stefania Landi Università di Pisa Massimiliano Lo Turco Politecnico di Torino Alessandro Luigini Libera Università di Bolzano Pamela Maiezza Università dell'Aquila Domenico Mediati Università Mediterranea di Reggio Calabria Cosimo Monteleone Università di Padova Michele Russo Sapienza Università di Roma Cettina Santagati Università di Catania Alberto Sdegno Università di Udine Roberta Spallone Politecnico di Torino Marco Vitali Politecnico di Torino # Patronage Cover image: Michele Russo Copyright © 2021 by FrancoAngeli s.r.l., Milano, Italy. This work, and each part thereof, is protected by copyright law and is published in this digital version under the license *Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International* (CC BY-NC-ND 4.0) By downloading this work, the User accepts all the conditions of the license agreement for the work as stated and set out on the website https://creativecommons.org/licenses/by-nc-nd/4.0 # Index Francesca Fatta Andrea Giordano, Michele Russo, Roberta Spallone Representation Challenges: The Reasons of the Research # AR&AI theoretical concepts Francesco Bergamo The Role of Drawing in Data Analysis and Data Representation Giorgio Buratti, Sara Conte, Michela Rossi Artificial Intelligency, Big Data and Cultural Heritage Marco Ferrari, Lodovica Valetti Virtual Tours and Representations of Cultural Heritage: Ethical Issues Claudio Marchese, Antonino Nastasi The Magnificent AI & AR Combinations: Limits? Gorgeous Imperfections! 47 Valerio Palma Data, Models and Computer Vision: Three Hands—on Projects Alberto Sdegno Drawing Automata Marco Vitali, Giulia Bertola, Fabrizio Natta, Francesca Ronco Al+AR: Cultural Heritage, Museum Institutions, Plastic Models and Prototyping. # AR&AI virtual reconstruction Alessio Bortot Physical and Digital Pop-Ups. An AR Application in the Treatises on Maurizio Marco Bocconcino, Mariapaola Vozzola The Value of a Dynamic Memory: from Heritage Conservation in Turin Antonio Calandriello Augmented Reality and the Enhancement of Cultural Heritage: the Case of Palazzo Mocenigo in Padua Cristina Càndito, Andrea Quartara, Alessandro Meloni The Appearance of Keplerian Polyhedra in an Illusory Architecture Maria Grazia Cianci, Daniele Calisi, Sara Colaceci, Francesca Paola Mondelli Digital Tools at the Service of Public Administrations Riccardo Florio, Raffaele Catuogno, Teresa Della Corte, Veronica Marino Studies for the Virtual Reconstruction of the Terme del Foro of Cumae Maurizio Perticarini, Chiara Callegaro Making the Invisible Visible: Virtual/Interactive Itineraries in Roman Padua # AR&AI heritage routes Marinella Arena, Gianluca Lax Saint Nicholas of Myra. Cataloguing, Identification, and Recognition Through AI Stefano Brusaporci, Pamela Maiezza, Alessandra Tata, Fabio Graziosi, Fabio Franchi Prosthetic Visualizations for a Smart Heritage Gerardo Maria Cennamo Advanced Practices of Augmented Reality: the Open Air Museum Systems for the Valorisation and Dissemination of Cultural Heritage Serena Fumero, Benedetta Frezzotti The Use of AR Illustration in the Promotion of Heritage Sites 133 Alessandro Luigini, Stefano Brusaporci, Alessandro Basso, Pamela Maiezza The Sanctuary BVMA in Pescara: AR Fruition of the Pre—Conciliar Layout Alessandra Pagliano, Greta Attademo, Anna Lisa Pecora Phygitalarcheology for the Phlegraean Fields Andrea Rolando, Domenico D'Uva, Alessandro Scandiffio A Technique to Measure the Spatial Quality of Slow Routes in Fragile Territories Using Image Segmentation Giorgio Verdiani, Ylenia Ricci, Andrea Pasquali, Stéphane Giraudeau When the Real Really Means: VR and AR Experiences in Real Environments Ornella Zerlenga, Vincenzo Cirillo, Massimiliano Masullo, Aniello Pascale, Luigi Maffei Drawing, Visualization and Augmented Reality of the 1791 Celebration in Naples # AR&AI classification and 3D analysis Marco Giorgio Bevilacqua, Anthony Fedeli, Federico Capriuoli, Antonella Gioli, Cosimo Monteleone, Andrea Piemonte Immersive Technologies for the Museum of the Charterhouse of Calci Massimiliano Campi, Valeria Cera, Francesco Cutugno, Antonella di Luggo, Domenico CHROME Project: Representation and Survey for Al Development Paolo Clini, Roberto Pierdicca, Ramona Quattrini, Emanuele Frontoni, Romina Nespeca Deep Learning for Point Clouds Classification in the Ducal Palace at Urbino Pierpaolo D'Agostino, Federico Minelli Automated Modelling of Masonry Walls: a ML and AR Approach Elisabetta Caterina Giovannini Data Modelling in Architecture: Digital Architectural Representations Marco Limongiello, Lucas Matias Gujski Image–Based Modelling Restitution: Pipeline for Accuracy Optimisation From AI to H–BIM: New Interpretative Scenarios in Data Processing Michele Russo, Eleonora Grilli, Fabio Remondino, Simone Teruggi, Francesco Fassi Machine Learning for Cultural Heritage Classification Andrea Tomalini, Edoardo Pristeri, Letizia Bergamasco Photogrammetric Survey for a Fast Construction of Synthetic Dataset # AR&AI urban enhancement Giuseppe Amoruso, Polina Mironenko, Valentina Demarchi Rebuilding Amatrice. Representation, Experience and Digital Artifice **229**Paolo Belardi, Valeria Menchetelli, Giovanna Ramaccini, Margherita Maria Ristori, Camilla Sorignani AR+AI = Augmented (Retail + Identity) for Historical Retail Heritage Pabio Bianconi, Marco Filippucci, Marco Seccaroni New Interpretative Models for the Study of Urban Space Marco Canciani, Giovanna Spadafora, Mauro Saccone, Antonio Camassa Augmented Reality as a Research Tool, for the Knowledge and Enhancement of Cultural Heritage 247 Alessandra Pagliano Augmenting Angri: Murals in AR for Urban Regeneration and Historical Memory Caterina Palestini, Alessandro Basso Evolutionary Time Lines, Hypothesis of an Al+AR-Based Virtual Museum Daniele Rossi, Federico O. Oppedisano Marche in Tavola. Augmented Board Game for Enogastronomic Promotion # AR&AI museum heritage Massimo Barilla, Daniele Colistra An Immersive Room Between Scylla and Charybdis Prancesco Borella, Isabella Friso, Ludovica Galeazzo, Cosimo Monteleone, Elena Svalduz New Cultural Interfaces on the Gallerie dell'Accademia in Venice Laura Carlevaris, Marco Fasolo, Flavia Camagni Wood Inlays and AR: Considerations Regarding Perspective Augmented Reality and Museum Exhibition. The Case of the Tribuna of Palazzo Grimani in Venice Giuseppe Di Gregorio The Rock Church of San Micidiario of the Pantalica Site and 3DLAB VR/AR-Project Understanding to Enhance, Between the Technical and Humanist Approaches Gabriella Liva, Massimiliano Ciammaichella Illusory Scene and Immersive Space in Tintoretto's Theatre Franco Prampolini, Dina Porpiglia, Antonio Gambino Medma Touch, Feel, Think: Survey, Catalog and Sensory Limitations Paola Puma, Giuseppe Nicastro The Emotion Detection Tools in the Museum Education EmoDeM Project Leopoldo Repola, Nicola Scotto di Carlo, Andrea Maioli, Matteo Martignoni MareXperience. Al/AR for the Recognition and Enhancement of Reality # AR&AI building information modeling and monitoring Vincenzo Bagnolo, Raffaele Argiolas, Nicola Paba Communicating Architecture. An AR Application in Scan-to-BIM Processes Marcello Balzani, Fabiana Raco, Manlio Montuori Integrated Technologies for Smart Buildings and PREdictive Maintenance Extended Reality (XR) and Cloud-Based BIM Platform Development Carlo Biagini, Ylenia Ricci, Irene Villoresi H-Bim to Virtual Reality: a New Tool for Historical Heritage 353 Fabio Bianconi, Marco Filippucci, Giulia Pelliccia Experimental Value of Representative Models in Wooden Constructions **359** Devid Campagnolo, Paolo Borin Automatic Recognition Through Deep Learning of Standard Forms in Executive Projects Matteo Del Giudice, Daniela De Luca, Anna Osello Interactive Information Models and Augmented Reality in the Digital Age Marco Filippucci, Fabio Bianconi, Michela Meschini Survey and BIM for Energy Upgrading. Two Case Study Raissa Garazzo A Proposal for Masonry Bridge Health Assessment Using Al and Semantics Federico Mario La Russa Al for AEC: Open Data and VPL Approach for Urban Seismic Vulnerability ssunta Pelliccio, Marco Saccucci V.A.I. Reality. A Holistic Approach for Industrial Heritage Enhancement # AR&AI education and shape representation Maria Linda Falcidieno, Maria Elisabetta Ruggiero, Ruggero Torti Visual Languages: On–Board Communication as a Perception of Customercaring Emanuela Lanzara, Mara Capone Genetic Algorithms for Polycentric Curves Interpretation Anna Lisa Pecora The Drawn Space for Inclusion and Communicating Space Marta Salvatore, Leonardo Baglioni, Graziano Mario Valenti, Alessandro Martinelli Forms in Space. AR Experiences for Geometries of Architectural Form Roberta Spallone, Valerio Palma AR&Al in the Didactics of the Representation Disciplines Alberto Tono, Meher Shashwat Nigam, Stasya Fedorova, Amirhossein Ahmadnia, Cecilia Bolognesi Limitations and Review of Geometric Deep Learning Algorithms for Monocular 3D Reconstruction in Architecture # CHROME Project: Representation and Survey for Al Development Massimiliano Campi Valeria Cera Francesco Cutugno Antonella di Luggo Domenico Iovane Antonio Origlia ## **Abstract** The paper shows the results of the PRIN CHROME Cultural Heritage Orienting Multimodal Experiences project, about the three charterhouses of Campania, with a specific focus on research activities related to the connections between representation, survey, Al and VR. The project has formalized a methodology of collection, analysis and modeling of multimodal data, useful for designing virtual agents in 3D environments, which can be applicable in museum environments. The achievement of the goal is pursued through: (i) an integrated range—based acquisition and morphometric data modeling process coherent with VR management, (ii) the use of semantic maps linked with thesauri published as LOD to solve both the theme of ambiguity and annotation uncertainty and the interpretability of information by an Al; (iii) the modeling of a virtual agent with the development of a mathematical model for computational control of gestures and prosody. # Keywords semantic annotation, artificial intelligence, Unreal Engine 4, graph databases. # The CHROME Project: Methodology and Procedures The paper shows the specific results of the PRIN 2015 CHROME Cultural Heritage Resources Orienting Multimodal Experiences, developed around the case studies of the three charterhouses of Campania, with the focus on research activities related to the connections between representation, survey, artificial intelligence and virtual reality [1]. The project, that is strongly inter–disciplinary, has formalized procedures for collecting, annotating and analyzing multimodal data – such as written texts, oral presentations, 3D models – for a subsequent use by the Al. In particular, the resources collected and annotated have served to design a virtual agent inserted in 3D virtual scenarios. This Virtual agent can be applicable in museum environments and joins the tour guides increasing the potential for intervention on the public visiting cultural sites. The virtual agent, in fact, simulates social signals through computational control of gestures and prosody according to a mathematical model based on the behavior of operators specialized in the communication of cultural contents. The base knowledge has therefore been structured in order to build a model that allows to compose a not default and potentially adaptable to the type of interlocutor oral presentation. The achievement of the goal was pursued through the semantic association of the whole corpus of information to the geometric entities of the spatial model, that are digital clone of the real good to which the enhancement is addressed. The annotation of 3D representations made it possible to link the presentation to the automatic selection of the auxiliary material and to query it with a natural language dialogue system, in which the information is spatialized. As disclosed here, attention is focused on those investigative activities related to the interconnections gained between the disciplinary of representation and survey and the domain of computer science, related to each other and put at the service of the development of Al applications in augmented and virtual reality environments. Since this background, the specific research investigated the theoretical and methodological issues related to the geometric and semantic manipulation of digital representations of architectures or rather, on one hand, those of a terminological—significant nature and, on the other, the ones of geometric—formal matrix. The first ones involve the process of meaning assigning to spatial forms, the latter concern both the processes of "construction" of the digital clone and the method by which recognizing on it the geometric boundary of semantic concepts. In addition, the considered segmentation approaches have been strictly aimed at storing content in an Al–questionable system, made able to disseminate information in digital settings that can be experienced through AR/VR technologies. This last aspect involved a reflection upon the most appropriate ways of graphic simplification of the elements of the heritage in order to make their vision fluid in a system of virtual use without losing neither the realistic rendering nor the understanding of the contents. # Representation for Semantic Structuring and Knowledge Formalization The first phase of the study involved the realization of the digital virtual scene, to be semantically annotated, for subsequent use by the Al. For the three case studies of the project, the charterhouse of San Martino in Naples, the San Lorenzo one in Padula and the San Giacomo one in Capri, important campaigns have been carried out. These have seen the integration of passive and active optical sensors in order to achieve accurate, precise and photorealistic three—dimensional models, returning both of the overall morphology of the different convents and the complexity of the decorative details of the interiors. Starting from the integrated range—based acquisition of morpho—metric data, point clouds were modeled with classic triangulation algorithms and subsequent texture projection. The models obtained from the multi scalar survey were then developed for rendering in intensive 3D application development environments, initially subjecting them to a process of selective decimation of the level of detail to make their vision fluid and then subjecting them to a process of texture baking to not lose their realistic output or the understanding of the contents. To link 3D models to the AI, annotations have been added or rather questionable metadata that encodes the knowledge of domain experts independently of applications. In relation to domain vocabulary, the art and architecture thesaurus that is a standard of the architecture world formalized by the Getty Institute as Linked Open Data, was chosen in a format designed for compatibility with triple RDF, a flexible and extensible graph structure. The AAT has allowed to solve lexical ambiguities and to be used as a link between different data sources to allow AI to efficiently cross—check information, such as coming from Wikidata. In order to associate semantic concepts with the corresponding spatial forms, a method that uses the correspondence between 2D/3D space, coding the annotation in the form of maps has been developed. In particular, once analysed the 3D twin and identified the semantic concepts found in it, these were searched in the Getty thesaurus to recognize its unique id code in the domain. Subsequently, for each significant and present in the model term of the is realized a monochrome map in which white indicates the polygons detected for the given concept and black does not show any relevance. The map is applied to the digital representation as well as a texture. In this way the information related to the process of attribution of meaning to spatial forms is translated into a purely visual image [Cera 2018]. The possibility of using a grey scale allows to refine the quality of information where the gradations have different percentages of relevance. So, this method makes it possible to consider semantic maps produced by multiple domain experts obtaining a final map of their degree of agreement, calculating the average values for each UV coordinate (fig.1). # single session annotation workshop 2 restorers [Re], 2 architecture historians [Sa], 2 art historians [St], 2 surveyors [Ri], 2 geometry experts [Ge], 2 echnologists [Te], 2 designers [Pr] Fig. I. Semantic maps produced by different annotators for the concept of capital. Calculation of the degree of agreement with its final map. The innovative thing of coding and using semantic maps lies in allowing to manage annotation margin of error, which is almost always ignored in the usual processes of semantic segmentation of digital representations. The margin of error of domain experts is, on the contrary, a substantial element in the knowledge process where it provides knowledge and complex cognitive mechanisms. For example, using this procedure, the margin of error due to the annotator's background, is not only recorded but also turned into a resource. Machine learning approaches, in fact, are based on statistical models that, in this case, should model the probability of each geometric element belonging to a given category. Discretizing, in representation, is equivalent to removing information from the data on which the model is build, thus imposing a 'filtered' view to the algorithm, which has no way of modelling the existence of concepts which, for example, fade into each other or whose definition depends on multiple factors, such as the specialization of the domain expert in charge of the annotation, the aim of segmentation, the support on which the recognition process is implemented, etc. [Cera 2019]. # From Survey to Development of Artificial Intelligence The semantic maps gathered with AAT codes, make the information contained in the map cross—referenced with that contained in the other resources annotated such as in the texts, in the AAT itself and in other LODs. To make access to information fast and efficient for interactive applications that use real—time 3D material, knowledge has been depicted within a graph database [Webber 2012], which drastically reduces latency due to querying online resources, for example in RDF format. This allows to quickly cross—check information from different sources and compare it to adequately support the application. Within a set of reference texts, the same concepts, described in geometry by semantic maps have been identified and annotated. In this way, you can associate, with the text that describes a resource, the geometry to which it refers independently of the application, making the material highly reusable for different purposes. One of the possible applications achievable with the type of annotated material is the development of conversational virtual agents placed in an environment about which they have sufficient knowledge to interact with them. To study the behavior that these agents should take, a corpus [Origlia 2018] of 12 hours of audiovisual material was collected to document the behavior of art historians who illustrate the environments of the charterhouse di San Martino to small groups of visitors. A linguistic and psychological annotation system has been created to cross—check the various levels of communication through which an experienced human transmits cultural content. In the laboratory, motion capture data was collected to map human movements to 3D avatars. The logic of managing the gestures of the virtual agent has been defined as follows: at each frame, the system calculates the position to be assumed on the basis of a series of animations that are combined according to a series of parameters. As far as the gestures of the arms are concerned, there is a dedicated state machine which places the agent in a 'neutral' position. When an externally produced signal arrives, which corresponds to the start of an audio containing a synthetic voice, the agent switches to 'talking' mode. During speaking mode, an external system may require highlighting concepts with varying degrees of 'strength' or pointing in a certain direction. Since the location of the virtual agent is known, the only information you need to control its gestures is the location of the target. Using the centroid of the mass of points labeled with a certain concept, for example "altare maggiore" imagining that the virtual agent is placed in the church of San Martino, it is possible to calculate the angle between the virtual agent and the concept that you want to point, thus providing the animation control system with the missing information to produce coherent dectic gestures. The processing pipeline that allows an AI to interact is made of several modules. First of all, a specially trained neural network transcribes audio containing a user's voice. From this transcription, an 'intent' is extracted, that is the abstract intention of the speaker and any parameters that detail the request. Based on intent and parameters, a graph database query is produced to extract the content needed to fulfill a request. The sentence to be synthesized is then passed to a second neural network that synthesizes the audio and produces the accompanying information, such as the phonetic annotation of the audio file, to allow the control of lipsync, and the indication of the temporal position of the expressed concepts, to control the gestures of the deictics. Based on this information, an interaction management engine delivers the presentation in real time. # Results The research developed as part of the CHROME project provided an opportunity to investigate the increasingly structured interconnections between the field of representation and survey and the themes of information technology. In particular, the paper analysed the role that the specification of architectural survey and the forms of drawing play in the development of Al applications tested in the dissemination of cultural contents related to some architectural Fig. 2.The original FANTASIA architecture. An updated version was used in this work. heritage of Campania. Validated on the case studies of the three charterhouses, the project developed a method of collection, analysis and dissemination of spatialized information resources around three–dimensional architectural models, used in digital environments whose presentation is entrusted to virtual agents modelled on human behavior. CHROME's system architecture is designed to be generalized in a framework called FAN-TASIA [Origlia 2019] for developing conversational virtual agents that can be applied in any museum environment and therefore replicable (fig.2). The architecture uses graph databases to link data from different sources such as LOD, three–dimensional models, or other. It enables the use of modern peripheral devices and third–party services for capturing and analyzing input signals and integrates probabilistic decision—making systems for controlling interaction in 3D environments. ## Notes [1] The PI of the Italian PRIN project CHROME #B52F15000450001 is prof. F. Cutugno. The architecture unit was coordinated by profs. M. Campi and A. di Luggo. Arch. D. Iovane worked on architectural data acquisition together with arch. V. Cera who developed the research on semantics. Dr. A. Origlia worked on the A.I. development. ## References Cera Valeria (2019). La significazione digitale dell'elemento architettonico: dal rilievo alla strutturazione semantica dell'architettura. Napoli: Editori Paparo. Cera Valeria, Origlia Antonio, Cutugno Francesco, Campi Massimiliano (2018). Semantically Annotated 3D Material Supporting the Design of Natural User Interfaces for Architectural Heritage. In 2018 AVI—CH Workshop on Advanced Visual Interfaces for Cultural Heritage, 2091, pp. 1-4. Origlia Antonio, Cutugno Francesco, Rodà Antonio, Cosi Piero, Zmarich Claudio (2019). FANTASIA: a framework for advanced natural tools and applications in social, interactive approaches. In *Multimedia Tools and Applications*, 78 (10), pp. 13613-13648. Origlia Antonio, Savy Renata, Poggi Isabella, Cutugno Francesco, Alfano Iolanda, D'Errico Francesca, Vincze Laura, Cataldo Violetta (2018). An audiovisual corpus of guided tours in cultural sites: Data collection protocols in the chrome project. In 2018 AVI—CH Workshop on Advanced Visual Interfaces for Cultural Heritage, 2091, pp. 1-4. Webber Jim (2012). A programmatic introduction to Neo4j. In *Proceedings of the 3rd annual conference on Systems, programming, and applications: software for humanity.* New York: Association for Computing Machinery, pp. 217-218. ## Authors Massimiliano Campi, Dept.of Architecture, University of Naples Federico II, campi@unina.it Valeria Cera, Dept. of Architecture, University of Naples Federico II, valeria.cera@unina.it Francesco Cutugno, Dept. of Electrical Engineering and Information Technology, University of Naples Federico II Antonella di Luggo, Dept. of Architecture, University of Naples Federico II, domenico.iovane@unina.it Antonio Origlia, Dept. of Electrical Engineering and Information Technology, University of Naples Federico II, antorio.origlia@unina.it Copyright © 2021 by FrancoAngeli s.r.l. Milano, Italy Isbn 9788835125280