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Abstract
We deal with existence and uniqueness of positive solutions of an elliptic boundary value
problem modeled by ⎧

⎪⎨

⎪⎩

−�pu = f

uγ
+ guq in �,

u = 0 on ∂�,

where � is an open bounded subset of R
N , �pu := div(|∇u|p−2∇u) is the usual p-

Laplacian operator, γ ≥ 0 and 0 ≤ q ≤ p−1; f and g are nonnegative functions belonging
to suitable Lebesgue spaces.

Keywords Nonlinear elliptic equations · Singular elliptic equations ·
Sublinear elliptic equations · Uniqueness
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1 Introduction

In this paper we deal with an elliptic problem which simplest model is
⎧
⎪⎪⎨

⎪⎪⎩

−�pu = f

uγ
+ guq in �,

u > 0 in �,

u = 0 on ∂�,

(1.1)
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where � is an open bounded subset of RN , �pu := div(|∇u|p−2∇u) is the p-Laplacian
operator (1 < p < N ), γ, q ≥ 0 are such that q < p−1 or q = p−1, which correspond to
the sublinear and to the linear behaviour in case p = 2; here f, g are nonnegative functions
belonging to suitable Lebesgue spaces. Clearly the Dirichlet problem (1.1) is singular since
the request that the solution is zero on the boundary of the set implies that the right hand
side blows up. For (1.1) we are mainly interested to existence and uniqueness of possibly
unbounded solutions with finite energy (i.e. u ∈ W

1,p

0 (�)).
Let us briefly recall the mathematical framework concerning problem (1.1); we start with
the non-singular case, namely f ≡ 0.
The main idea of this paper comes from the seminal paper [9] where the authors show
existence and uniqueness of a solution u ∈ H 1

0 (�) ∩ L∞(�) to (1.1) in case p = 2, f ≡ 0,
q < 1 and g as a bounded nonnegative function. Let us also mention that classical arguments
apply once that u is bounded in order to get a C1-solution, at least when the set � is smooth
enough. Later, in [6], in presence of a possibly unbounded g and if q < p − 1, the existence
of a solution is proven through an approximation process; here, even in the nonvariational
case, it is proven existence of a solution with infinite energy (i.e. u 	∈ W

1,p

0 (�)) for rough
data g.
Let us briefly underline that, when p = 2, problem (1.1) with f ≡ 0 is strongly related
to the porous media equation in the following way: if u is a solution to (1.1) then for some
positive constant c, τ > 0

v(x, t) = cu(x)q(t + τ)
−q

1−q ,

is a solution to

g(x)ut − �v
1
q = 0.

On the other side there is a huge literature concerning the purely singular equations, namely
g ≡ 0. In presence of regular f (say a positive f ∈ Cη(�)), (1.1) was first treated in
these pioneering works [17, 29, 38]; here the authors obtain existence and uniqueness of a
classical solution (i.e. u ∈ C2(�) ∩ C(�)). Moreover, among other things, one has that:
u ∈ C2,η(�), u 	∈ C1(�) if γ > 1 and u 	∈ H 1

0 (�) if γ ≥ 3. Furthermore we refer to [27]
for more interesting results regarding the regularity of u.
For what concerns the weak theory of the purely singular case, existence of a distributional
solution to (1.1) when the f is only a nonnegative function in Lm(�) (m ≥ 1) is established
in [7]. This solution, if γ ≤ 1 (i.e. themild singular case), attains the boundary datum in
the classical sense of Sobolev traces; otherwise, when γ > 1 (i.e. the strong singular case),
only a power of the solution has zero Sobolev trace and the solution is shown to be locally
in the same space. Later, in [18, 19, 33], existence of solutions to (1.1) is given when the
right hand side is of the general form h(s)f , with h as a nonnegative and not necessarily
monotone function such that h(s) ≤ s−γ near zero and just bounded at infinity. For the
nonhomogeneous case in which q = 0 and g 	≡ 0 we mention [32].
Dealing with uniqueness is more tricky; in [5] the authors show that the solution is unique
in the class of H 1

0 (�) and this kind of result has been extended to general nonincreasing

nonlinearities and nonlinear operators in [31] for solutions in W
1,p

0 (�). In [8], when p = 2,

the authors show that there is at most one solution to (1.1) belonging to W
1,1
0 (�).

In [33], uniqueness of a distributional solution belonging to W
1,1
loc (�) (with suitable bound-

ary conditions) is shown for a general measure datum and a nonincreasing nonlinearity.
Finally in presence of a very general nonlinear operator and a nonincreasing h it is shown
in [19] the existence and uniqueness of a renormalized solution for a diffuse measure datum
f . For further reading on singular problems we refer to [10–12, 21, 23, 24, 32]
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As one should expect the literature concerning (1.1) in presence of both f and g not iden-
tically zero is less investigated. Already in [38] the author proves existence of a classical
solution to (1.1) when both f and g are regular enough, p = 2 and q < 1. In the same
direction we refer to [15] where it is also investigated the superlinear case, which is a com-
pletely different framework. The uniqueness of classical solutions to (1.1) is shown in [36]
in presence of the Laplacian operator and q < p − 1; we also refer to [13] where, in case of
regular f and g constant, it is proved existence and uniqueness of solutions to (1.1) if q ≤ 1;
here in the linear case it is proved existence under a smallness assumption on g and non-
nexistence otherwise. Then in [30], for p > 1, through a sub and supersolution argument it
is shown existence of solutions to (1.1) when the right hand side is of the form h(u) + k(u)

and no monotonicity is assumed on h, k. In [14] it is investigated the existence of a solu-
tion to (1.1) in case p = 2 when f and g are functions in suitable Lebesgue spaces. Let us
mention that in [35], for p > 1, the authors show existence and uniqueness of finite energy
solutions to (1.1) under suitable assumptions on f, g. We finally refer to [22, 26] for more
interesting results.
The aim of this work is twofold. Firstly, we deal with uniqueness of finite energy solutions
by employing the idea contained in [9]. More precisely we want to prove it for positive
solutions to the Dirichlet problem associated to

− �pu = F(x, u), (1.2)

where p > 1 and F is a Carathéodory function which is possibly unbounded both at the
origin and at the infinity and such that

F(x, s)s1−p decreases with respect to s for a.e. x ∈ �. (1.3)

Here the major difficult is dealing with a nonlinear operator when looking for comparison
principles. Another issue which needs to be underlined is that the solutions are not required
to be bounded; this implying the need of a suitable truncation arguments. It is also worth
mentioning that (1.3) allows to deal with the case q ≤ p − 1, at least for positive f if one
considers the model case given by (1.1). This result is presented as the comparison principle
given by Theorem 2.2 which, as a simple corollary, takes to uniqueness of finite energy
solutions.
Other than uniqueness, we are interested to instances of finite energy solutions to (1.2);
this is done both in the mild and in the strongly singular case by means of approximation
arguments firstly if q < p − 1; then we also give an existence result in case q = p − 1.
Summarizing, if q < p − 1, we provide existence of finite energy solutions to equations as

in (1.1) if g ∈ L

(
p∗

1+q

)′
(�), γ ≤ 1 and f ∈ L

(
p∗

1−γ

)′
(�), where we mean L1(�) once that

γ = 1.
Otherwise, we show that if f ∈ Lm(�) with 1 < γ < 2− 1

m
then the existence is guaranteed

under the same assumptions on g. Let us also highlight that, as remarked in Section 3.2,
there are instances in which one could expect finite energy solutions up to γ < 1 + p(m−1)

(p−1)m
.

Finally, once again if f ∈ L

(
p∗

1−γ

)′
(�), we also show the existence of a solution in case

q = p − 1 under a smallness assumption on g.

Let us mention that formally the change of variable v = uγ+1

γ + 1
for p = 2 takes (1.1) to the

following equation

− �v + γ

γ + 1

|∇v|2
v

= (γ + 1)
γ+θ
γ+1 gv

γ+θ
γ+1 + f, (1.4)



R. Durastanti, F. Oliva

which, for g = 0, was extensively studied in the past, see for instance [1–3, 20, 25]. The
previous discussion could be formalized and the existence and uniqueness results given in
the current paper could provide information regarding problem (1.4).
The plan of the paper is the following: in Section 2 we state and prove the comparison
principle and the associated uniqueness result for problems as in (1.1) (Theorem 2.2 and
Corollary 2.3). In Section 3 we give some existence results; precisely we investigate both
the mild and the strongly singular case when q < p − 1 (Theorem 3.2 and Theorem 3.4);
moreover we also treat a case in which q = p − 1 (Theorem 3.5).

1.1 Notation

In the entire paper � is an open and bounded subset of RN , with N ≥ 1. We denote by ∂A

the boundary and by |A| the Lebesgue measure of a subset A of RN . By Ck
c (�), with k ≥ 1,

we mean the space of Ck functions with compact support in �.
For any q > 1, q ′ := q

q−1 is the Hölder conjugate exponent of q, while for any 1 ≤ p < N ,

p∗ = Np
N−p

is the Sobolev conjugate exponent of p.
We denote by χE the characteristic function of E ⊂ �, namely

χE(x) =
{

1 x ∈ E,

0 x ∈ � \ E,

and by f + := max(f, 0), f − := − min(f, 0) the positive and the negative part of a function
f . We will widely use the following function defined for a fixed k > 0 and s ∈ R

Tk(s) = max(−k, min(s, k)), (1.5)

and

Vδ(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 s ≤ δ,
2δ − s

δ
δ < s < 2δ,

0 s ≥ 2δ.

(1.6)

If no otherwise specified, we will denote by C several constants whose value may change
from line to line. These values will only depend on the data (for instance C may depend
on �, N and p) but they will never depend on the indexes of the sequences we will often
introduce.

2 Comparison Principle and Uniqueness

Let 1 < p < N and let us consider the following problem
⎧
⎪⎨

⎪⎩

−�pu = F(x, u) in �,

u > 0 in �,

u = 0 on ∂�,

(2.1)

where the nonlinearity F : � × (0,∞) → [0, ∞) is a general Carathéodory function.
We start specifying the notion of weak solution to (2.1).
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Definition 2.1 A positive function u ∈ W
1,p

0 (�) is a weak solution to (2.1) if F(x, u) ∈
L1

loc(�) and if
∫

�

|∇u|p−2∇u · ∇ϕ =
∫

�

F(x, u)ϕ, ∀ϕ ∈ C1
c (�). (2.2)

In order to deal with uniqueness of solutions, we present a comparison principle for solu-
tions to (2.1) provided the right hand side enjoys some monotonicity condition. In particular
let us consider v1, v2 solutions to

⎧
⎪⎨

⎪⎩

−�pvi = Gi(x, v) in �,

vi > 0 in �,

vi = 0 on ∂�,

(2.3)

where the nonlinearities G1,G2 : � × (0,∞) → [0, ∞) are Carathéodory functions. We
state the main result of this section.

Theorem 2.2 (Comparison Principle) Let us assumeG1,G2 are nonnegative functions such
that either G1(x, s)s1−p or G2(x, s)s1−p is decreasing with respect to s and for almost
every x ∈ � and

G1(x, s) ≤ G2(x, s) (2.4)

for almost every x ∈ � and for all s ∈ (0,∞). Let v1 and v2 be weak solutions to problem
(2.3) with data, respectively, G1,G2 then v1 ≤ v2 almost everywhere in �.

As a simple corollary of the previous result, one has that uniqueness holds for weak
solutions to (2.1).

Corollary 2.3 (Uniqueness) Let us assume that F is a nonnegative function such that
F(x, s)s1−p is decreasing with respect to s and for almost every x ∈ �. Then there exists
at most one weak solution to problem (2.1).

Remark 2.4 Just to give an idea, Corollary 2.3 gives uniqueness of solutions to (2.1) when
F is modelled by

F(x, s) = f (x)

sγ
+ g(x)sq, with f + g > 0 a.e. in �,

or by

F(x, s) = f (x)

sγ
+ g(x)sp−1, with f > 0 a.e. in �,

where f, g are nonnegative functions defined almost everywhere, γ ≥ 0 and 0 ≤ q < p−1.

2.1 Proof of the Comparison Principle

In this section we prove the comparison principle for weak solutions to problem (2.1) and,
as a consequence, we deduce the uniqueness result, namely Corollary 2.3.
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Proof of Theorem 2.2 First of all we need to show that for any weak solution u to (2.1),
the formulation (2.2) can be extended for W 1,p-test functions. We consider a nonnegative
ϕ ∈ W

1,p

0 (�) and a sequence of nonnegative functions ϕη,n ∈ C1
c (�) such that

{

ϕη,n
η→0→ ϕn

n→∞→ ϕ in W
1,p

0 (�)

suppϕn ⊂⊂ � : 0 ≤ ϕn ≤ ϕ for all n ∈ N.

An example of such ϕη,n is ρη ∗ (ϕ ∧ φn) (ϕ ∧ φn := inf(ϕ, φn)) where ρη is a smooth
mollifier and φn is a sequence of nonnegative functions in C1

c (�) which converges to ϕ in

W
1,p

0 (�).
Hence let us take ϕη,n as a test function in (2.2), yielding to

∫

�

|∇u|p−2∇u · ∇ϕη,n =
∫

�

F(x, u)ϕη,n.

We want to pass first η to zero and then n to infinity in the previous.
Since u ∈ W

1,p

0 (�) one can pass to the limit the first term recalling that ϕη,n converges to

ϕn in W
1,p

0 (�). For the right hand side one has that F(x, u) ∈ L1
loc(�) that gives that we

can pass η → 0 since ϕη,n converges ∗-weakly in L∞(�) to ϕn which has compact support
in �. Hence we deduce

∫

�

|∇u|p−2∇u·∇ϕn =
∫

�

F(x, u)ϕn. (2.5)

Now let observe that by the Young inequality
∫

�

F(x, u)ϕn ≤
∫

�

|∇u|p +
∫

�

|∇ϕn|p,

and by the Fatou Lemma with respect to n, one gets
∫

�

F(x, u)ϕ ≤ C. (2.6)

Now we take n → ∞ in (2.5). For the term on the left hand side we can reason as already
done when η → 0. For the right hand side of (2.5) one can easily apply the Lebesgue
Theorem since

F(x, u)ϕn ≤ F(x, u)ϕ
(2.6)∈ L1(�),

which gives
∫

�

|∇u|p−2∇u · ∇ϕ =
∫

�

F(x, u)ϕ, (2.7)

for every ϕ ∈ W
1,p

0 (�).
Since v1 and v2 are weak solutions to problem (2.3) with data G1, G2 then, recalling (2.7),
one can test both equations with W

1,p

0 -functions. From here we suppose that G1(x, s)s1−p

is decreasing with respect to s for almost every x ∈ �; if one is in the other case, then slight
modifications will be needed.
Let us fix ε > 0 and k ∈ N and let us define

Ak,ε := {
x ∈ � : 0 ≤ (v1(x) + ε)p − (v2(x) + ε)p ≤ k

}
, Ac

k,ε = � \ Ak,ε,

and

Ak = {
x ∈ � : 0 ≤ v1(x)p − v2(x)p ≤ k

}
, Ac

k = � \ Ak .
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We consider the following two functions:

ψ1 = Tk(((v1 + ε)p − (v2 + ε)p)+)

(v1 + ε)p−1
, ψ2 = Tk(((v1 + ε)p − (v2 + ε)p)+)

(v2 + ε)p−1
, (2.8)

where Tk is defined by (1.5). Let us also underline that ψ1, ψ2 ∈ W
1,p

0 (�) (see Remark 2.5
below). One has

∇ψ1 =
(

∇v1 − p

(
v2 + ε

v1 + ε

)p−1

∇v2 + (p − 1)

(
v2 + ε

v1 + ε

)p

∇v1

)

χAk,ε

−(p − 1)
Tk(((v1 + ε)p − (v2 + ε)p)+)

(v1 + ε)p
∇v1χAc

k,ε
,

and

∇ψ2 = −
(

∇v2 − p

(
v1 + ε

v2 + ε

)p−1

∇v1 + (p − 1)

(
v1 + ε

v2 + ε

)p

∇v2

)

χAk,ε

−(p − 1)
Tk(((v1 + ε)p − (v2 + ε)p)+)

(v2 + ε)p
∇v2χAc

k,ε
.

We choose ψ1 and ψ2 as test functions in equations solved by, respectively, v1 and v2 and
we subtract them yielding to

∫

Ak,ε

(

|∇v1|p −
(

v1 + ε

v2 + ε

)p

|∇v2|p − p

(
v1 + ε

v2 + ε

)p−1

|∇v2|p−2∇v2 ·
(

∇v1 −
(

v1 + ε

v2 + ε

)

∇v2

))

+
∫

Ak,ε

(

|∇v2|p −
(

v2 + ε

v1 + ε

)p

|∇v1|p − p

(
v2 + ε

v1 + ε

)p−1

|∇v1|p−2∇v1 ·
(

∇v2 −
(

v2 + ε

v1 + ε

)

∇v1

))

+ (p − 1)

∫

Ac
k,ε

(
Tk(((v1 + ε)p − (v2 + ε)p)+)

(v2 + ε)p
|∇v2|p − Tk(((v1 + ε)p − (v2 + ε)p)+)

(v1 + ε)p
|∇v1|p

)

≤
∫

�

(
G1(x, v1)

(v1 + ε)p−1
− G2(x, v2)

(v2 + ε)p−1

)

Tk(((v1 + ε)p − (v2 + ε)p)+).

Now using the following classical estimate due to the convexity of the power function (recall
that p > 1)

|ξ |p − |η|p − p|η|p−2η · (ξ − η) ≥ 0, ∀ξ, η ∈ R
N,

one has

(p − 1)

∫

Ac
k,ε

Tk(((v1 + ε)p − (v2 + ε)p)+)

(v2 + ε)p
|∇v2|p

≤ (p − 1)

∫

Ac
k,ε

Tk(((v1 + ε)p − (v2 + ε)p)+)

(v1 + ε)p
|∇v1|p

+
∫

�

(
G1(x, v1)

(v1 + ε)p−1
− G2(x, v2)

(v2 + ε)p−1

)

Tk(((v1 + ε)p − (v2 + ε)p)+).

(2.9)
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Noting that the first term of (2.9) is nonnegative, we have

0 ≤ (p − 1)

∫

Ac
k,ε

Tk(((v1 + ε)p − (v2 + ε)p)+)

(v1 + ε)p
|∇v1|p

+
∫

�

(
G1(x, v1)

(v1 + ε)p−1
− G2(x, v2)

(v2 + ε)p−1

)

Tk(((v1 + ε)p − (v2 + ε)p)+)

2.4≤ (p − 1)

∫

Ac
k,ε

Tk(((v1 + ε)p − (v2 + ε)p)+)

(v1 + ε)p
|∇v1|p

+
∫

�

(
G1(x, v1)

(v1 + ε)p−1
− G1(x, v2)

(v2 + ε)p−1

)

Tk(((v1 + ε)p − (v2 + ε)p)+).

(2.10)

Denoting rk,ε, r̃k,ε as follows

rk,ε = (p − 1)
Tk(((v1 + ε)p − (v2 + ε)p)+)

(v1 + ε)p
|∇v1|pχAc

k,ε

+
(

G1(x, v1)

(v1 + ε)p−1
− G1(x, v2)

(v2 + ε)p−1

)

Tk(((v1 + ε)p − (v2 + ε)p)+),

and

r̃k,ε = (p − 1)
Tk(((v1 + ε)p − (v2 + ε)p)+)

(v1 + ε)p
|∇v1|pχAc

k,ε

+ G1(x, v1)

(v1 + ε)p−1
Tk(((v1 + ε)p − (v2 + ε)p)+),

then one has
0 ≤ r+

k,ε ≤ r̃k,ε . (2.11)

Since v1, v2 are positive then one has that r+
k,ε (r−

k,ε) converges to r+
k (r−

k resp.) and r̃k,ε

converges to r̃k almost everywhere in �, where

rk = (p − 1)
Tk((v

p

1 − v
p

2 )+)

v
p

1

|∇v1|pχAc
k
+

(
G1(x, v1)

v
p−1
1

− G1(x, v2)

v
p−1
2

)

Tk((v
p

1 − v
p

2 )+),

and

r̃k = (p − 1)
Tk((v

p

1 − v
p

2 )+)

v
p

1

|∇v1|pχAc
k
+ G1(x, v1)

v
p−1
1

Tk((v
p

1 − v
p

2 )+).

Moreover, using that Tk(s) ≤ s for s ≥ 0, we deduce that

Tk(((v1 + ε)p − (v2 + ε)p)+)

(v1 + ε)p
χAc

k,ε
≤ 1, (2.12)

and
Tk(((v1 + ε)p − (v2 + ε)p)+)

(v1 + ε)p−1
≤ (v1 + ε)p − εp

(v1 + ε)p−1
≤ pv1, (2.13)

where the last inequality holds by means of the Langrange Theorem.
It follows that

r̃k,ε

(2.12),(2.13)≤ (p − 1)|∇v1|p + pG1(x, v1)v1. (2.14)
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Since v1 ∈ W
1,p

0 (�) and from (2.6) one has that the right hand side of (2.14) belongs to
L1(�). This implies, applying the Lebesgue Theorem, that r̃k,ε strongly converges to r̃k in
L1(�). Now starting from (2.11) and applying the Vitali Theorem, we obtain that

r+
k,ε → r+

k strongly in L1(�). (2.15)

As regards r−
k,ε , applying the Fatou Lemma, we have

lim sup
ε→0

∫

�

−r−
k,ε ≤

∫

�

−r−
k . (2.16)

Hence we deduce that

0
(2.10)≤ lim sup

ε→0

∫

�

rk,ε = lim sup
ε→0

∫

�

(r+
k,ε − r−

k,ε)
(2.15),(2.16)≤

∫

�

(r+
k − r−

k ) =
∫

�

rk .

Thus, until now, we have shown that

0 ≤
∫

�

(

(p−1)
Tk((v

p

1 − v
p

2 )+)

v
p

1

|∇v1|pχAc
k
+

(
G1(x, v1)

v
p−1
1

− G1(x, v2)

v
p−1
2

)

Tk((v
p

1 − v
p

2 )+)

)

.

(2.17)
Now we pass to the limit in (2.17) as k tends to infinity. We note that χAc

k
tends to 0 as k

tends to infinity. Moreover, using (2.12) with ε = 0, we have

Tk((v
p

1 − v
p

2 )+)

v
p

1

|∇v1|pχAc
k

≤ |∇v1|p ∈ L1(�),

since v1 ∈ W
1,p

0 (�). This implies, applying the Lebesgue Theorem, that

Tk((v
p

1 − v
p

2 )+)

v
p

1

|∇v1|pχAc
k

→ 0 strongly in L1(�). (2.18)

As regards the second term in the right hand side of (2.17), from G1(x, s)s1−p decreasing
with respect to s, one has that

0 ≤ −
(

G1(x, v1)

v
p−1
1

− G1(x, v2)

v
p−1
2

)

Tk((v
p

1 − v
p

2 )+), (2.19)

where the right hand side of (2.19) is increasing in k. Applying Beppo Levi’s Theorem, we
obtain that

lim
k→∞

∫

�

(
G1(x, v1)

v
p−1
1

− G1(x, v2)

v
p−1
2

)

Tk((v
p

1 − v
p

2 )+) =
∫

�

(
G1(x, v1)

v
p−1
1

− G1(x, v2)

v
p−1
2

)

(v
p

1 − v
p

2 )+.

(2.20)
By passing to the limit as k tends to infinity in (2.17), using (2.18) and (2.20), we have

0 ≤
∫

�

(
G1(x, v1)

v
p−1
1

− G1(x, v2)

v
p−1
2

)

(v
p

1 − v
p

2 )+. (2.21)

Furthermore from the fact that G1(x, s)s1−p is decreasing with respect to s, one yields to
(

G1(x, v1)

v
p−1
1

− G1(x, v2)

v
p−1
2

)

(v
p

1 − v
p

2 )+ ≤ 0 a.e. in �,

which, gathered with (2.21), gives that (v
p

1 − v
p

2 )+ ≡ 0, that is v1 ≤ v2 almost everywhere
in �.
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Remark 2.5 Here we show that ψ1, ψ2 defined by (2.8) belong to W
1,p

0 (�). We focus on
ψ2. As a consequence of Lemma 1.1 contained in [37] and the fact the v1, v2 have finite
energy, we have that the function ψh defined as

ψh = Tk(((v1 + ε)p − (Th(v2 + ε))p)+)

(v2 + ε)p−1

belongs to W
1,p

0 (�) for every h ≥ 0. Moreover, by computing its gradient, we get

∇ψh = −p∇v2χ{v2+ε≤h}∩Ak,ε,h∩Bh
+ p

(
v1 + ε

v2 + ε

)p−1

∇v1χAk,ε,h∩Bh

−(p − 1)
Tk(((v1 + ε)p − (Th(v2 + ε))p)+)

(v2 + ε)p
∇v2,

where
Ak,ε,h = {

x ∈ � : 0 ≤ (v1(x) + ε)p − (Th(v2(x) + ε))p ≤ k
}

and
Bh = {x ∈ � : v1(x) + ε ≥ Th(v2(x) + ε)} .

It follows from the definition of Ak,ε,h that
(

v1 + ε

v2 + ε

)p−1

≤
(

k

εp
+ 1

) p−1
p

.

This implies that
|∇ψh|p ≤ C(p, k, ε)

(|∇v2|p + |∇v1|p
)
,

with C(p, k, ε) a positive constant dependent only on p, k, ε. Hence, using v1, v2 ∈
W

1,p

0 (�), we deduce that {ψh} is bounded in W
1,p

0 (�) uniformly in h. Moreover ψh con-

verges to ψ2 almost everywhere in �. So that ψh converges to ψ2 weakly in W
1,p

0 (�) and

ψ2 belongs to W
1,p

0 (�). As regards ϕ, in a similar way it is possible to prove that ψ1 belongs

to W
1,p

0 (�).

3 Existence Results in SomeModel Equations

In this section we give existence results to (2.1) for some explicit nonlinearities F of the
following form

F(x, s) = f (x)h(s) + g(x)k(s), (3.1)
where f, g are nonnegative functions belonging to suitable Lebesgue space, with f 	≡ 0,
and h, k : (0,∞) → [0, ∞) are continuous nonnegative functions such that

∃ γ ≥ 0, C > 0 : h(s) ≤ C

sγ
∀s ∈ (0,∞), (3.2)

and
∃ q ≥ 0, C > 0 : k(s) ≤ Csq ∀s ∈ (0,∞). (3.3)

Remark 3.1 Let us observe that (3.3) implies that k can be extended by continuity at 0
defining k(0) = 0.

We underline that we are not assuming any kind of monotonicity on the functions h, k but
just some control from the above. Moreover, the case of continuous and bounded h, k are
well contained in our existence result.
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For the sake of clarity we reformulate the problem under the assumption (3.1):

⎧
⎪⎨

⎪⎩

−�pu = f (x)h(u) + g(x)k(u) in �,

u > 0 in �,

u = 0 on ∂�.

(3.4)

At first we state an existence result in case γ ≤ 1 and q < p − 1, which we recall that
corresponds to the sublinear case when p = 2 ; let us explicitly note that in the sequel we

define
(

p∗
1−γ

)′ := 1 if γ = 1.

In particular one has the following result.

Theorem 3.2 Let f ∈ L

(
p∗

1−γ

)′
(�) be a nonnegative function not identically zero and let

g ∈ L

(
p∗

1+q

)′
(�) be a nonnegative function. Let h and k be nonnegative continuous functions

satisfying (3.2) with γ ≤ 1 and (3.3) with q < p − 1 respectively. Then there exists at least
one weak solution to problem (3.4).

Remark 3.3 In the case f ≡ 0, if k is an increasing function satisfying (3.3), the existence
of a weak solution to (3.4) is contained in [6].

Next we deal with the more difficult case of a strong singularity; here, in order to deduce an
existence result, we need some regularity on the �.

Theorem 3.4 Let � satisfy the interior ball condition and let f ∈ Lm(�) with m > 1

be a nonnegative function and let g ∈ L

(
p∗

1+q

)′
(�) be a nonnegative function. Let h and k

be nonnegative continuous functions satisfying (3.2) with 1 < γ < 2 − 1
m

and (3.3) with
q < p − 1 respectively. Then there exists at least one weak solution to problem (3.4).

Finally we also dealt with q = p − 1. In the next result we denote by Cp the best constant
for the Poincaré inequality in �; we also recall that C is the one defined by (3.3).

Theorem 3.5 Let f ∈ L

(
p∗

1−γ

)′
(�) be a nonnegative function not identically zero and let g

such that ||g||L∞(�) < (CC
p
p )−1. Let h and k be nonnegative continuous functions satisfy-

ing (3.2) with γ ≤ 1 and (3.3) with q = p − 1 respectively. Then there exists at least one
weak solution to problem (3.4).

Remark 3.6 Collecting the existence results contained in Theorems 3.2, 3.4 and 3.5 with
the uniqueness result contained in Corollary 2.3 we obtain that there exists a unique solution
u ∈ W

1,p

0 (�) to

−�pu = F(x, u),

under the assumptions of Theorems 3.2 and 3.4 in case (h(s)+k(s))s1−p is decreasing with
respect to s and requiring that f + g is almost everywhere positive in �.
Moreover under the assumptions of Theorem 3.5 one has a unique solution if h(s)s1−p is
decreasing with respect to s and f is almost everywhere positive in �.
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3.1 Proof of the Existence Results

Let us introduce the following scheme of approximation
{

−�pun = fnhn(un) + gnkn(un) in �,

un = 0 on ∂�,
(3.5)

where fn = Tn(f ) and gn = Tn(g). Moreover, defining h(0) := lims→0 h(s), we set

hn(s) =
{

Tn(h(s)) for s > 0,

min(n, h(0)) otherwise,
and kn(s) =

{
Tn(k(s)) for s > 0,

0 otherwise.

The existence of a weak solution un ∈ W
1,p

0 (�) is guaranteed by [28]. Moreover, by
Theorem 4.2 of [37], we get that un is bounded and, since the right hand side of (3.5) is
nonnegative, that un is nonnegative.

Remark 3.7 Under the assumptions of Remark 3.6 one has that the approximating
sequence {un} is increasing w.r.t. n. Indeed defining Fn(x, s) = fn(x)hn(s) + gn(x)kn(s)

one deduces that for every n in N

Fn(x, s) ≤ Fn+1(x, s) ∀s ∈ (0,∞) and for a.e. x ∈ �.

This allows to apply Theorem 2.2, yielding to

un ≤ un+1 ∀n ∈ N.

Proof of Theorem 3.2 We divide the proof in two steps. In the first one, we show a priori
estimates on un, solutions to (3.5). In the second one we pass to the limit our approximation
in order to deduce the existence of a weak solution to (3.4).

Step 1. Let us choose un as a test function in the weak formulation of (3.5) and from the
Hölder inequality and from EqS. 3.2, 3.3, one gets

∫

�

|∇un|p =
∫

�

(fnhn(un)un + gnkn(un)un)

≤ C

∫

�

fnu
1−γ
n + C

∫

�

gnu
1+q
n

≤ C||f ||
L

(
p∗

1−γ

)′
(�)

||un||1−γ

Lp∗
(�)

+ C||g||
L

(
p∗
q+1

)′
(�)

||un||q+1
Lp∗

(�)
. (3.6)

If ||un||Lp∗
(�) ≤ 1, we deduce that {un} is bounded in W

1,p

0 (�) uniformly in n.
Otherwise, recalling that 0 ≤ 1−γ < q+1 < p, we obtain, applying the Sobolev
embedding Theorem on the left-hand side of (3.6), that

||un||pLp∗
(�)

≤ C

(

||f ||
L

(
p∗

1−γ

)′
(�)

+ ||g||
L

(
p∗
q+1

)′
(�)

)

||un||q+1
Lp∗

(�)
. (3.7)

This implies, dividing by ||un||q+1
Lp∗

(�)
both members of (3.7), that {un} is bounded

in Lp∗
(�) uniformly in n. It follows from (3.6) that {un} is bounded in W

1,p

0 (�)

with respect to n. This implies that there exists a nonnegative function u in
W

1,p

0 (�) such that un → u weakly in W
1,p

0 (�) and almost everywhere in �. Let
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us take 0 ≤ ϕ ∈ W
1,p

0 (�) as test function in the weak formulation of (3.5); one
obtains, using the Young inequality, that
∫

�

(fnhn(un) + gnkn(un)) ϕ =
∫

�

|∇un|p−2∇un·∇ϕ ≤ 1

p′

∫

�

|∇un|p+ 1

p

∫

�

|∇ϕ|p ≤ C.

(3.8)
Hence {fnhn(un) + gnkn(un)} is bounded in L1

loc(�) and, applying Theorem 2.1
of [4], that ∇un converges almost everywhere in � to ∇u.

Step 2. In this second step we prove that u obtained in the first step is a weak solution to
(3.4).
First of all we apply the Fatou Lemma in (3.8) in order to deduce that

∫

�

(f h(u) + gk(u))ϕ ≤ lim inf
n→∞

∫

�

(fnhn(un) + gnkn(un)) ϕ ≤ C,

hence (f h(u) + gk(u))ϕ ∈ L1(�) for any nonnegative ϕ ∈ W
1,p

0 (�). As a
consequence, if h(s) is unbounded as s tends to 0, we deduce that

{u = 0} ⊂ {f = 0}, (3.9)

up to a set of zero Lebesgue measure.
From now on, we assume that h(s) is unbounded as s tends to 0. Let ϕ be a
nonnegative function in W

1,p

0 (�) ∩ L∞(�). Choosing it as test function in the
weak formulation of (3.5) we have

∫

�

|∇un|p−2∇un · ∇ϕ =
∫

�

(fnhn(un) + gnkn(un))ϕ. (3.10)

We want to pass to the limit in (3.10) as n tends to infinity. We fix δ > 0 and we decompose
the right hand side in the following way:

∫

�

(fnhn(un) + gnkn(un))ϕ =
∫

{un≤δ}
(fnhn(un) + gnkn(un))ϕ

+
∫

{un>δ}
(fnhn(un) + gnkn(un))ϕ. (3.11)

Therefore we have, thanks to Lemma 1.1 contained in [37], that Vδ(un)ϕ belongs to
W

1,p

0 (�), where Vδ(s) is defined by (1.6). So we take it as test function in the weak
formulation of (3.5) and we obtain
∫

{un≤δ}
(fnhn(un) + gnkn(un))ϕ

(1.6)≤
∫

�

(fnhn(un) + gnkn(un))Vδ(un)ϕ

=
∫

�

|∇un|p−2∇un · ∇ϕVδ(un) − 1

δ

∫

{δ<un<2δ}
|∇un|pϕ

≤
∫

�

|∇un|p−2∇un · ∇ϕVδ(un)

Using that Vδ is bounded we deduce that |∇un|p−2∇unVδ(un) converges to
|∇u|p−2∇uVδ(u) weakly in Lp′

(�)N as n tends to infinity. This implies that

lim
n→∞

∫

{un≤δ}
(fnhn(un) + gnkn(un))ϕ ≤

∫

�

|∇u|p−2∇u · ∇ϕVδ(u). (3.12)
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Since Vδ(u) converges to χ{u=0} a.e. in � as δ tends to 0 and since u ∈ W
1,p

0 (�), then
|∇u|p−2∇u · ∇ϕVδ(u) converges to 0 a.e. in � as δ tends to 0. Applying the Lebesgue
Theorem on the right hand side of (3.12) we obtain that

lim
δ→0+ lim

n→∞

∫

{un≤δ}
(fnhn(un) + gnkn(un))ϕ = 0. (3.13)

As regards the second term in the right hand side of (3.11) we have

0 ≤ (fnhn(un) + gnkn(un))χ{un>δ}ϕ
(32),(3.3)≤

(

f sup
{s>δ}

h(s) + Cgu
q
n

)

ϕ. (3.14)

Thanks to the a priori estimates on un and using the Rellich-Kondrakov Theorem, we

deduce, up to subsequence, that u
q
n converges to uq strongly in L

(
p∗

1+q

)

(�). Since g belongs

to L

(
p∗

1+q

)′
(�) this implies that the right hand side of (3.14) converges strongly in L1(�).

Moreover we can always assume that δ 	∈ {α : |{u = α}| > 0} which is at most a
countable set. As a consequence χ{un>δ} converges to χ{u>δ} a.e. in �. Hence, using once
again the Lebesgue Theorem in (3.14), we deduce first that (fnhn(un)+gnkn(un))χ{un>δ}ϕ
converges to (f h(u) + gk(u))χ{u>δ}ϕ strongly in L1(�) as n tends to infinity, then,
since (f h(u) + gk(u))ϕ belongs to L1(�), that (f h(u) + gk(u))χ{u>δ}ϕ converges to
(f h(u)+gk(u))χ{u>0}ϕ strongly in L1(�) as δ tends to 0. Recalling (3.9) and Remark 3.1,
we conclude that

lim
δ→0+ lim

n→∞

∫

{un>δ}
(fnhn(un) + gnkn(un))ϕ =

∫

{u>0}
(f h(u) + gk(u))ϕ

(39)=
∫

�

(f h(u) + gk(u))ϕ. (3.15)

Finally, using the weak convergence of un in W
1,p

0 (�) and the almost everywhere conver-
gence of the gradients one can pass to the limit as n → ∞ in the left hand side of (3.10).
Moreover, by (3.13) and by (3.15), we can also take to the limit the right hand side of (3.10)
in order to deduce that

∫

�

|∇u|p−2∇u · ∇ϕ =
∫

�

(f h(u) + gk(u))ϕ ∀ 0 ≤ ϕ ∈ W
1,p

0 (�) ∩ L∞(�). (3.16)

Moreover, decomposing any ϕ = ϕ+ − ϕ−, and using that (3.16) is linear in ϕ, we deduce
that (3.16) holds for every ϕ ∈ W

1,p

0 (�) ∩ L∞(�).
We treated h(s) unbounded as s tends to 0, as regards bounded function h the proof is easier
and the only difference deals with the passage to the limit in the right hand side of (3.10).
We can avoid introducing δ and we can substitute (3.14) with

0 ≤ (fnhn(un) + gnkn(un))ϕ ≤ (
f ||h||L∞(�) + Cgu

q
n

)
ϕ.

Using the same argument above we have that (fnhn(un) + gnkn(un))ϕ converges to
(f h(u)+gk(u))ϕ strongly in L1(�) as n tends to infinity. Then we can conclude as in case
of an unbounded h.
Finally, it follows from (3.16) and using the strong maximum principle that u > 0 almost
everywhere in �. This implies that u is a weak solution to (3.5).

Now we prove Theorem 3.4, namely the case where γ > 1; here we need a more refined
argument in order to control the possibly singular term.
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Proof of Theorem 3.4 We take un as a test function in (3.5) yielding to
∫

�

|∇un|p ≤
∫

�

(fnhn(un)un + gnkn(un)un) ≤ C

∫

�

fnu
1−γ
n + C

∫

�

gnu
1+q
n

≤ C

∫

�

fnu
1−γ
n + C||g||

L

(
p∗
q+1

)′
(�)

||un||q+1
Lp∗

(�)
.

(3.17)

Hence, we just need an estimate on the first term of the right hand side of (3.17). First of
all let us observe that there exists a nonincreasing and continuous function h : [0,∞) →
[0, ∞) such that

h(s) ≤ hn(s) , ∀ s > 0, n ∈ N .

For the construction of such h we refer to [18]. Hence let us consider vn ∈ W
1,p

0 (�) ∩
L∞(�) solution to {

−�pvn = h(vn)fn in �,

vn = 0 on ∂�.

Once again, reasoning as in [18, 19], one has that vn is nondecreasing with respect to n and
also that un ≥ vn ≥ v1. Moreover, it follows from the Hopf Lemma (see Lemma A.3 of
[34]) that

v1(x) ≥ Cδ(x), for x ∈ �,

where δ(x) is the distance function from the boundary ∂�.
Thanks to the previous we can finally estimate the term on the right hand side of (3.17) as
follows:

∫

�

fnu
1−γ
n ≤ C1−γ ||f ||Lm(�)

(∫

�

1

δ(γ−1)m′

) 1
m′

,

which is finite since γ < 2 − 1

m
. This allows to have an estimate on un in W

1,p

0 (�) which

is independent on n. Hence one can reason as in Step 2 of Theorem 3.2 in order to deduce
the existence of a weak solution.

Finally we prove Theorem 3.5.

Proof of Theorem 3.5 We choose un itself as a test function in the weak formulation of (3.5)
and applying the Hölder inequality and the Poincaré inequality, we get

∫

�

|∇un|p
(32)≤ C

∫

�

f u
1−γ
n + C||g||L∞(�)

∫

�

u
p
n

≤ C||f ||
L

(
p∗

1−γ

)′
(�)

||un||1−γ

Lp∗
(�)

+ C||g||L∞(�)C
p
p

∫

�

|∇un|p,

which, recalling 1 − C||g||L∞(�)C
p
p > 0, implies that

∫

�

|∇un|p ≤ C

1 − C||g||L∞(�)C
p
p

||f ||
L

(
p∗

1−γ

)′
(�)

||un||1−γ

Lp∗
(�)

. (3.18)

Applying the Sobolev embedding Theorem in the right hand side of (3.18), we have

||un||p
W

1,p
0 (�)

≤ CS1−γ

1 − C||g||L∞(�)C
p
p

||f ||
L

(
p∗

1−γ

)′
(�)

||un||1−γ

W
1,p
0 (�)

,

where S is the constant of the embedding. Since p > 1 − γ it follows that {un} is bounded
in W

1,p

0 (�). So, up to subsequence, we have un → u weakly in W
1,p

0 (�) and almost
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everywhere in �. Finally we can repeat the argument of Step 2 of Theorem 3.4 in order to
conclude that u is a solution to (3.4).

3.2 A Concluding Remark

Here we underline that the result in Theorem 3.4 is not sharp, at least in the model case.
Let � ⊂ R

N be open and bounded with smooth boundary and let us consider the following
problem

⎧
⎨

⎩

−�u = f

uγ
+ guq in �,

u = 0 on ∂�,
(3.19)

where γ > 1, q < 1, 0 < f ∈ L1(�) and g ∈ L∞(�) nonnegative. We recall the following
result proven in [39].

Theorem 3.8 Let γ > 1, q < 1 and let us suppose that there exists a function u0 ∈ H 1
0 (�)

such that ∫

�

f u
1−γ

0 < ∞. (3.20)

Then there exists a solution u ∈ H 1
0 (�) to (3.19).

Using the previous result we have the following existence theorem:

Theorem 3.9 Let f ∈ Lm(�) with m > 1 be a nonnegative function and let g ∈ L∞(�)

be a nonnegative function. Let 1 < γ < 3 − 2
m

and q < 1 then there exists a solution to
problem (3.19).

Proof In order to show the existence of a solution we employ (3.20) with u0 = δ(x)t for
some t > 1

2 and where δ(x) is the distance function from the boundary ∂�. Indeed, one can
show that an application of the Hölder inequality

∫

�

f u
1−γ

0 ≤ C

∫

�

δt(1−γ )m′

and the last integral is finite thanks on the assumption γ < 3 − 2
m

.

We also remark that, in [16], Theorem 3.8 is extended for the case of the p-Laplacian
operator with p > 2. In this case one can show that a similar result to Theorem 3.9 with
1 < γ < 1 + p(m−1)

(p−1)m
.
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10. Canino, A., Esposito, F., Sciunzi, B.: On the höpf boundary lemma for singular semilinear elliptic
equations. J. Diff. Equ. 266(9), 5488–5499 (2019)

11. Canino, A., Sciunzi, B., Trombetta, A.: Existence and uniqueness for p-Laplace equations involving
singular nonlinearities. NoDEA Nonlinear Differ. Equ. Appl. 23, 8 (2016)

12. Carmona, J., Martı́nez-Aparicio, P.J.: A singular semilinear elliptic equation with a variable exponent.
Advanced Nonlinear Studies 16, 491–498 (2016)
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