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Abstract

In recent years, the study of anthropogenic sinkholes in densely urbanized areas has
attracted the attention of both researchers and land management entities. The city of Naples
(Italy) has been frequently affected by processes generating such landforms in the last dec-
ades: for this reason, an update of the sinkhole inventory and a preliminary susceptibility
estimation are proposed in this work. Starting from previous data, not modified since 2010,
a total of 270 new events occurred in the period February 2010-June 2021 were collected
through the examination of online newspapers, local daily reports, council chronicle news
and field surveys. The final consistence of the updated inventory is of 458 events occurred
between 1880 and 2021, distributed through time with an increasing trend in frequency.
Spatial analysis of sinkholes indicates a concentration in the central sector of the city, cor-
responding to its ancient and historic centre, crossed by a dense network of underground
tunnels and cavities. Cavity-roof collapse is confirmed as one of the potential genetic types,
along with processes related to rainfall events and service lines damage. A clear correlation
between monthly rainfall and the number of triggered sinkholes was identified. Finally, a
preliminary sinkhole susceptibility assessment, carried out by Frequency Ratio method,
confirms the central sector of city as that most susceptible to sinkholes and emphasizes the
predisposing role of service lines, mostly in the outermost areas of the city.

Keywords Anthropogenic sinkholes - Inventory - Cavities - Triggering factors - Collapse
sinkholes

1 Introduction

Sinkholes are widespread in many regions of the world, such as Florida, China, Ecuador,

Iran, Turkey (Wilson and Beck 1992; Jiang et al. 2005; Lei et al. 2005; Brinkmann et al.
2008; Karimi and Taheri 2010; Heidari et al. 2011; Gao et al. 2013; Ozdemir 2015, 2016;
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Taheri et al. 2015; Kim et al. 2017; Subedi et al. 2019; Cando Jacome et al. 2020) and rep-
resent a relevant geohazard due to their frequent and sudden development (Newton 1984;
Sinclair and Steward 1985; Beck and Jenkins 1986; Snyder et al. 1989; Nisio et al. 2007).
The term sinkhole is used to indicate a subcircular depression/collapse which occurs in a
range of geological conditions. For instance, in karst environment such landforms develop
due to subsurface chemical dissolution of rocks (solution sinkholes) or by both subsurface
dissolution and downward gravitational movement (internal erosion or deformation) of the
undermined overlying material (subsidence sinkholes) (Waltham et al. 2005; Gutiérrez
et al. 2008, 2014); in alluvial plains characterized by thick deposits of alluvium, or inter-
calations of volcaniclastic products, colluvial deposits and clays, sinkholes originate from
soil piping and related voids collapse (Parise and Gunn 2007; Del Prete et al. 2010; Iovine
et al. 2016).

In the presence of natural or man-made underground cavities, instabilities related to roof
failure into underlying cavities are responsible for generating collapse sinkholes (Ammirati
et al. 2020). Their origin is linked to variations of stress conditions that exceed material
strength in the surroundings, frequently related to sudden water-level changes (Tharp 1999,
2002; Shalev and Lyakhovsky 2012) or to the degradation of the rock mass, due to water
infiltration, weathering processes, etc.... (Parise 2015). This failure mechanism, although
frequently associated to soluble rocks, is also typical in soft rocks as tuffs, loess and sand-
stones, characterized by the presence of cavities. The general formation of this type of
sinkholes consists in the initial collapse at the roof of the cavity, that can propagate to the
ground surface as a function of the cavity geometry and of the physical, mechanical and
hydraulic properties of the materials (Scotto di Santolo et al. 2018).

Underground cavities can be a common element in urban areas, especially in the pres-
ence of bedrock materials suitable for settlement built up and can have significant effects
on sinkhole development due to their predisposing action. Worldwide, several case studies
of the collapse of man-made underground cavities in urban areas have been proposed, as
for example the study case of the two systems of bell-shaped chalk caverns in Israel (Hat-
zor et al. 2002), the abandoned metal mines in Canada (Bétournay 2009), some limestone
mines in the Netherlands (Bekendam 1998) and the Longyou rock caverns in China (Li
et al. 2009). In urban areas, sinkhole initiation may be responsible for severe damage to
settlements and in some cases for the loss of human life, so that they can be considered as
an emerging hazard of the Anthropocene (Dixon et al. 2018). In this context, the analysis
of sinkholes susceptibility and hazard has significant implications for human society and
should guide urban planning and emergency plan development.

Over the last decades, the occurrence of sinkholes in urban areas has substantially
increased (Pellicani et al. 2017). In Italy sinkholes are widespread, with over 50% of them
located in the central-southern regions (Nisio et al. 2007; Parise and Vennari 2013). Of
these, sinkholes caused by the roof failure of man-made cavities (or anthropogenic sink-
holes) have been recognized in Apulia (Parise 2011; Parise and Lollino 2011; Lollino
et al. 2013; Fazio et al. 2017; Pellicani et al. 2017), Sicilia (Sottile 2016) and in Cam-
pania region (Guarino and Nisio 2012; Scotto di Santolo et al. 2015, 2016, 2018; Cen-
namo et al. 2017; Guarino et al. 2018; Rispoli et al. 2020). In this context, the risk linked
to anthropogenic sinkholes is relevant for the communities, also in relation to their very
rapid development that may prevent any tentative to escape. In these cases, an important
tool for risk mitigation is the development of susceptibility and hazard scenarios, based
on updated inventories, that provide information on the distribution of existing sinkholes
in a given area. Sinkhole inventories are of fundamental importance for draft susceptibil-
ity maps and for the selection and application of mitigation measures and adaptation plans
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(Waltham et al. 2005; Gutierrez et al. 2008, 2014). Sinkhole susceptibility maps can be
produced through several methods with different abilities and predictive accuracy, includ-
ing probabilistic (Kim et al. 2006; Galve et al. 2009), multicriteria decision (Mancini et al.
2009), artificial neural network (ANN) (Kim et al. 2009), and fuzzy operator (Choi et al.
2010) analyses. Among the probabilistic methods, Frequency Ratio is widely used to per-
form sinkhole susceptibility mapping (i.e. Yilmaz 2007; Oh and Lee 2011; Pradhan et al.
2014). Frequency Ratio is defined as the ratio of the probabilities of a sinkhole occurrence
to a non-occurrence for a given attribute, used to obtain relationships between predisposing
factors chosen and sinkhole occurrence area.

Anthropogenic sinkholes, due to their spatial and temporal distribution, are among the
most relevant issues in the densely urbanized municipality of Naples (over 8,000 inhabit-
ants/km? in 2019—ISTAT 2019). For instance, the ancient center of the city (dating back
to seventh century B.C.), worldwide known for cultural heritage expression of its long his-
tory, is particularly prone to collapse sinkholes due to the presence of a network of under-
ground cavities, the oldest of which refer to the Eneolithic age (Fig. 1) (Basso et al. 2013).
According to the international classification of artificial cavities (Galeazzi 2013; Parise
et al. 2013), the most common categories present in the subsoil of the city of Naples can be
identified, with respect to the building techniques, as: (1) cavities dug in the subsoil and (2)
cavities constructed in the subsoil. Instead, the type of underground artificial structures can
be recognized as: (1) aqueducts, cisterns and sewer systems (type A.3, A.4 and A.7); (2)
hypogeum (type B.1); (3) cultural places (type C.1); (4) cavities derived from quarrying of
bedrock tuff material (as building material) (type E.1). All such artificial cavities are today
sites of preferential weathering of the rock mass, suffering a slow but continuous decay
that creates predisposing conditions for sinkhole development. Many cavities are currently
abandoned, neglected and/or inaccessible because filled with buildings debris or other

Fig. 1 Photos of man-made underground cavities of the city of Naples: a Cimitero delle Fontanelle (cour-
tesy of Sintema Engineering stl); b, ¢ San Marcellino cavity
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materials (Evangelista et al. 2000), so that it is challenging to know their precise planimet-
ric and volumetric extension. In some cases, places of worship, such as architectural ele-
ments, are located just in correspondence of cavities, making them potentially susceptible
to damage related to cavity-roof collapse sinkholes (Rispoli et al. 2020).

In the perspective of an estimation of sinkhole risk, this paper presents an update of
sinkhole inventory and a preliminary susceptibility assessment for the city of Naples. Start-
ing from the dataset produced by Guarino and Nisio (2012), consisting of 188 anthropo-
genic sinkholes occurred between 1880 and 2010, a new inventory was prepared adding the
events occurred between February 2010 and the first half of 2021. The information related
to sinkhole occurrence was derived from different sources, including newspapers to field
survey, and an analysis of the genesis mechanisms and of the triggering factors, responsible
for sinkholes formation, was also carried out. Subsequently, a preliminary sinkhole suscep-
tibility assessment was developed through the Frequency Ratio analysis (Bonham-Carter
1994), based on the statistical relationships between the total inventory of sinkholes and 12
predisposing factors.

2 The study area

The city of Naples (Fig. 2) lies in the Campanian Plain, an asymmetric half-graben
(D’Argenio et al. 1973; Brancaccio et al. 1991; Milia et al. 2003; Turco et al. 2006; Vitale
and Ciarcia 2018) filled by a 2000-3000-m-thick sequence of Quaternary continental, del-
taic, marine sediments and volcanic deposits derived from the activity of Phlegraean Fields
district and Somma-Vesuvius volcano. The hilly morphology of the area surrounding
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Fig.2 Geological map of the city of Naples
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the city is consistently related to the activity of explosive monogenetic volcanoes of the
Phlegraean Fields as well as to volcanic-tectonic collapses linked to the formation of the
Campanian Ignimbrite — CI (39 ky) and of Neapolitan Yellow Tuff — NYT (15 ky) cal-
dera (Scarpati et al. 2013). NYT forms the urban bedrock and consists mostly of pyroclas-
tic-flow and minor fall deposits that can be ascribed either to lithified or not-lithified dia-
genetic facies. The former has a yellow colour, while the latter, the so-called Pozzolana, is
grey and preserves its primary depositional character. In particular, lithification is the result
of a diagenetic zeolitisation process (Scarpati et al. 1993).

The NYT eruption is among the most relevant of the history of the Phlegraean Fields.
After this eruption, about 70 episodes occurred over three epochs of activity (15.0-9.5,
8.6-8.2 and 4.8-3.8 ky) with a mean recurrence interval of a few tens of years (Orsi et al.
2004). Such eruptions produced loose pyroclastic deposits, pyroclastic flows and surge
deposits, mainly observable in the western sector of the city. In this area, several meters
of such pyroclastic deposits cover NYT, appearing particularly thick (up to 30 m) at the
base of hillslopes where they fill structural depressions or ancient erosional valleys (Cinque
et al. 2011). Instead, in the central sector of the city NYT is unconformably followed
upward by a sequence (usually 15 m thick) alternating reworked and in situ pyroclastics
carrying at the base the fallout deposits of the Soccavo eruption (10.3-9.5 ka; Amato et al.
2009). In the eastern zone of the city, alluvial sediments and marshes fill the Sebeto River
alluvial plain, developed in the tectonic depression of Volla (Bellucci et al. 1993). In the
urban coastal plains and in the northern and western sectors of the city, marine to continen-
tal sediments are also present, usually covered by landfills.

The landscape of Naples is also characterized by incision activities from superimposed
torrents, alternating small coastal bays (sometimes hosting narrow coastal plains) and
cliffed promontories (Cinque et al. 2011). From a hydrogeological point of view, the Nea-
politan subsoil is marked by an unconfined aquifer housed in the pyroclastic rocks overly-
ing the NYT. The water table is generally located at variable depths below the surface,
ranging from 20 m to more than 200 m, except for the morphologically depressed areas,
such as in the Sebeto River plain and the areas near the coast, where it is close to the
ground surface (Guarino and Nisio 2012).

A singular feature of the city is the presence of an extended network of underground
cavities of variable shape, extent and volume, located within the NYT. For its peculiar
characteristics as macro-porosity, fair mechanical parameters and low specific weight, this
material has been intensely quarried and used as building stone in Neapolitan and regional
architecture since Greek times. For many centuries, the extraction activity has been con-
centrated beneath the city of Naples. Subsequently, open pit quarries developed at the bor-
ders of the old town and more recently along the western sector of Campi Flegrei (Morra
et al. 2010). Over the centuries, the network of underground cavities has grown also for the
building of crypts, catacombs and cemeteries as well as aqueduct system and cisterns and
subway lines (Evangelista et al. 2000; Scotto di Santolo et al. 2015; Allocca et al. 2018). In
many cases, their exact location is unknown.

3 Materials and methods
As a first step toward the development of an updated inventory of anthropogenic sinkholes

of the city of Naples, data and information related to sinkhole phenomena documented by
ISPRA (Italian National Institute for Environmental Protection and Research) inventory
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(Guarino and Nisio 2012) were digitalized in vector format within a Geographic Infor-
mation System (GIS). Subsequently, sinkholes occurred between February 2010 and June
2021 were added to the inventory. Information about such events were derived from multi-
ple sources: (1) online version of national daily newspapers (e.g. www.ansa.it, www.corri
ere.it, www.ilmattino.it), (2) local daily reports (e.g. www.fanpage.it/napoli/, www.napol
itoday.it, www.vesuviolive.it), (3) council chronicles news (e.g. from www.comune.napoli.
it) and (4) field survey carried out by the authors. For each inventoried event, data relative
to sinkhole occurrence were verified by cross-correlating different sources. In this way, the
risk of introducing inconsistent information was reduced.

For each new event collected, data about formation timing (generally day, month and
year), location (in terms of WGS84-UTM coordinates or, when not possible, of indication
of the street of occurrence), sources, presumable triggering factor, were derived from news-
paper information and field evidence (for those collected by field survey; e.g. the evident
rupture of an aqueduct line). Main morphometric characteristics (diameter and depth) and
a photo of the event were derived whenever possible, too. Moreover, interviews to locals
were conducted to obtain specific information on sinkholes. Some information, as the exact
location and the morphometric characteristics of sinkholes, were not always available or
well indicated. In these cases, it was necessary to conduct a visual inspection of the avail-
able photos and an additional spatial analysis into Google Earth environment, to identify
the location and assess the diameter of the sinkhole. Figure 3 shows a few examples of
photographic documentation used for the event recognition. To supplement our analysis,
providing an interpretation of the sinkhole-driving mechanism, data depicting the presence
and distribution of the cavities over the study area and rainfall data derived from Napoli
Capodimonte station (#18949) for the period 2010-June 2021, were acquired. In this way,
connections between anthropogenic triggering factors and/or rainfall events leading to
sinkhole occurrence in the study area were investigated through graphical correlations.

Preliminary sinkhole susceptibility assessment was carried out using the dataset of
events for which coordinates of occurrence are known, through the Frequency Ratio model

Fig. 3 Examples of sinkholes located in the city of Naples: a Via Girolamo Santacroce, Vomero munici-
pality, 15/02/2019; b viale Calascione a Monte di Dio, 08/11/2019; ¢ via Jacopo De Gennaro, Fuorigrotta
municipality, 18/12/2019 (modified from www.ilmattino.it); d parking of Ospedale del Mare, 08/01/2021
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(Bonham-Carter 1994), and considering twelve predisposing factors PFs (1—Aqueduct
Network Density; 2- Aqueduct Network Distance; 3—Groundwater depth; 4—Cover thick-
ness; 5—Road Network Density; 6—Road Network Distance; 7—Sewer System Density;
8—Sewer System Distance; 9—Underground Cavity Density; 10—Underground Cav-
ity Distance; 11—Underground Railroad Density; 12—Underground Railroad Distance).
This approach allows the calculation of the probability of appearance of new phenomena
considering five different classes of decreasing weight for each predisposing factor and on
the base of already known sinkholes data occurrence. Frequency Ratio (FR) was estimated
through the formulation (1):

_ Number of pixels with sinkholes for the class of PF /Total number of pixels with sinkholes
score

FR,

Number of pixels of the class of PF/Total number of pixels

)
with a pixel size of 20x20 m. After calculating FR score for each class of predisposing
factors, a Sinkhole Susceptibility index was calculated by the sum of the FR scores. The
result was reclassified in five different susceptibility classes from very low to very high
using the Natural Breaks classification method (Jenks 1967). Finally, performance of the
model was determined by the Area Under the Curve (AUC) of the relative Receiver Oper-
ating Characteristics (ROC) curve (Swets 1988).

4 Results
4.1 The updated inventory

Sinkhole recognition through online newspapers, local daily reports, council chronicle
news, literature analysis (i.e. existing ISPRA database—Guarino and Nisio 2012) and field
surveys, was carried out producing an inventory of 458 anthropogenic sinkholes of the city
of Naples, 270 of which triggered between February 2010 and June 2021 (Table 1). Of
the 458 inventoried sinkholes, 455 bear associated information about time of occurrence.
The yearly frequency of sinkholes since the second half of the last century (data prior than
1950 have been represented as a single data value) highlights the enrichment of inventory
with the most recent data (Fig. 4a). The entire series is characterized by a general increas-
ing trend, although the distribution is quite discontinuous. In fact, some periods prior to
the update are characterized by an absence of events, probably due to a non-significance
of news, or to a possible loss of information. However, since 2007 and until June 2021,
about 61% of the 455 inventoried sinkholes (known timing of occurrence) form a continu-
ous series sharply growing with time. Such percentage is formed by 13 events from ISPRA
inventory and 267 sinkholes occurred between February 2010 and June 2021. Sinkholes
from ISPRA inventory are 188, while the new inventoried events are 270, 267 of which
with of known timing of occurrence (Fig. 4a).

Overall, inventoried sinkholes were triggered by: rainfall events, aqueduct and sewer
leaks and maintenance works; however, in 36.0% of the cases, triggering factors were not
identified. The comparison between triggering factors (Fig. 4b) shows for sinkholes inven-
toried by ISPRA that rainfall is recognized as the most common defined cause (50.5% of
the events), followed by not defined factors (22.9%), aqueduct and sewer leaks (9.6%) and
maintenance works (2.1%); while for February 2010-June 2021 sinkholes the most com-
mon factor is not defined (45.2% of events), followed by rainfall (37.0%), aqueduct and
sewer leaks (15.6%) and maintenance works (2.2%).
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Fig.4 a Annual sinkhole frequency (number of events per year) from the middle of the last century (data
prior than 1950 have been represented as a single data value) to June 2021; b Triggering factors; ¢ Statisti-
cal representation of known diameters and depths for 2010-2021 and ISPRA inventories

ISPRA inventory classified 28 events as triggered by cavity-roof collapse. In our case
we consider the cavity-roof collapse as a genetic process and not as a triggering factor:
therefore, no updated sinkhole falls in this class. Finally, morphometric characters show
differences in the median value as well as in the general distribution (Fig. 4c). In particu-
lar, with respect to ISPRA inventory, diameter and depth of the new data are smaller and
included in a narrower range.

4.2 Characteristics of newly inventoried sinkholes

The yearly frequency (number of events per year) of the new 267 inventoried events of
known timing of occurrence (Fig. 4a) indicates a rate between 11 and 23 events per year
over the period of inventory updating. Exceptions are the 37 events recorded in 2015 and
the 50 events recorded in 2019, so that about 32% of the 267 new events with known tim-
ing of occurrence (this datum is not available for 3 events) were triggered in these two
years only. It is worth to point out that events referred to 2010 are only a part of the total,

@ Springer
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since they represent the events not already included in the ISPRA database. Similarly, for
2021 the data are incomplete, since they refer only to the first six months of the year.

As far as the triggering factors are concerned (Fig. 4b), for about 45% of the events
the triggering factor is unknown. The remaining 55% can be associated to rainfall events
(37% of the new addition), 15.6% occur due to leakage from underground aqueduct and
sewer system, also connected to heavy rainstorms, while no direct correlation with seismic
events is recorded, although some seismic events characterized by a medium to low inten-
sity (earthquake duration magnitude M, between 3.0 and 1.9—from National Institute of
Geophysics and Volcanology, INGV) occurred in the time frame. A very small percentage
of the cases (2.2%) are related to the action or weight of vehicles and materials used for
road and maintenance works.

Morphometric data of sinkholes occurred between 2010 and 2021 are available for 80
events only (about 28.5%) as regards diameter and for 42 events (15%) for depth (Fig. 4c).
Statistical analysis shows that diameter ranges between 0.4 and 50 m, but only 9 sinkholes
have diameters greater than 5 m, while median value is 2 m. Depth ranges between few
centimeters to 20 m, even if only 5 events have a depth greater than 5 m: in this case, the
median value is 1 m. This consistency is in agreement with the types of sinkholes recog-
nized: collapse sinkholes are commonly of metric size (e.g. Parise 2012, Gutierrez et al.
2014), while sinkholes linked to the leak of aqueduct or sewer system are characterized by
depths lower than one meter (e.g. Kim et al. 2018).

About data sources, 241 of the new sinkholes were derived by newspaper sources.
Data on 78 events were collected through national newspapers, 163 events were col-
lected through local newspapers and 15 through local council reports (e.g. Naples council)
(Fig. 5), 14 additional events were collected by field survey, for a total of 270 new events.

The dataset of events for which coordinates of occurrence are known, consists of 380
sinkholes distributed over the study area (Table 1; Fig. 6a). Distribution of sinkholes is
mainly concentrated in the central area that encompasses the ancient center of the city.
The heat map indicating the number of sinkholes per km? (Fig. 6b) shows a concentration
higher than 12 units per km? in this area of the city, which corresponds to the most impor-
tant one in terms of cultural asset and vulnerability to sinkholes. In fact, here, a rich archi-
tectural heritage made up of castles, royal palaces, noble residences, cathedrals, churches,
chapels and convents which, forming the cultural asset of the city, have contributed to the
inclusion of the center of Naples in the list of UNESCO World Heritage sites in December
1995 (Clemente et al. 2015), are located. In the same area the most complex part of the
system of underground cavities and tunnels is present. The higher concentration of sink-
holes in the central sector of the city is also confirmed by analyzing the distribution of new
inventoried sinkholes referred to the period February 2010-June 2021, and the related heat
maps (Fig. 6¢-f).
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Fig.6 a Updated sinkhole inventory map; b Heat map of the updated sinkhole inventory (n/km?); ¢ Sink-
holes occurred from 1880 to 2010 as derived from ISPRA database (Guarino and Nisio, 2012); d Heat map
of sinkholes (n/km?) for the 1880-2021 time span; e Newly inventoried sinkholes occurred from 2010 to
2021; f Heat map of sinkholes occurred from 2010 to June 2021 (n/km?)

Distribution analysis of sinkholes within the municipalities of the city of Naples was
conducted considering both the events with known coordinates and streets of occurrence
(Fig. 7). In this last case, in absence of house number, the event was considered only if
the street fell entirely within a single municipality. In particular, the events inventoried by
ISPRA with known coordinates were 167, while 11 sinkholes positions were derived from
the information of the street of occurrence, for a total of 178 events with known position.

The new inventoried sinkholes referred to the period February 2010-June 2021 con-
sists of 213 events with known coordinates and 42 events with position in the municipality
derived from address information, for a total of 255 sinkholes.

In detail, between 1880 and 2010 most of the events (78%) occurred within the
(1) municipality 1—Chiaia, Posillipo, S. Ferdinando, (2) municipality 2—Avvocata,
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Fig. 7 Distribution of sinkholes for each municipality of Naples occurred between 1880 and 2010 (ISPRA
database) in purple, and between 2010 and June 2021 in cyan

Montecalvario, Porto, S. Giuseppe, Pendino, Mercato, (3) municipality 3—Stella, S. Carlo
all’Arena, (4) municipality 4—Vicaria, S. Lorenzo, Poggioreale and (5) municipality 5—
Vomero, Arenella. Instead, between 2010 and 2021 almost 80% of the events occurred
within the (1) municipality 1—Chiaia, Posillipo, S. Ferdinando, (2) municipality 2—Avvo-
cata, Montecalvario, Porto, S. Giuseppe, Pendino, Mercato, (3) municipality 3—Stella, S.
Carlo all’Arena, (4) municipality 4—Vicaria, S. Lorenzo, Poggioreale, (5) municipality
5—Vomero, Arenella, (6) municipality 8—Chiaiano, Piscinola-Marianella, Scampia, (7)
municipality 10—Bagnoli, Fuorigrotta. Such distribution confirms the trend of sinkholes
trigger in the central sector of the city, but highlights an enlargement of the involved area in
the most recent years.

4.3 Sinkhole susceptibility analysis

The fraction of the inventory for which coordinates of occurrence are known was used to
produce a preliminary sinkhole susceptibility map for the city of Naples using the Fre-
quency Ratio approach. Frequency Ratio scores indicate a heavy influence of Underground
Cavities Density and, subordinately, of Distance. Underground Railroad Density appears
as the most important predisposing factor; conversely, Groundwater Depth, Cover Thick-
ness and Road Network Density are the least important ones. Sinkhole susceptibility map
shows the spatial distribution of very high susceptibility class mostly in the central area
of the city of Naples: municipality 2 is almost entirely characterized by this susceptibility
class, while municipalities 1, 3, 4, 5 and 10 only partially. Generally, susceptibility classes
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show a decreasing trend from the ancient centre of the city to the bordering areas (here
from medium to very low) and reflect the pattern of the most important roads. The sink-
hole susceptibility map (Fig. 8) was categorized into five classes: (1) very low, (2) low,
(3) medium, (4) high, (5) very high, which correspond to 30%, 35%, 18%, 11% and 6% of
the total area, respectively. The predictive performance analysis returns a ROC/AUC score
equal to 0.81 (1.00 represents the maxima predictive performance).

5 Discussion

The updated inventory of the anthropogenic sinkholes of the city of Naples consists of
458 entries, 270 of which are newly identified sinkholes occurred in the period February
2010-June 2021. It represents an update of the previous available inventory (ISPRA, Gua-
rino and Nisio 2012), that consisted of 188 sinkholes collected in the time interval from
1880 until 2010. Overall, new sinkholes are present in all of the municipalities of the city
with a time-growing trend compared to ISPRA database in the bordering municipalities.
The highest concentration is located in the municipalities 2 and 5 and significant concen-
trations are present in municipalities 1 and 3 (Fig. 9). The analysis of sinkhole inventory
highlights an increasing trend in the annual frequency of sinkholes (Fig. 10).

From the analysis of number of sinkholes cumulated over the time it is possible to
notice a regular growth of the events until 2011 and a subsequent abrupt increase in the last
decade, coinciding with the inventory update. Although this might be related to the higher
availability of data source, a relation with the rapid settlement development occurred in the
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past decades that led to an increase of aqueduct demand and sewer systems use (frequently
inadequate with damage and/or leakage), cannot be excluded.

Geological setting of the study area has also an influence on sinkholes development. In
fact, sinkholes are concentrated in the central area of the city coinciding with its ancient
centre, where NYT formation is present in the subsoil and is characterized by diffuse
underground cavities that sometimes undergo roof collapses (Nicotera and Lucini 1967,
Albertini et al. 1988; Evangelista et al. 2002; Lombardi et al. 2010; Basso et al. 2013).
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Even if the Frequency Ratio analysis for sinkholes susceptibility assessment highlights
that the cover thickness and consequently the depth of NYT does not represent one of the
most important predisposing factor, water losses from aqueduct and sewer systems coupled
with the water infiltration action and the weathering processes can be associated to the
progressive degradation of mechanical properties of NYT. In the opposite, sinkholes are
less frequent in the other sectors of the city, where the network of cavities is much more
sporadic: this occurs in the eastern sector, where prevailingly loose, non-volcanic materials
are present (hence, not suitable as building materials) and western one, strongly affected
by tectonic-volcanic collapse event in the past that makes hard the excavation of the mate-
rial. Sinkholes susceptibility map confirms the medium-very low susceptibility degrees of
these sector of the city, in agreement with previous studies (e.g. Guarino and Nisio 2012;
Basso et al. 2013). Differently, susceptibility presents significant difference in the northern
and south-east sectors of the city, in past classified as very high-medium susceptibility.
Such differences, confirming the importance of an updated sinkhole inventory for support-
ing susceptibility analysis.

Anthropogenic sinkholes which affect Naples are also present in the hinterland of the
city (Guarino et al. 2018; Scotto di Santolo et al. 2018) where preexisting network of caves
within the Campanian Ignimbrite tuff at shallow depths is historically subject to sinkhole
formation. Similarly, in the urban area of Rome (Italy), tunnels produced by historical min-
ing activities of tuffs and pyroclastic rocks, drainage tunnels and catacombs, can easily
predispose the collapse of the deeper layers. Furthermore, runoff activity concurrently with
intense rainfall can lead to the loose of soil below the road surface, causing the collapse of
the shallow layers (Ciotoli et al. 2013). Naples’ sinkholes present similarities with those
occurring over the world, both in areas characterized by past quarrying of soluble or soft
rocks, such as in Netherlands, USA and Korea (Bekendam 1998; Galloway et al. 1999;
Sunwoo et al. 2010) and in areas characterized by obsolete or defective sewer pipes, as in
Guatemala, Japan and South Korea (Hermosilla 2012; Yokota et al. 2012; Kim et al. 2018).

The genetic mechanism of sinkholes was analyzed comparing sinkholes’ distribution
with those of cavities, in the form of 30 m-buffered polygons to minimize the effects of
the lack of knowledge for some cavities in size and extension and according to the Fre-
quency Ratio scores which indicate the heavy predisposing influence of Underground
Cavities Density. The results show 41 events that fall inside the buffered area (Fig. 11a).
Such events, representing almost 20% of the 213 new sinkholes with known coordinates,
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Fig. 11 a Distribution of sinkholes falling inside the 30 m-buffered cavity; b Distribution of sinkholes fall-
ing outside the 30 m-buffered cavity
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can be classified as collapse. Such fraction is close to that estimated by Guarino and Nisio
(2012) for the old inventory, for which the collapse was identified as triggering mechanism
in around 25% of the total cases. The remaining 80% of the new sinkholes are distributed
over a larger area and do not fall within buffered cavities (Fig. 11b). These sinkholes (or
part of them) could be associated to sewerage system-induced sinkholes (Rogers 1986),
linked to groundwater or sewer infiltration through a damaged sewer pipe, especially dur-
ing and after a heavy rainfall (Kim et al. 2018). The discharge of soil particles related to
the action of water infiltration leads to loosening of the soil with formation of underground
cavities, and ground collapse. However, it is important to remember that data on dimension
and distribution of cavities in the subsoil of Naples could be unprecise and that the number
of sinkholes originated by collapse mechanism could be underestimated.

Relations between sinkholes and presumable triggering factors have been deeply investi-
gated (Fig. 12). Distribution of monthly aggregated rainfall data from January 2010 to June
2021 seems to be in good agreement with rainfall-induced sinkholes frequency. As high-
lighted in Sect. 4, years 2015 and 2019 were characterized by a higher number of sinkhole
events. In particular, sinkholes occurred in 2015 are distributed during the entire year, with
concentrations in correspondence of particularly rainy months (e.g. February and June). In
the opposite, sinkholes occurred in 2019 are concentrated in November (almost half of all
sinkholes occurred in the year), when the amount of rainfall is higher than the average for
the period. In this specific month, 15 sinkholes are classified as triggered by rainfall, 3 as
derived by aqueduct and sewer leaks and 2 by not defined factor (n.d.). It is important to
underline that the sewer system considered is also responsible for disposal of water from
road pavements and delivering it to the sea, whereby in cases of intense rainfall, leaks from
sewer system make difficult to associate sinkhole formation to a specific triggering factor.
A significant correlation between collapse mechanism and rainfall seems to exist. Indeed, a
sort of clustering of collapse sinkholes in correspondence of wettest months was identified
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(Fig. 12). This evidence might be explained considering that continuous and prolonged
soaking, saturating the ground, represents a relevant factor promoting instability of cavity
roof (e.g. Scotto di Santolo et al. 2018).

The knowledge of predisposing factors, such as the presence of underground network of
cavities and distribution of sewer system, could represent an important basis in the devel-
opment of a reliable sinkhole susceptibility analysis. In this perspective, because the loca-
tion of cavities is partially unknown, a specific survey oriented to the identification and
characterization (i.e. cavity’s dimension, depth, filling etc....) of such elements would be
significant. Moreover, the identification of the most susceptible areas can be used in plan-
ning the inspection strategies. On these bases, monitoring systems for pore-pressure and/or
deformation of cavity’s roof as well as cavity stability analysis could be envisaged.

6 Conclusions

To improve the knowledge of anthropogenic sinkholes in the city of Naples in view of a
prospective evaluation of hazard and risk, a new and updated inventory of sinkhole has
been created and here presented. In particular, moving from an available inventory consist-
ing of 188 sinkholes, events occurred between February 2010 and June 2021 were col-
lected and characterized through newspaper analysis and field surveys. The new updated
inventory now consists of 458 entries, 270 of which occurred after 2010. Information
about date, location, triggering factor and morphometry have been derived from available
sources and associated to the inventoried event. For its quantity of data, the inventory con-
structed in this study constitutes an exceptional volume of information and offers an excel-
lent opportunity to develop significant prediction models in near future, considering not
only the probability of occurrence of new sinkholes, but also magnitude and frequency
relationships of the collapse events. However, an attempt to develop a preliminary sinkhole
susceptibility assessment was done through the application of Frequency Ratio approach
and considering twelve factors as predisposing to the sinkhole occurrence.

Database analysis reveals some important aspects: (1) annual frequency of the events
has a sustained increasing trend; (2) statistical distribution of triggering factors and mor-
phometric characters are consistent with previous studies; (3) spatial distribution of the
new inventoried sinkholes coincides with the area of the city already affected by sinkholes
in the past, even if a growing trend in the neighbouring areas of the city has been observed;
(4) higher concentration of events is recognized in the ancient centre of the city where a
diffuse network of cavities is present. This is also confirmed by sinkhole susceptibility map
which identifies the most susceptible area coincident with the ancient centre of the city,
while a medium-low susceptibility characterizes the outermost areas.

A matching analysis between sinkhole position and buffered cavities indicates that a
fraction of the new inventoried sinkholes can be associated to a cavity-collapse mechanism,
highlighting the role of such underground elements in promoting surface instabilities. As
expected, and consistently with the existing inventory, a large fraction of sinkholes was
triggered by rainfall events and aqueduct and sewer damage. However, the definition of the
triggering mechanisms is very difficult or sometimes impossible (especially for old events).
In this perspective, analysis of correlation between rainfall and sinkholes events deserves
to be further investigated in the context of an evaluation of sinkholes risk, also posing par-
ticular attention to the distribution of aqueduct and sewer network that cross the city.
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