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Two inequalities for the first Robin eigenvalue of the Finsler
Laplacian
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Abstract. Let Ω ⊂ R
n, n ≥ 2, be a bounded, connected, open set with

Lipschitz boundary. Let F be a suitable norm in R
n and let ΔF u =

div (Fξ(∇u)F (∇u)) be the so-called Finsler Laplacian, with u ∈ H1(Ω).
In this paper, we prove two inequalities for λF (β, Ω), the first eigenvalue of
ΔF with Robin boundary conditions involving a positive function β(x).
As a consequence of our result, we obtain the asymptotic behavior of
λF (β, Ω) when β is a positive constant which goes to zero
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1. Introduction. Let Ω ⊂ R
n, n ≥ 2, be a bounded, connected, open set with

Lipschitz boundary.
Let F : Rn → [0,+∞[ be a C2(Rn\{0}), convex, and positively 1-homoge-

neous function such that

a|ξ| ≤ F (ξ) ≤ b|ξ|, ξ ∈ R
n, (1.1)

for some positive constants a and b. Throughout the paper, we will assume
that F (ξ) is strongly convex, that is

[F 2]ξξ(ξ) is positive definite in R
n\{0}. (1.2)

In what follows, we assume that β : ∂Ω →]0,+∞[ is a continuous function and
we define

m :=
∫

∂Ω

β(x)F (ν) dHn−1 > 0, (1.3)

where ν is the unit outer normal to the boundary and dHn−1 denotes the
(n − 1)-dimensional Hausdorff measure. Let us consider the following Robin
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eigenvalue problem
{−ΔF u = λF (β,Ω)u in Ω,

F (∇u)Fξ(∇u) · ν + β(x)uF (ν) = 0 on ∂Ω,
(1.4)

where u ∈ H1(Ω) and

ΔF u = div (Fξ(∇u)F (∇u))

is the so-called Finsler Laplacian. When F = E is the Euclidean norm, ΔF

reduces to the classic Laplace operator. Nevertheless, it is in general a nonlinear
operator and it has been studied in several papers (see for instance [1,3,7,10,
11]).

In [14] (see also [8] for the case that β is a positive constant), it is proved
that the first eigenvalue of (1.4) is positive, simple, and has the following
variational characterization

λF (β,Ω) = min
v∈H1(Ω)\{0}

∫
Ω

F 2(∇v)dx +
∫

∂Ω
β(x)v2F (ν)dHn−1∫

Ω
v2dx

. (1.5)

On the other hand, λF (β,Ω) verifies a Faber-Krahn type inequality for suitable
functions β(x). Finally, the authors prove some estimates for λF (β,Ω) in terms
of geometric quantities related to the domain Ω, in particular, a weighted
anisotropic Cheeger inequality.

The aim of this paper is to prove, for a positive and continuous function β,
two inequalities involving λF (β,Ω) in terms of the following quantities

σF (β,Ω) := inf
v∈H1(Ω)\{0}∫

∂Ω β(x)vF (ν) dHn−1=0

∫
Ω

F 2(∇v) dx∫
Ω

v2 dx
, (1.6)

and

qF (β,Ω) := inf
h∈H1(Ω)\{0}

ΔF h=0

∫
∂Ω

β(x)h2F (ν)dHn−1∫
Ω

h2dx
. (1.7)

We observe that if β(x) = β is a positive parameter, then

qF (β,Ω) = βqF (Ω), (1.8)

where

qF (Ω) := inf
h∈H1(Ω)\{0}

ΔF h=0

∫
∂Ω

h2F (ν)dHn−1∫
Ω

h2dx
(1.9)

while σF (β,Ω) does not depend on β and then, in this case, we denote it by
σF (Ω). On the other hand, in the Euclidean case, when Ω has two axes of
symmetry, σE(Ω) coincides with the first nontrivial Neumann eigenvalue of
the Laplace operator μ(Ω) (see for instance [16–18]).
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Furthermore, under certain assumptions, qE(Ω) coincides with the first non-
trivial Steklov eigenvalue q related to the biharmonic Laplacian⎧⎪⎨

⎪⎩
Δ2v = 0 in Ω,
v = 0 on ∂Ω,

Δv = q
∂v

∂ν
on ∂Ω.

(1.10)

This is shown in [5] by means of a generalized Fichera duality principle, pro-
vided Ω satisfies a uniform outer ball condition. We recall that problem (1.10)
was first considered by Kuttler and Sigillito in [17,18] where among other
things they studied the isoperimetric properties related to the first eigenvalue.
In the last years this kind of problems have been intensively studied in the
literature, we refer the reader for instance to [4,6,12,20], and the references
therein for further studies.

In particular, one can find some physical interpretation of the Steklov
boundary conditions in [6] where the authors state also several Navier-Robin
problems for the biharmonic operator. Finally, when β is not a positive con-
stant, in [15], the authors prove that if ∂Ω ∈ C2, then qE(β,Ω) coincides
with the first nontrivial eigenvalue of the following “weighted” Steklov type
problem ⎧⎪⎪⎨

⎪⎪⎩

Δ2v = 0 in Ω,
v = 0 on ∂Ω,

Δv = qE(β,Ω)
1

β(x)
∂v

∂ν
on ∂Ω.

(1.11)

Our main result is the following

Theorem 1.1. Let Ω ⊂ R
n, n ≥ 2, be a bounded, connected, open set with

Lipschitz boundary, then

1
λF (β,Ω)

≤ 1
σF (β,Ω)

+
|Ω|
m

(1.12)

and
1

λF (β,Ω)
≤ 1

λF (Ω)
+

1
qF (β,Ω)

, (1.13)

where β : ∂Ω →]0,+∞[ is a continuous function, m is given by (1.3), and
λF (Ω) is the first Dirichlet eigenvalue of the Finsler Laplacian.

In the Euclidean case, when β(x) = β > 0 is constant, the inequalities
(1.12) and (1.13) were proved in [21] for λE(β,Ω), the first Robin eigenvalue
of the Laplacian by using the P-function method (see also [22]).

Successively in [16], Kuttler proves the same result with a simpler proof
whose key ingredient is an algebraic inequality between geometric and arith-
metic means. Our result, in this order of idea, allows to extend the results of
[21] to the case when β is not constant and to a larger class of elliptic operators.
Our proof follows the idea contained in [16].

We prove inequalities (1.12) and (1.13) in Sections 2 and 3, respectively.
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2. Proof of the inequality (1.12). First of all, in order to verify that inequality
(1.12) is well posed, we show that σF (β,Ω) is positive. To see this, we first
prove that σF (β,Ω) is a minimum. Let vk ∈ H1(Ω)\{0} be a minimizing
sequence such that

∫
∂Ω

β(x)vkF (ν) dHn−1 = 0, ‖vk‖L2(Ω) = 1, and

lim
k

∫

Ω

F 2(∇vk) dx = σF (β,Ω). (2.1)

Then vk is bounded in H1(Ω) and there exists a subsequence, still denoted by
vk, such that vk converges in L2(Ω) to a function v ∈ H1(Ω) with ‖v‖L2(Ω) = 1.
Furthermore, by the classical trace embedding theorem, vk converges to v also
in L2(∂Ω) and then

∫
∂Ω

β(x)vF (ν) dHn−1 = 0. Taking v as test function in
(1.6) and using Fatou’s lemma, we finally get

σF (β,Ω) ≤
∫

Ω

F 2(∇v) dx ≤ lim inf
k

∫

Ω

F 2(∇vk) dx = σF (β,Ω).

So v is a minimizer for σF (β,Ω) and we can show that σF (β,Ω) > 0 arguing
by contradiction. Indeed, if σF (β,Ω) = 0, then there exists v ∈ H1(Ω)\{0}
such that

∫
∂Ω

β(x)v F (ν) dHn−1 = 0, ‖v‖L2(Ω) = 1, and
∫
Ω

F 2(∇u) dx = 0 and
hence v = C almost everywhere in Ω, with C ∈ R, and C 
= 0. Since m > 0,
this is in contradiction with

C

∫

∂Ω

β(x)F (ν) dHn−1 = 0.

Now we prove inequality (1.12). For the reader’s convenience, from now on,
we will use the following notation

EF (w) :=
∫

Ω

F 2(∇w) dx (2.2)

for any w ∈ H1(Ω). Let u be a positive eigenfunction corresponding to λF (β,Ω)
and

c =
1
m

∫

∂Ω

β(x)uF (ν) dHn−1, (2.3)

with m defined in (1.3). By the Minkowski inequality and, recalling the defi-
nition of σF (β,Ω) in (1.6), we have

√√√√
∫

Ω

u2dx ≤
√√√√

∫

Ω

(u − c)2 +
√

c2|Ω| ≤
√

EF (u)
σF (β,Ω)

+
√

c2|Ω|.
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Squaring and using the arithmetic-geometric mean inequality, we have
∫

Ω

u2dx ≤ EF (u)
σF (β,Ω)

+ c2|Ω| + 2

√
EF (u)c2|Ω|
σF (β,Ω)

≤ EF (u)
σF (β,Ω)

+ c2|Ω| +
EF (u)|Ω|

m
+

c2m

σF (β,Ω)

= EF (u)
(

1
σF (β,Ω)

+
|Ω|
m

)
+ c2m

(
1

σF (β,Ω)
+

|Ω|
m

)

=
(

1
σF (β,Ω)

+
|Ω|
m

)
(EF (u) + c2m).

(2.4)

By (2.3), Hölder’s inequality, and (1.5), we see that (2.4) implies
∫

Ω

u2dx ≤
(

1
σF (β,Ω)

+
|Ω|
m

)(
EF (u)

+

(∫
∂Ω

β(x)F (ν)dHn−1
) (∫

∂Ω
β(x)u2F (ν)dHn−1

)
m

)

=
(

1
σF (β,Ω)

+
|Ω|
m

)⎛
⎝EF (u) +

∫

∂Ω

β(x)u2F (ν)dHn−1

⎞
⎠

=
(

1
σF (β,Ω)

+
|Ω|
m

)⎛
⎝λF (β,Ω)

∫

Ω

u2dx

⎞
⎠

(2.5)

which gives (1.12).

Remark 2.1. Let Ω be an open set of Rn with Lipschitz boundary. We denote
by PF (Ω) the so-called anisotropic perimeter defined as follows (see for instance
[2])

PF (Ω) =
∫

∂Ω

F (ν) dHn−1,

where ν denotes the unit outer normal to ∂Ω. We stress that when β(x) = β
is a positive constant, the inequality (1.12) gives the following asymptotic
behavior of λF (β,Ω), when β goes to zero:

lim
β→0

λF (β,Ω)
β

=
PF (Ω)

|Ω| . (2.6)

Indeed if β is a positive constant, then m = βPF (Ω) and we have

PF (Ω)
|Ω| ≥ λF (β,Ω)

β
≥ PF (Ω)σF (Ω)

PF (Ω)β + |Ω|σF (Ω)
, (2.7)

where the first inequality follows by using a constant as test function in (1.5)
and the second by using (1.12). Taking in (2.7) the limit for β which goes to
zero, one gets (2.6).
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Remark 2.2. Let μF (Ω) be the first nontrivial Neumann eigenvalue of the
Finsler Laplacian (see for instance [9]), it holds

σF (β,Ω) ≤ μF (Ω). (2.8)

Indeed if u is an eigenfunction corresponding to μF (Ω), then
∫
Ω

u dx = 0 and

μF (Ω) =

∫
Ω

F 2(∇u) dx∫
Ω

u2 dx
.

Inequality (2.8) follows by taking as test in (1.6) the function v(x) = u(x)− c,
where c is as in (2.3).

3. Proof of the inequality (1.13). First of all, we observe that the trace em-
bedding theorem ensures that qF (β,Ω) is positive and then inequality (1.13)
is well posed.

Let u be a positive eigenfunction corresponding to λF (β,Ω) and let us
consider the functions v and h which solve the following problems respectively

{
ΔF v = ΔF u in Ω,
v = 0 on ∂Ω,

(3.1)

and
{

ΔF h = 0 in Ω,
h = u on ∂Ω.

(3.2)

The maximum principle assures that u ≤ v + h. Moreover, by using the same
notation of Section 2, it holds

EF (u) ≥ EF (v). (3.3)

Indeed, the convexity of F 2 and the homogeneity of F imply
∫

Ω

F 2(∇v)dx ≥ −
∫

Ω

F 2(∇u)dx + 2
∫

Ω

F (∇v)Fξ(∇v) · ∇vdx

= −
∫

Ω

F 2(∇u)dx + 2
∫

Ω

F 2(∇v)dx,

where the last equality follows as v is the solution of (3.1).
By the Minkowski inequality, by the definition of qF (β,Ω) given in (1.7),

and recalling the following variational characterization of λF (Ω) (see for in-
stance [3])

λF (Ω) = min
u∈H1

0 (Ω)\{0}
EF (u)∫
Ω

u2 dx
, (3.4)
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we get
⎛
⎝

∫

Ω

u2dx

⎞
⎠

1
2

≤
⎛
⎝

∫

Ω

v2dx

⎞
⎠

1
2

+

⎛
⎝

∫

Ω

h2dx

⎞
⎠

1
2

≤
(

EF (v)
λF (Ω)

) 1
2

+
(∫

∂Ω
β(x)h2F (ν)dHn−1

qF (β,Ω)

) 1
2

≤
(

EF (u)
λF (Ω)

) 1
2

+
(∫

∂Ω
β(x)u2F (ν)dHn−1

qF (β,Ω)

) 1
2

.

Squaring and using the arithmetic-geometric mean inequality, we have∫

Ω

u2dx ≤ EF (u)
λF (Ω)

+

∫
∂Ω

β(x)u2F (ν)dHn−1

qF (β,Ω)

+ 2
(

EF (u)
∫

∂Ω
β(x)u2F (ν)dHn−1

λF (Ω)qF (β,Ω)

) 1
2

≤
(

1
λF (Ω)

+
1

qF (β,Ω)

)
EF (u) +

∫

∂Ω

β(x)u2F (ν)dHn−1

×
(

1
qF (β,Ω)

+
1

λF (Ω)

)

≤
(

1
λF (Ω)

+
1

qF (β,Ω)

) ⎛
⎝EF (u) +

∫

∂Ω

β(x)u2F (ν)dHn−1

⎞
⎠ ,

which gives (1.13).

Remark 3.1. We stress that inequality (1.13) can also be written as follows

0 ≤ 1
λF (β,Ω)

− 1
λF (Ω)

≤ 1
qF (β,Ω)

, (3.5)

this inequality gives an upper bound of the distance between the first Dirich-
let and Robin eigenvalue of the Finsler Laplacian in terms of qF (β,Ω). In
particular, if β(x) = β is constant, (3.5) can be rewritten by (1.8) as

0 ≤ 1
λF (β,Ω)

− 1
λF (Ω)

≤ 1
βqF (Ω)

, (3.6)

with qF (Ω) defined by (1.9). Inequality (3.6) implies that if β → +∞, then
λF (β,Ω) → λF (Ω) as is well known.

Remark 3.2. We observe that (1.13) gives a geometric inequality involving
qF (β,Ω). Indeed, if we consider h ≡ 1 as test function in (1.7), we have

qF (β,Ω) ≤ m

|Ω| , (3.7)

that reads in the constant case by (1.8) as
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qF (Ω) ≤ PF (Ω)
|Ω| ,

where qF (Ω) is defined in (1.9).
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