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a b s t r a c t

Psychological games aim to represent situations in which players may have belief-dependent moti-
vations. In this setting, utility functions are directly dependent on the entire hierarchy of beliefs of
each player. On the other hand, the literature on strategic ambiguity in classical games highlights that
players may have ambiguous (or imprecise) beliefs about opponents’ strategy choices. In this paper,
we look at the issue of ambiguity in the framework of simultaneous psychological games by taking
into account ambiguous hierarchies of beliefs and study a natural generalization of the psychological
Nash equilibrium concept to this framework. We give an existence result for this new concept of
equilibrium and provide examples that show that even an infinitesimal amount of ambiguity may
alter significantly the equilibria of the game or can work as an equilibrium selection device. Finally, we
look at the problem of stability of psychological equilibria with respect to ambiguous trembles on the
entire hierarchy of correct beliefs and we provide a limit result that gives conditions so that sequences
of psychological equilibria under ambiguous perturbation converge to psychological equilibria of the
unperturbed game.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Psychological games have been introduced to understand how
motions, opinions and intentions of the decision makers can
ffect a game. In the pioneering paper by Geanakoplos et al.
1989), this goal is tackled by assuming that players may have
elief-dependent motivations.1 More precisely, in a psychological
ame, each player’s payoff depends on his hierarchy of beliefs;
hat is, it depends not only on what every player does but also
n what he thinks every player believes, on what he thinks every
layer believes the others believe, and so on. Geanakoplos et al.
1989) present an equilibrium concept for this class of games,
ased on the idea that the entire hierarchy of beliefs of each
layer must be correct in equilibrium; moreover, they provide an
xistence result for this notion of equilibrium.

✩ The authors thank Achille Basile, the anonymous editor and reviewers for
helpful comments and suggestions.

∗ Corresponding author at: Department of Management and Quantitative
ciences, University of Naples Parthenope, Via Generale Parisi 13, Napoli 80132,
taly.

E-mail address: giuseppe.demarco@uniparthenope.it (G. De Marco).
1 The literature on psychological games has increased considerably in the
ast decades; we recall (Battigalli and Dufwenberg, 2009) for further theoretical
indings, Rabin (1993), Battigalli and Dufwenberg (2007) and Attanasi et al.
2010) for some applications, just to quote a few, and Attanasi and Nagel (2008)
nd Battigalli and Dufwenberg (2020) for surveys on psychological games and
eferences.
ttps://doi.org/10.1016/j.mathsocsci.2022.09.005
165-4896/© 2022 Elsevier B.V. All rights reserved.
There is another strand of literature that focuses on the is-
sue strategic ambiguity in classical strategic form games as it is
well known that players may have ambiguous (or imprecise)
beliefs about opponents’ strategy choices. The classical Nash equi-
librium concept is based on two ideas: the first is that each
player best responds to the beliefs he has about his opponents’
strategy choices; the second is that his beliefs are correct, that
is, every player believes with probability 1 that his opponents
follow their equilibrium strategies. In the equilibrium concepts
for games under strategic ambiguity already studied in the liter-
ature, each player best responds to the beliefs he has about his
opponents’ strategy choices but these beliefs are now ambiguous
(or imprecise), that is, they can take the form of a capacity or
of a set of probability distributions (see for instance Dow and
Werlang (1994), Eichberger and Kelsey (2000), Lehrer (2012),
Riedel and Sass (2013), Battigalli et al. (2015) and De Marco and
Romaniello (2015) and references therein). In particular, in the
concept of partially specified equilibrium (Lehrer, 2012), ambigu-
ity stems from the actual strategies chosen and has a specific
structure as Lehrer (2012) states: ‘‘players do not have precise
knowledge of the mixed strategy chosen by each of the other players.
Rather, players know only the probability of some subsets of pure
strategies, but do not know the precise subdivision of probabilities
within those subsets. They might know also the expected value of

https://doi.org/10.1016/j.mathsocsci.2022.09.005
http://www.elsevier.com/locate/mss
http://www.elsevier.com/locate/mss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mathsocsci.2022.09.005&domain=pdf
mailto:giuseppe.demarco@uniparthenope.it
https://doi.org/10.1016/j.mathsocsci.2022.09.005
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ome variables that depend on the actions taken by others.2’’ From
the mathematical point of view, this kind of ambiguous beliefs of
a player takes the form of a set-valued map (or correspondence3)
that associates with every given profile of opponents’ strategies
(that represents the one actually played), a set of profiles of
opponents’ strategies that are indistinguishable (to the player)
from the given one. In fact, they provide the same expected
value for every random variable in a given set, which, in turn,
is exogenous and characterizes the information available to the
player. So, the set-valued map describes the first-order beliefs
that the player perceives to be consistent with the actual play
of his opponents, given the information he has and whatever is
the actual play. In De Marco and Romaniello (2013) this approach
has been slightly generalized by taking into account arbitrary set-
valued maps that allow to study other perturbations of correct
beliefs. Finally, it is worth noting that the equilibrium notions
under strategic ambiguity give back the Nash equilibrium concept
in case of no ambiguity; moreover, some limit results provide
conditions that guarantee the convergence of sequences of equi-
libria of ambiguous games to the equilibria of the unambiguous
games when ambiguity converges to zero (see De Marco and
Romaniello (2013) and references therein).

It is clear that beliefs about opponents’ strategy choices can be
regarded as first-order beliefs; from this perspective, the litera-
ture on strategic ambiguity substantially looks at games in which
first-order beliefs are ambiguous. However, in case payoffs de-
pend explicitly on higher-order beliefs, it is possible that players
perceive ambiguity regarding the entire hierarchy of beliefs. For
instance, it might be the case that partially specified probabilities
(or any kind of partial knowledge) appear directly in the second
(or higher) order beliefs; else, in case some player (say John) has
partially specified first-order beliefs, then every John’s opponent,
having correct second-order beliefs about John’s first-order be-
liefs, has a set-valued belief as a natural consequence. As strategic
ambiguity has been shown to affect equilibria in classical games,
the natural question is in which way ambiguous beliefs affect
psychological Nash equilibria. This is the key motivation of the
present work; we combine these two relevant aspects of strategic
interactions: psychological payoffs and ambiguous beliefs. More
precisely, we look at the issue of ambiguity in the framework
of psychological games by taking into account ambiguous hier-
archies of beliefs and adapting the model of psychological games
of Geanakoplos et al. (1989) to the ambiguity framework. The idea
is that beliefs might be ambiguous (or imprecise) in equilibrium.
More precisely, the function that maps strategy profiles to the
correct hierarchies of beliefs, that is used in the classical definition
of psychological Nash equilibria, is now replaced by a set-valued
map (called ambiguous belief correspondence), that maps strategy
profiles to the subsets of those hierarchies of beliefs that players
perceive to be consistent with the corresponding strategy profile.
Ambiguous belief correspondences provide a general tool to han-
dle ambiguous hierarchies of beliefs and can cover several specific
cases such as partially specified probabilities or perturbations
of the correct belief function. This will be shown by different
examples.

Following the standard approach, agents are assumed to have
a pessimistic attitude towards ambiguity as they are endowed
with the classical maxmin preferences to compare ambiguous
alternatives.4 From the mathematical point of view, such maxmin

2 Moreover, different players may obtain different specifications of the mixed
trategies of the others.
3 The terms set-valued map and correspondence are synonyms in the game

heory literature and, in particular, in this paper.
4 There are other types of preferences in case of ambiguity that could be
otentially applicable to our framework. Our choice has the purpose to keep
ore simple the understanding of the novelties of our approach that mainly

ely on the structure of beliefs.
 o
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preferences (see Gilboa and Schmeidler (1989)) correspond to the
maximization (with respect to the strategy of the corresponding
player) of a marginal function computed along the graph of the
ambiguous belief correspondence whose values, in turn, depend
on the entire strategy profile. The equilibrium concept we intro-
duce here, called psychological Nash equilibrium under ambiguity,
ppears to be the natural generalization of the psychological
ash equilibrium notion in Geanakoplos et al. (1989). We give
n existence result for this equilibrium notion that is naturally
ased on the continuity properties of the ambiguous belief cor-
espondences. We provide also different examples in order to
etter illustrate this new concept of equilibrium: they will show
hat even a little (infinitesimal) amount of ambiguity may alter
ignificantly the equilibria of the game. However, the way in
hich the set of equilibria changes is not unequivocally deter-
ined but depends on the specific model. In fact, a first example
hows that the set of equilibria might remain unaltered after
he introduction of ambiguity, while, in a second example, the
et of psychological equilibria under ambiguity is disjoint from
he set of classical psychological equilibria. In a further example,
mbiguity produces an equilibrium selection, that is, the set of
sychological Nash equilibria under ambiguity is a proper subset
f the (classical) psychological Nash equilibrium set. In contrast,
n the last example, the set of psychological equilibria enlarges
hen ambiguity (represented by partially specified probabilities)

s introduced.
The issue of equilibrium selection that arises from the example

reviously mentioned relates this work with another relevant
trand of literature that concerns the classical theory of refine-
ents of Nash equilibria.5 These equilibrium concepts are based
n properties of stability with respect to some kind of perturba-
ions: roughly speaking, an equilibrium is stable if a game nearby
as an equilibrium nearby. In the seminal paper by Selten (1975),
he trembling hand perfect equilibrium concept selects equilib-
ia that are stable with respect to the possibility that players
elieve that their opponents can make (infinitesimal) mistakes
laying their equilibrium strategies: each equilibrium strategy
hould be close to the best reply against perturbed expectations
bout opponents’ behavior, if the perturbation is small enough.
n Geanakoplos et al. (1989) it is considered a notion of trembling
and perfect psychological equilibrium, that is constructed by
erturbing the strategies as in Selten (1975) and keeping the
ierarchies of beliefs fixed along the perturbation and equal to
hose that are correct given the unperturbed strategies. In the
erfect equilibrium concept considered in Battigalli and Dufwen-
erg (2009), strategies are perturbed in the same way but now
ierarchies of beliefs are perturbed accordingly, as equilibrium
eliefs are determined by the strategies via their consistency
ondition. In the present paper we look at the problem of stability
f psychological equilibria from another perspective as pertur-
ations concern the entire hierarchy of correct beliefs and, as
he literature on strategic ambiguity suggests, they (can) take
he form of sets of hierarchies. However, our approach has an
nderlying problem that concerns understanding in which way
mbiguous beliefs should converge to correct beliefs so that se-
uences of psychological equilibria under perturbation converge
o psychological equilibria of the unperturbed game. We give a
eneral limit theorem that tackles this issue. Then, we show how
o construct selection criteria for classical psychological equilibria
ased on ambiguous trembles of the correct belief function.
The paper is organized as follows: Section 2 presents the

odel of psychological games under ambiguity and the equilib-
ium concept. The examples mentioned above are presented in

5 See, for example, Van Damme (1989) for an extensive survey and rich list
f references.
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ection 3. Section 4 focuses on the equilibrium existence theorem.
he problem of stability of psychological Nash equilibria with
espect to ambiguous trembles is studied in Section 5. Section 6
oncludes.

. Model and equilibria

We consider a finite set of players I = {1, . . . n}, and, for each
layer i, we denote with Ai = {a1i , . . . , a

k(i)
i } the (finite) pure

strategy set of player i. As usual, the set of strategy profiles A
is the cartesian product of the strategy sets of each player, that
is A = A1 × · · · × An =

∏
i∈I Ai, and A−i = A1 × · · · × Ai−1 ×

Ai+1 × · · · × An =
∏

j̸=i Aj. Let Σi be the set of mixed strategies
of player i, where each mixed strategy σi ∈ Σi is a nonnegative
vector σi = (σi(ai))ai∈Ai ∈ Rk(i)

+ such that
∑

ai∈Ai
σi(ai) = 1. Denote

also with Σ =
∏

i∈I Σi and with Σ−i =
∏

j̸=i Σj. We use (σi, σ−i)
with σi ∈ Σi and σ−i ∈ Σ−i to represent σ ∈ Σ .

2.1. Beliefs structure

Hierarchies of beliefs
Hierarchies of beliefs are constructed as in Geanakoplos et al.

(1989). For any set S, ∆(S) denotes the set of probability measures
on S. Then, for every player i, B1

i := ∆(Σ−i) is the set of the first-
order beliefs of player i. Therefore, a first-order belief of player
i, b1i ∈ B1

i , is a probability measure over the product of the other
players’ mixed strategy sets. The set B1

i is endowed with the weak
topology and it is a separable and compact metric space because
so it is Σ−i.6

Higher-order beliefs are defined inductively as follows:

Bk
i := ∆(Σ−i × B1

−i × B2
−i × · · · × Bk−1

−i ),
k
−i :=

∏
j̸=i

Bk
j , Bk

:=

∏
i∈I

Bk
i .

Moreover, for every k, Bk
i is compact and can be metrized as a

separable metric space as done for B1
i .
7

Finally, the set of all hierarchies of beliefs8 of player i is

i =

∞∏
k=1

Bk
i .

The space Bi is a countable product of metric spaces so it
s also metrizable in such a way that the topology induced by
he corresponding metric is equivalent to the product topology.
oreover, under this topology, Bi is compact.

6 This property is a consequence of the fact that ∆(S) can be metrized as a
separable metric space if and only if S is a separable metric space. In particular,
the metric is the Prokhorov distance (see Prokhorov (1956) or theorems 6.2 and
6.5 Chapter 2 in Parthasarathy (2005)). With this metric structure, the space is
also compact (see theorem 6.4 Chapter 2 in Parthasarathy (2005)). Sometimes
it can be useful to regard B1

i as a subset of the linear topological space of finite
signed measures V 1

i , defined on the same σ -algebra. The space V 1
i is endowed

with the same weak topology and it is metrized as a separable metric space in
the same way.
7 More generally, the set of probability measures on a countable product of

compact and separable metric spaces is still compact and separable (see pag. 46,
61 in Greever (1967)). Moreover, Bk

i can be regarded as compact subset of the
linear topological space of finite signed measures V k

i , endowed with the weak
topology.
8 The notion of hierarchy of beliefs can be found in several other papers (see

for example Harsanyi (1967), Mertens and Zamir (1985), Brandenburger and
Dekel (1993) and Battigalli and Siniscalchi (1999)).
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Coherent beliefs
As pointed out in Geanakoplos et al. (1989), it is a common

practice to restrict beliefs of each player i to the subset of collec-
tively coherent beliefs Bi ⊂ Bi, that is, the set of beliefs of player i
n which he is sure that it is common knowledge that beliefs are
oherent. Precisely,

efinition 2.1. A belief bi = (b1i , b
2
i , . . .) ∈ Bi is said to be

oherent if, for every k ∈ N, the marginal probability of bk+1
i on

−i × B1
−i × B2

−i × · · · × Bk−1
−i coincides with bki , that is

marg(bk+1
i , Σ−i × B1

−i × B2
−i × · · · × Bk−1

−i ) = bki .

More precisely, the set of collectively coherent beliefs is de-
fined as follows.9

Definition 2.2. Let B̂i(0) be the set of coherent beliefs of player
i. Inductively, for every α > 0 let B̂i(α) be the set

B̂i(α) := {bi ∈ B̂i(α − 1) | ∀k ≥ 1, bk+1
i (Σ−i × Xk

−i(α − 1)) = 1},

where

Xk
j (α) := projection of B̂j(α) into

k∏
l=1

Bl
j, Xk

−i(α) :=

∏
j̸=i

Xk
j (α).

Then, the set of collectively coherent beliefs Bi is defined by

Bi =

⋂
α>0

B̂i(α).

The set Bi is compact (see Battigalli and Dufwenberg (2009)).
However, we give a self-contained proof below.

Lemma 2.3. The set of collectively coherent beliefs Bi is a compact
ubset of Bi for every i.

Proof. Given that the weak topology is Hausdorff and that
intersection of compact sets in an Hausdorff space is compact, it
is sufficient to prove that each B̂i(α) is compact, which results in
proving that B̂i(α) is closed.10

We proceed by induction on α. Consider B̂i(0) and let {bi,ν}ν∈N
B̂i(0) be a sequence converging in the product topology to a

oint b̃i. Since Bi is compact then b̃i ∈ Bi. Therefore, for every
⩾ 1, the sequence {bki,ν}ν∈N weakly converges to b̃ki ∈ Bk

i . For
very k ≥ 1, we have to check that

arg(b̃k+1
i , Σ−i × B1

−1 × · · · × Bk−1
−i ) = b̃ki . (1)

Now, for every measurable A ⊂ Σ−i × B1
−1 × · · · × Bk−1

−i , weak
convergence implies that

marg(b̃k+1
i , Σ−i × B1

−1 × · · · × Bk−1
−i )(A)

= lim
ν→∞

marg(bk+1
i,ν , Σ−i × B1

−1 × · · · × Bk−1
−i )(A) = bki (A).

Hence (1) holds and B̂i(0) is compact in Bi.
By induction, suppose that B̂i(α) is compact. Consider a se-

quence {bi,ν}ν∈N ⊂ B̂i(α + 1) converging in the product topology
to b̃i. Since B̂i(α+1) ⊂ B̂i(α) and B̂i(α) is compact, then b̃i ∈ B̂i(α).
oreover, by weak convergence we have

˜k+1
i (Σ−i × Xk

−i(α)) = lim
ν→∞

bk+1
i,ν (Σ−i × Xk

−i(α)) = 1.

Therefore, b̃i ∈ B̂i(α + 1) and B̂i(α + 1) is compact. □

In the remainder of the paper, with an abuse of notation we
will denote with Bi the set of collectively coherent beliefs or any
f its compact subsets.

9 You can find this construction also in Geanakoplos et al. (1989).
10 In fact B̂ (α) is a subset of the compact space B for every α ≥ 0.
i i
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mbiguous hierarchies
Differently from Geanakoplos et al. (1989), where the beliefs

f a player i are given by the elements bi ∈ Bi, we generalize
he model and allow beliefs to be compact subsets11 Ki ⊆ Bi. We
enote with Ki the set of all compact subsets of Bi. This choice
nables to consider the ambiguity players come up against during
he game, due to the uncertainty about other players’ actions and
eliefs. The interpretation is similar to the classical one of games
nder strategic ambiguity: the agent does not have a precise
elief bi but knows that the belief can be any bi ∈ Ki. Trivially,

if Ki is a singleton, then the belief is not ambiguous, leading the
theory back to the standard case.

Remark 2.4. We introduced ambiguity at the end of the process,
representing ambiguous beliefs as compact subsets of the product
space Bi, but there is another natural approach to represent ambi-
uity on hierarchies of beliefs as shown in Ahn (2007).12 Roughly
peaking, Ahn’s approach is to introduce ambiguity at each level
f the hierarchy of beliefs, and then to take the product. However,
hn himself proved the universality of the construction,13 i.e. our
pproach is actually equivalent to Ahn’s one when coherency of
eliefs is common knowledge.

.2. Game and equilibria

Following the model in Geanakoplos et al. (1989), each agent
is endowed with an utility function

i : Bi × Σ → R, (2)

depending not only on the mixed strategy profile but also on
agent’s beliefs: ui(bi, σ ) represents the payoff to player i if he
elieved bi and the strategy profile σ is actually played. Indeed,
ixed bi, ui(bi, ·) can be (but not necessarily) the classical expected
tility function as it is assumed in Geanakoplos et al. (1989). As
gents face set-valued beliefs Ki ∈ Ki, they have a set-valued

payoff {ui(bi, σ )}bi∈Ki for every given belief Ki ∈ Ki and strategy
rofile σ ∈ Σ . There are several ways in which agents’ ambigu-

ity might be solved depending on the agents’ attitudes towards
ambiguity.14 In this paper we focus on the so called maxmin
preferences (see Gilboa and Schmeidler, 1989): each agent i has
an utility function Ui : Ki × Σ → R defined by

Ui (Ki, σ ) = inf
bi∈Ki

ui(bi, σ ) ∀(Ki, σ ) ∈ Ki × Σ . (3)

Remark 2.5. In formula (3), we are implicitly assuming that the
definition of Ui is well posed. This is obviously satisfied if the
function ui is continuous; in that case it immediately follows that
inf ui(bi, σ ) = min ui(bi, σ ).

Now, it is possible to define the game.

Definition 2.6. A normal form psychological game under ambiguity
is defined by

G = {A1, . . . , An,U1, . . . ,Un}

where the utility functions Ui are defined as in formula (3) for
every i ∈ N .

11 The assumption of compactness of beliefs is rather standard (see for
nstance Ahn (2007)) as it keeps the problem much more tractable from the
athematical point of view. Nevertheless it seems that non-compact beliefs
ight be realistic in some specific situation.

12 Similar results about the universality of unambiguous hierarchies of beliefs
an be found in Mariotti et al. (2005).
13 Details are rather technical, we refer to Ahn’s paper and in particular to
roposition 4 and the diagram in Figure 1 therein.
14 See Gilboa and Marinacci (2013) for a survey and many references.
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In the classical models of strategic ambiguity, players have
vague beliefs about their opponents’ behavior and these beliefs
might depend on the actual strategy; for instance, this is the case
when players have partial knowledge of the strategies played by
their opponents. In particular, when ambiguity is expressed by
multiple probability distributions, each agent’s beliefs take the
form of a set-valued map (or correspondence) from the strategy
profiles set to the set of probability distributions over opponents’
strategies (see Lehrer (2012), Battigalli et al. (2015) and De Marco
and Romaniello (2012)). In this paper we generalize this approach
to hierarchies of beliefs: we assume that each agent i is endowed
ith a set-valued map γi : Σ ⇝ Bi, (that we call belief correspon-

dence of player i), where each image γi(σ ) is a not empty and
compact set, i.e.:

∅ ̸= γi(σ ) ∈ Ki ∀σ ∈ Σ .

ach subset γi(σ ) ⊆ Bi provides the set of hierarchies of beliefs
that player i perceives to be consistent given the strategy profile
σ .

Ambiguous belief correspondences provide a general tool to
handle ambiguous hierarchies of beliefs as they include several
specific models. For instance, Section 2.2.2 shows the embedding
of games under partially specified probabilities into our frame-
work. Differently, in some examples in Section 3, the specific
belief correspondences taken into account represent a set-valued
perturbation of the correct belief function used in psychological
games without ambiguity (see Section 2.2.1 for more details on
correct beliefs).

The equilibrium concept for psychological games under ambi-
guity is given below:

Definition 2.7. A psychological Nash equilibrium under ambiguity
of the game G with belief correspondences γ = (γ1, . . . , γn) is a
pair (K ∗, σ ∗), where K ∗

= (K ∗

1 , . . . , K ∗
n ) with K ∗

i ⊆ Bi and σ ∗
∈ Σ

such that, for every player i:

(i) K ∗

i = γi(σ ∗);
(ii) Ui(K ∗

i , σ ∗) ⩾ Ui(K ∗

i , (σi, σ
∗

−i)) for every σi ∈ Σi.

In this case, we can also say that (γ (σ ∗), σ ∗) is a psychological
Nash equilibrium under ambiguity.

We point out that the definition above captures, in a natural
way, the main features of the classical equilibrium notion since
condition (ii) requires that the equilibrium strategy of each player
is optimal given his beliefs and condition (i) requires that beliefs
must be consistent with the equilibrium strategy profile.

Similarly to Geanakoplos et al. (1989), psychological equilibria
under ambiguity have a characterization as Nash equilibria. Let
wi : Σ × Σ → R be the summary utility function defined by

wi(σ , τ ) = Ui(γi(σ ), τ ) = inf
bi∈γi(σ )

ui(bi, τ ) ∀(σ , τ ) ∈ Σ × Σ . (4)

hen the summary form of the game G is Ĝ := (A1, . . . , An, w1,

. . , wn). Now, it immediately follows from the definition that

emma 2.8. The profile (γ (σ ∗), σ ∗) is a psychological Nash equi-
ibrium under ambiguity if and only if, for every player i,

i(σ ∗, (σ ∗

i , σ ∗

−i)) ⩾ wi(σ ∗, (yi, σ ∗

−i)) ∀yi ∈ Σi. (5)

emark 2.9. Condition (5) above means that (γ (σ ∗), σ ∗) is a
sychological Nash equilibrium if and only if σ ∗ is a mixed
trategy equilibrium of a classical strategic form game where
tility functions are specified by the strategy profile σ ∗, that is,
he utility functions are σ ∈ Σ → wi(σ ∗, σ ) ∈ R, for every player
.



G. De Marco, M. Romaniello and A. Roviello Mathematical Social Sciences 120 (2022) 92–106

2

c
I
g

G

w
i
u
f
β
p
σ
σ
a

b

m

m

·

m

·

T
d
a

.2.1. Links with psychological games without ambiguity
Definition 2.7 is a natural generalization of the concept of psy-

hological Nash equilibrium defined in Geanakoplos et al. (1989).
ndeed, recall that in their setting a normal form psychological
ame is determined by
GPS

= {A1, . . . , An, u1, . . . , un} ,

here the utility functions ui are defined as in (2) for every
∈ I . Their notion of psychological Nash equilibrium makes

se of the concept of correct beliefs that are provided by the
unctions βi : Σ → Bi for every player i. For every σ ∈ Σ ,
i(σ ) = (b1i , b

2
i , . . . , b

k
i , . . . ) is the hierarchy of beliefs in which

layer i believes (with probability 1) that his opponents follow
−i, that each opponent j ̸= i believes that his opponents follow
−j, and so on. More precisely, denote with δ{x} the Dirac measure
t the point x. Then, it follows that:
1
i = δ{σ−i}

arg(b2i , B
1
−i) = δ{

(b1j )j̸=i

}
arg(b3i , B

2
−i) = δ{

(b2j )j̸=i

}
· · · · · · · ·

arg(bk+1
i , Bk

−i) = δ{
(bkj )j̸=i

}
· · · · · · · ·

herefore, a psychological Nash equilibrium of the game GGPS is
efined as a pair (b∗, σ ∗) where b∗

= (b∗

1, . . . , b
∗
n) with b∗

i ∈ Bi
nd σ ∗

∈ Σ such that, for every player i,

(i) b∗

i = βi(σ ∗);
(ii) ui(b∗

i , σ
∗) ⩾ ui(b∗

i , (σi, σ
∗

−i)) for every σi ∈ Σi.

We can also say that (β(σ ∗), σ ∗) is a psychological Nash equilib-
rium of the game GGPS .

The GPS summary utility function of player i, that here we
denote with wGPS

i , takes the form

wGPS
i (σ , τ ) = ui(βi(σ ), τ ) ∀(σ , τ ) ∈ Σ × Σ . (6)

Hence, (β(σ ∗), σ ∗) is a psychological Nash equilibrium if and only
if

wGPS
i (σ ∗, (σ ∗

i , σ ∗

−i)) ⩾ wGPS
i (σ ∗, (yi, σ ∗

−i)) ∀yi ∈ Σi, ∀i ∈ N. (7)

Consequently, if we replace, in Definition 2.7, the set-valued map
γi with the (single-valued) map βi as defined in Geanakoplos et al.
(1989), then we get the classical definition of psychological Nash
equilibrium.

2.2.2. Links with strategic ambiguity
With an abuse of notation, we can roughly summarize a game

under strategic ambiguity as a game in which the generic player
i has an utility function ui that depends only on his own strategy
σi and on his first-order belief b1i , that is

ui : B1
i × Σi → R.

Moreover, player i is endowed with a set-valued map Si : Σ−i ⇝
B1
i where Si(σ−i) is the set of first-order beliefs that player i

perceives to be consistent with σ−i. Assuming that the player has
maxmin preferences, his utility becomes

Ui : Σ → R, where Ui(σ ) = min
b1i ∈Si(σ−i)

ui(b1i , σi).

Then, the equilibria under strategic ambiguity can be found ap-
plying the standard Nash equilibrium concept to the game with
utilities U1, . . . ,Un.

In the particular case of partially specified probabilities (see
Lehrer (2012)), the model is defined as follows: for every player
96
i and for every j ̸= i, the set Yij represents a set of random
variables, defined over the set of j’s pure strategies Aj, whose
expectations are known to player i, i.e., given a mixed strategy
σj, player i does not know σj in its entirety but knows only
the expectations Eσj [Y ] (with respect to σj) of each Y ∈ Yij.
Therefore, player i’s beliefs about player j’s choice are given by
all the strategies τj that satisfy

Eτj [Y ] = Eσj [Y ], ∀Y ∈ Yij.

Finally, Lehrer’s partially specified probabilities are defined by the
set-valued maps Ki : Σ−i ⇝ Σ−i such that

Ki(σ−i) =
{
τ−i ∈ Σ−i

⏐⏐ Eτj [Y ] = Eσj [Y ] for all Y ∈ Yij

and for all j ̸= i
}
. (8)

If we consider the set-valued maps Si : Σ−i ⇝ B1
i defined as

Si(σ−i) =

{
δ{τ−i}

| τ−i ∈ Ki(σ−i)
}

, (9)

with δ{x} denoting the Dirac measure at the point x, we obtain the
embedding of the Lehrer’s model into the GPS’ model.15 Conse-
quently, it could be possible to obtain a Nash equilibrium under
strategic ambiguity described by set-valued maps S1, . . . , Sn as a
psychological Nash equilibrium under ambiguity, considering the
beliefs correspondence γi : Σ ⇝ Bi, for all i, defined by

γi(σ ) =
{
bi ∈ Bi | b1i ∈ Si(σ−i)

}
. (10)

It is worth noting that in the γi defined above there are no
constraints on higher-order beliefs since in the classical problems
of strategic ambiguity these beliefs play no role. On the contrary,
in psychological game theory higher-order beliefs enter the do-
main of the utility functions and may be affected by strategic
ambiguity. The question is which consistency conditions should
be imposed on higher-order beliefs in this case. In absence of
further sources of ambiguity, one can consider the case in which
higher-order beliefs are correct, conditionally on first-order be-
liefs. For example, if utility function depend just on first-order
and second-order beliefs and strategic ambiguity is described by
the set-valued maps S1, . . . , Sn in (9), then correct beliefs should
be given by

γi(σ ) =

{
bi ∈ Bi | b1i ∈ Si(σ−i), marg(b2i , B

1
−i) = δ{

(b1j )j̸=i

}
with b1j ∈ Sj(σ−j) for all j ̸= i

}
. (11)

In an iterative way it follows the general case in which utilities
depend on higher-order beliefs.

3. Examples

In this section we provide different examples that show some
possible effects of ambiguity on psychological equilibria. In the
first four examples the idea is to consider ambiguity as a per-
turbation. More precisely, we look at belief correspondences that
provide a neighborhood of the correct beliefs β(σ ) for every σ
and study the corresponding psychological equilibria. The last
example looks at a different kind of ambiguous beliefs arising
from partially specified probabilities.

In Example 3.1 we look at the original Bravery Game presented
in Geanakoplos et al. (1989) and show that when beliefs are

15 In Lehrer (2012), first-order beliefs are intended as probability distributions
over pure strategies, while in GPS’ approach, which we aim to generalize, first-
order beliefs are given by probability distributions over mixed strategies. The
two approaches can be reconciled considering the Dirac probability measures
concentrated to the single strategy profiles.
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erturbed by a small amount of ambiguity, the two equilibria
n pure strategies (that we find without ambiguity) survive to
mbiguity, while the unique equilibrium in completely mixed
trategies is slightly perturbed but the perturbation converges to
ero as ambiguity converges to zero. As ambiguity increases, the
et of equilibria shrinks progressively to two equilibria and then
o one equilibrium when ambiguity is sufficiently large.

Similar results are obtained in Example 3.2 where the Bravery
ame is slightly modified in the payoffs but the main behavioral
ssumptions on players remain substantially unaltered. In this
ase, all the three equilibria that we get in case of no ambiguity
urvive to ambiguity when the perturbation is sufficiently small.
lso in this case, the set of equilibria shrinks progressively to two
quilibria and then to one equilibrium when ambiguity increases.
A further variation of the Bravery Game is given in Exam-

le 3.3. Here the behavioral assumption on players is rather
hanged (namely in John’s preferences) so that the story behind
he game is different. We get a unique psychological equilibrium
n the unambiguous case. In case of ambiguity, we get a unique
quilibrium that differs from the unique equilibrium in the un-
mbiguous case; however, when ambiguity converges to zero, the
quilibrium of the ambiguous game converges to the equilibrium
f the unambiguous one.
These examples show that the set of equilibria in presence of

mbiguity can be disjoint from the set of equilibria in the unam-
iguous case, or, ambiguity plays the role of equilibrium selector.
his seems a bit surprising as, in classical games with material
ayoffs, the presence of strategic ambiguity often enlarges the
et of equilibria. On the other hand, in the examples previously
uoted, the set of equilibria is refined only when the amount of
mbiguity is large enough. In contrast, Example 3.4 shows that
ven just an infinitesimal amount of ambiguity may work as an
quilibrium selector. More precisely, we consider a variation of
he Confidence Game presented in Geanakoplos et al. (1989) and it
urns out that the psychological game without ambiguity has two
quilibria while an infinitesimal amount of ambiguity destroys
ne (and only one) of them.
The last Example 3.5 shows a completely different effect of

mbiguity as the set of equilibria is enlarged by an entire interval
hen ambiguity is introduced. Moreover, the structure of ambi-
uity is different as it is built upon partially specified probabilities
t the level of first-order beliefs, while, higher-order beliefs are
orrect conditionally on first-order ones.

xample 3.1. We consider the Bravery Game presented in figure
in Geanakoplos et al. (1989) in order to illustrate the effects of

an infinitesimal amount of) ambiguity on the set of equilibria.
or the sake of completeness we recall the story as presented
riginally: Player 1 (John) must publicly take a decision, and is
oncerned about what friend Player 2 (Anne) will think about
im. He can take a bold decision, which exposes him to the
ossibility of danger, or a timid decision, so John’s pure strategy
pace is A1 = {Bold, Timid}. Anne is inactive (that is, Anne does
ot choose any action in the game). John chooses Bold with

probability p and Timid with probability 1−p. His payoff depends
not only on what he does but also on what he believes Anne
thinks of his temper (that is, on what he believes she thinks he
will do). In this game, it is considered the case in which John cares
only about the expectation q̃ of his belief about the expectation
q of Anne’s first-order belief. Moreover, John prefers to be timid
rather than bold, unless he thinks that Anne expects him to be
bold, in which case he prefers not to disappoint her. Anne prefers
to think of her friend as bold; in addition, it is good for her if he
is bold. The game and payoffs are described below:
97
John

3(1−q̃), 1−q

Timid1 − p

2−q̃, 2(1+q)

Bold
p

Note that, as Anne is a non-active player, the mixed strategy
profile is identified just by John’s mixed strategy p. With an abuse
of notation, in this example the correct belief functions simply
map the strategy p to the expectations of correct beliefs: more
precisely, β2(p) = p tells that the expectation of Anne’s first-
order correct beliefs about John’s strategy p must be equal to p
and β1(p) = p tells that the expectation of John’s correct second-
order beliefs about Anne’s expectation of correct first-order belief
about John’s strategy p must be equal to p as well.

Now, the expected utility of John depends only on q̃ and p and
it takes the following form:

u1(q̃, p) = p(2 − q̃) + 3(1 − p)(1 − q̃) = p(2q̃ − 1) + 3(1 − q̃).

Firstly, let us look at psychological Nash equilibria (without am-
biguity). If we replace in u1 the generic q̃ with the correct belief
β1(p), we get the function wGPS

1 . More precisely, for every pair of
John’s mixed strategies (p, y) we get

wGPS
1 (p, y) = u1(β1(p), y)

= y(2p − 1) + 3(1 − p) ∀p ∈ [0, 1] and ∀y ∈ [0, 1].

ecall that p gives a psychological Nash equilibrium if and only if
GPS
1 (p, p) ⩾ wGPS

1 (p, y) ∀y ∈ [0, 1].

ow, we immediately get that
GPS
1 (p, 0) > wGPS

1 (p, y) ∀y ∈]0, 1], if p < 1/2;
wGPS

1 (p, 1) > wGPS
1 (p, y) ∀y ∈ [0, 1[, if p > 1/2;

wGPS
1 (p, y) = 3/2 ∀y ∈]0, 1], if p = 1/2.

Consequently, this game has three psychological Nash equilib-
ria:

– p = 1 = q̃ = q: John chooses to be Bold;
– p = 0 = q̃ = q: John chooses to be Timid;
– p = 1/2 = q̃ = q: John randomizes with probability

p = 1/2.

Now, we introduce a specific form of ambiguous beliefs in the
game. Suppose that John’s belief is not a singleton anymore, but
it is an interval: γ ε

1 (p) = [p − ε, p + ε] ∩ [0, 1] with ε > 0 is the
set-valued map that describes John’s (second-order) beliefs.

In order to compute John’s summary utility function, we firstly
compute, for every pair of John’s mixed strategies (p, y) the fol-
lowing:

argmin
q̃∈γ ε

1 (p)
u1(q̃, y) =

{
q̃′

∈ [0, 1]
⏐⏐⏐⏐ u1(q̃′, y) = min

q̃∈γ ε
1 (p)

u1(q̃, y)
}

.

We get

argmin
q̃∈γ ε

1 (p)
u1(q̃, y) = argmin

q̃∈[p−ε,p+ε]∩[0,1]
[q̃(2y − 3) + 3 − y]
= min {p + ε, 1} , ∀ y ∈ [0, 1].
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Denote with p+
= min {p + ε, 1}. Therefore, for every pair of

ohn’s mixed strategies (p, y),

1(p, y) = U1(γ ε
1 (p), y) = min

q̃∈γ ε
1 (p)

[q̃(2y − 3) + 3 − y]

= p+(2y − 3) + 3 − y = y(2p+
− 1) + 3(1 − p+).

Recall that p gives a psychological Nash equilibrium under
mbiguity if and only if

1(p, p) ⩾ w1(p, y) ∀y ∈ [0, 1].

Now, we get that

1(p, 0) > w1(p, y) ∀y ∈]0, 1], if p+ < 1/2;

1(p, 1) > w1(p, y) ∀y ∈ [0, 1[, if p+ > 1/2;
w1(p, y) = 3/2 ∀y ∈]0, 1], if p+

= 1/2.

ince p+
= 1/2 ⇐⇒ p = (1 − 2ε)/2 then

1(p, 0) > w1(p, y) ∀y ∈]0, 1], if p < (1 − 2ε)/2; (12)

1(p, 1) > w1(p, y) ∀y ∈ [0, 1[, if p > (1 − 2ε)/2; (13)
w1(p, y) = 3/2 ∀y ∈]0, 1], if p = (1 − 2ε)/2. (14)

ow, (12) can give only the equilibrium corresponding to p = 0,
13) can give only the equilibrium corresponding to p = 1 and
inally (14) can give only the equilibrium corresponding to p =

1 − 2ε)/2. The existence of these equilibria depends on ε.
More precisely, if 0 < ε < 1/2, we get three equilibria. The

quilibrium corresponding to p = 0 and the one corresponding
o p = 1 are those surviving to the presence of ambiguity. The
third equilibrium, corresponding to p = (1 − 2ε)/2, converges to

= 1/2 as ambiguity (that is ε) converges to 0.
If ε = 1/2, we get only the equilibria p = 0 and p = 1. For

> 1/2, there is only one equilibrium corresponding to p = 1.
ummarizing, when ambiguity is sufficiently small, the unique
ffect is a small perturbation of the equilibrium in purely mixed
trategies. As ambiguity increases, the set of equilibria shrinks to
unique equilibrium p = 1.

xample 3.2. We consider a slight variation of the Bravery game
resented above. In this new example only the payoffs of John are
slightly) modified but, as in the previous example, John prefers
o be timid rather than bold, unless he thinks that Anne expects
im to be bold. The game and payoffs are described below:

John

3−q̃, 1−q

Timid1 − p

2+2q̃, 2(1+q)

Bold
p

The expected utility of John16 takes the following form for every
elief q̃ and mixed strategy p:

1(q̃, p) = p(2 + 2q̃) + (1 − p)(3 − q̃) = q̃(3p − 1) + 3 − p.

16 Again, Anne’s expected utility does not play any role in equilibrium so it
s superfluous.
98
The correct belief functions are defined as in the previous
example, that is β1(p) = p and β2(p) = p. Therefore John’s GPS
summary utility function wGPS

1 is given, for every pair of John’s
mixed strategies (p, y), by

wGPS
1 (p, y) = u1(β1(p), y) = p(3y − 1) + 3 − y

= y(3p − 1) + 3 − p ∀p ∈ [0, 1] and ∀y ∈ [0, 1].

Recall that p gives a psychological Nash equilibrium if and only if

wGPS
1 (p, p) ⩾ wGPS

1 (p, y) ∀y ∈ [0, 1].

Now, we immediately get that

wGPS
1 (p, 0) > wGPS

1 (p, y) ∀y ∈]0, 1], if p < 1/3;
wGPS

1 (p, 1) > wGPS
1 (p, y) ∀y ∈ [0, 1[, if p > 1/3;

wGPS
1 (p, y) = 8/3 ∀y ∈]0, 1], if p = 1/3.

This game has three psychological Nash equilibria:

– p = 1 = q̃ = q: John chooses to be Bold;
– p = 0 = q̃ = q: John chooses to be Timid;
– p = 1/3 = q̃ = q: John randomizes with probability

p = 1/3.

Now, we consider the same ambiguity of the previous exam-
ple: γ ε

1 (p) = [p − ε, p + ε] ∩ [0, 1] with ε > 0 is the set-valued
function that describes John’s (second-order) beliefs. We get

argmin
q̃∈γ ε

1 (p)
u1(q̃, y) =

{
q̃′

∈ [0, 1]
⏐⏐⏐⏐ u1(q̃′, y) = min

q̃∈γ ε
1 (p)

u1(q̃, y)
}

.

Then
argmin
q̃∈γ ε

1 (p)
u1(q̃, y) = argmin

q̃∈[p−ε,p+ε]∩[0,1]
[q̃(3y − 1) + 3 − y]

=

⎧⎨⎩
min {p + ε, 1} if y ∈ [0, 1/3[,
γ ε
1 (p) if y = 1/3,

max {p − ε, 0} if y ∈ ]1/3, 1].

Denote with p−
= max {p − ε, 0} and p+

= min {p + ε, 1}.
Therefore, for every pair of John’s mixed strategies (p, y), we
have:
w1(p, y) = U1(γ ε

1 (p), y) = min
q̃∈γ ε

1 (p)
[q̃(3y − 1) + 3 − y] =⎧⎨⎩

p+(3y − 1) + 3 − y = y(3p+
− 1) + 3 − p+ if y ∈ [0, 1/3[,

3 − y =
8
3 if y = 1/3,

p−(3y − 1) + 3 − y = y(3p−
− 1) + 3 − p− if y ∈]1/3, 1].

ecall that p gives a psychological Nash equilibrium under ambi-
uity if and only if

1(p, p) ⩾ w1(p, y) ∀y ∈ [0, 1].

Now, three cases are possible:

(i) If p is such that 1/3 < p− < p+, (that is p > 1/3 + ε),
then w1(p, y) is strictly increasing in [0, 1] and attains its
maximum at y = 1. So, in this case, there is only one
equilibrium corresponding to p = 1.

(ii) If p is such that p− < p+ < 1/3, (that is p < 1/3 − ε),
then w1(p, y) is strictly decreasing in [0, 1] and attains its
maximum at y = 0. So, in this case, the unique equilibrium
corresponds to p = 0.

(iii) If p is such that p− ⩽ 1/3 ⩽ p+, (that is p ∈ [1/3 − ε, 1/3 +

ε]), then w1(p, y) is strictly increasing in [0, 1/3] and strictly
decreasing in [1/3, 1]. Therefore y = 1/3 is the maximum
point and there is only one equilibrium corresponding to
p = 1/3.
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o, if 0 < ε < 1/3, we get again three equilibria. More precisely,
ll the three psychological equilibria corresponding to p = 0,
= 1 and p = 1/3 survive to the presence of ambiguity. If

/3 ⩽ ε < 2/3 only p = 1 and p = 1/3 survive while
= 0 is destroyed by the presence of ambiguity. If ε ⩾ 2/3,

then only the equilibrium corresponding to p = 1/3 survives to
mbiguity. Note in particular that for ε ⩾ 1, the set-valued map

that describes John’s (second-order) beliefs is γ ε
1 (p) = [0, 1] for

every p, representing an extreme form of ambiguity that can be
interpreted as full ignorance.

Summarizing, when ambiguity is sufficiently small, there are
no effects on equilibria. As shown by the previous example, as
ambiguity increases, the set of equilibria shrinks progressively
to two equilibria and then to one equilibrium when ambiguity
is sufficiently large. The unique equilibrium in this case is in
completely mixed strategies.

Example 3.3. We consider another variation of the Bravery
Game. Everything is unaltered except for John’s payoff. Now, we
consider the case in which John prefers to be bold rather than
timid, unless he believes that is more likely that Anne expects
him to be bold.

John

2+3q̃, 1−q

Timid1 − p

3+q̃, 2(1+q)

Bold
p

Again, Anne’s expected utility does not play any role. For every
belief q̃ and mixed strategy p, the expected utility of John is:

1(q̃, p) = p(3 + q̃) + (1 − p)(2 + 3q̃) = p(1 − 2q̃) + 3q̃ + 2.

he correct belief functions are defined as in the previous ex-
mples, that is β1(p) = p and β2(p) = p. Firstly, let us look at
sychological Nash equilibria (without ambiguity). Recall that p
ives a psychological Nash equilibrium if and only if
GPS
1 (p, p) ⩾ wGPS

1 (p, y) ∀y ∈ [0, 1],

here
GPS
1 (p, y) = u1(β1(p), y) = y(1 − 2p) + 3p + 2.

ow, we immediately get that

wGPS
1 (p, 1) > wGPS

1 (p, p) ∀p < 1/2,
wGPS

1 (p, 0) > wGPS
1 (p, p) ∀p > 1/2,

wGPS
1 (p, y) = 7/2 ∀y ∈ [0, 1] if p = 1/2.

Consequently, the unique psychological Nash equilibrium cor-
responds to p = 1/2.

We introduce ambiguity as done in the previous examples:
γ ε
1 (p) = [p − ε, p + ε] ∩ [0, 1], with ε > 0, is the set-valued

map that describes John’s (second-order) beliefs. For every pair
of John’s mixed strategies (p, y) it follows that

argmin
q̃∈γ ε

1 (p)
u1(q̃, y) = argmin

q̃∈[p−ε,p+ε]∩[0,1]
[q̃(3 − 2y) + y + 2]
= max{p − ε, 0}.
99
enote again with p−
= max{p − ε, 0}. Therefore, for every pair

f John’s mixed strategies (p, y) we have that

1(p, y) = U(γ ε
1 (p), y) = min

q̃∈γ ε
1 (p)

[q̃(3 − 2y) + y + 2]

= p−(3 − 2y) + y + 2 = y(1 − 2p−) + 3p−
+ 2.

Now, three cases are possible:

(i) If p is such that p− < 1/2 (that is p < 1/2+ε), then w1(p, y)
is strictly increasing in [0, 1] and attains its maximum at
y = 1.

(ii) If p is such that p− > 1/2 (that is p > 1/2+ε), then w1(p, y)
is strictly decreasing in [0, 1] and attains its maximum at
y = 0.

(iii) If p is such that p−
= 1/2, (that is p = 1/2 + ε), then

w1(p, y) = 3p−
+ 2 ∀y ∈ [0, 1].

Now, in case 0 < ε ⩽ 1/2, condition (iii) gives that p = 1/2+ε is
an equilibrium, while condition (i), (ii) imply that there are no
other equilibria. In case ε > 1

2 , it follows that p− < 1/2 for
every p ∈ [0, 1], then condition (i) gives that p = 1 is the unique
equilibrium.

Summarizing, the example shows that ambiguity produces a
different equilibrium with respect to the non-ambiguous case.
When ambiguity is sufficiently small, the equilibrium under am-
biguity is close to the non-ambiguous one. As ambiguity in-
creases, the equilibrium under ambiguity converges to a strategy
profile that is not an equilibrium of the game without ambiguity.

Example 3.4. In the games presented above, the presence of
ambiguity perturbs the set of equilibria and possibly refines it in
case the amount of ambiguity is sufficiently large. The example
presented below shows instead that even an infinitesimal amount
of ambiguity may alter significantly the set of equilibria and, in
particular, work as an equilibrium selector. In order to achieve
this goal we consider a slight variation (in few payoffs) of the
Confidence Game in figure 3 of Geanakoplos et al. (1989). For
the sake of completeness, we recall the story behind this game
(explaining the few differences from the original version): John
has invited a woman (Anne) for a date, but he is not sure she
will accept. He cannot tell whether Anne is Player 2, who likes
him, or Player 3, who does not (nature chooses the woman’s
identity, with equal probabilities). Player 3 will not accept in any
case. Even if Player 2 likes him, it is not certain that she will
accept. Player 2 will go out with him only if she thinks he is fully
confident of himself, that is, if she believes that John’s probability
assessment of being accepted is equal to 1. Here there is the main
difference with the original Confidence Game in Geanakoplos
et al. (1989) where Player 2 will go out with him if she thinks
John is sufficiently confident of himself, meaning that she believes
that his probability assessment is greater than a given threshold
level smaller than 1. The pure strategy set of Player 2 is A2 =

Accept, Reject} and the pure strategy set of Player 3 is A3 =

Accept, Reject}. We denote with p the mixed strategy of Player
, where, with an abuse of notation, p is the probability of Accept
nd 1 − p is the probability of Reject . Similarly r is the mixed
trategy of Player 3; again, with an abuse of notation, r is the
robability of Accept and 1 − r is the probability of Reject . It is
ssumed that Player 3’s utility does not depend on beliefs while
layer 2’s utility depends on her second-order beliefs. Moreover,
s done in the previous examples, it is considered the case in
hich only the expectations of beliefs play a role in Player 2’s
tility function. We denote with q ∈ [0, 1] the expectation of
ohn’s first-order beliefs about Player 2’s mixed strategy p and
q̃ ∈ [0, 1] the expectation of Player 2’s second-order beliefs
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bout the expectation q of John’s first-order beliefs. The game is
epresented below.

Nature

0,2

Reject
1 − r

0,0

Accep
t

r

3

1/2

2,0

1 − p
Reject

2q̃, 0

Accep
t

p
2

1/2

Differently from the original Confidence Game we assume that
he psychological utility of Player 2 is not affected by what Player
believes John believes Player 3 will play.17 Moreover, for the

ake of simplicity we do not report John’s utility as he is inactive.
o, we can focus on the following normal form game between
layer 2 and Player 3:

Player 2 Player 3
Accept Reject

Accept q̃, 0 q̃, 1
Reject 1,0 1,1

A mixed strategy profile is identified by the pair (p, r). Also in
his example, the correct belief functions simply map the strategy
rofiles (p, r) to correct expectation of beliefs; more precisely,
1(p, r) = p tells that the expectation of John’s correct first-

order beliefs about Player 2’s strategy p must be equal to p
and β2(p, r) = p tells that the expectation of Player 2’s correct
second-order beliefs about John’s first-order belief about Player
2’s strategy p must be equal to p as well.

A psychological Nash equilibrium is unequivocally determined
by a mixed strategy profile (p∗, r∗) such that

wGPS
2 ((p∗, r∗), (p∗, r∗)) ⩾ wGPS

2 ((p∗, r∗), (y, r∗)) ∀y ∈ [0, 1],
GPS
3 ((p∗, r∗), (p∗, r∗)) ⩾ wGPS

3 ((p∗, r∗), (p∗, y)) ∀y ∈ [0, 1].

ow, it is clear that strategy Reject is strictly dominant for Player
. So, in equilibrium r∗ must be equal to 0. Hence, we need only
o find Player 2’s best reply, given that r∗

= 0. In this case, the
xpected utility for Player 2 playing y and having second-order

belief q̃ is

u2(q̃, y) = y(q̃ − 1) + 1.

So, if q̃ < 1 then Player 2’s best reply is y = 0. If q̃ = 1, then
every y ∈ [0, 1] is a best reply. It follows that

wGPS
1 ((0, 0), (0, 0)) ⩾ wGPS

1 ((0, 0), (y, 0)) ∀y ∈ [0, 1],
GPS
1 ((1, 0), (1, 0)) = wGPS

1 ((1, 0), (y, 0)) ∀y ∈ [0, 1].

17 However, these beliefs do not affect equilibria even in the Confidence Game
f Geanakoplos et al. (1989).
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Therefore the strategy profiles (p, r) = (0, 0) and (p, r) = (1, 0)
re psychological Nash equilibria. Note that there are no other
sychological Nash equilibria of the form (p, 0) with p ∈ ]0, 1[. In

fact,

wGPS
1 ((p, 0), (p, 0)) < wGPS

1 ((p, 0), (0, 0)) ∀p ∈]0, 1[,

and so the strategy profiles (p, 0) are not psychological Nash
equilibria for every p ∈ ]0, 1[.

Now, suppose that Player 2’s second-order belief is given by
the interval γ ε

2 (p) = [p − ε, p + ε] ∩ [0, 1] with ε > 0. For
the sake of simplicity, we assume also that ε is small enough.
Ambiguity does not affect Player 3’s utility so that r = 0 is again
a strictly dominant strategy for her. It follows again that every
psychological equilibrium under ambiguity is given by a pair (p, r)
with r = 0. So we only have to find Player 2’s best reply to r = 0.
Again, given that r = 0, the expected utility for Player 2 playing
y and having second-order belief q̃ is

u2(q̃, y) = y(q̃ − 1) + 1.

For every pair of Player 2’s mixed strategy p and y, we get

argmin
q̃∈γ ε

2 (p)
u2(q̃, y) = argmin

q̃∈[p−ε,p+ε]∩[0,1]
[q̃y + 1 − y]

=

{
γ ε
2 (p) if y = 0,

max {p − ε, 0} if y ∈]0, 1].

Denote with p−
= max {p − ε, 0}. Therefore, given the two

strategy profiles (p, 0) and (y, 0),

w2((p, 0), (y, 0)) = U2(γ ε
2 (p), y) =

min
q̃∈γ ε

2 (p)
[q̃y + 1 − y]

=

{
1 if y = 0,
p−y + 1 − y = y(p−

− 1) + 1 if y ∈]0, 1].

Now, since

p− ⩽ 1 − ε H⇒ p−
− 1 ⩽ −ε < 0,

then U2(γ ε
2 (p), y) is strictly decreasing with respect to y in the

interval [0, 1]. It follows that

w2((0, 0), (0, 0)) ⩾ w2((0, 0), (y, 0)) ∀y ∈ [0, 1],

which implies that p = 0 is a best reply to r = 0 given that beliefs
are consistent with p = 0. Hence (p, r) = (0, 0) is a psychological
Nash equilibrium under ambiguity. Moreover,

w2((p, 0), (p, 0)) < w2((p, 0), (0, 0)) ∀p ∈]0, 1],

therefore every p > 0 cannot be an equilibrium strategy when
r = 0. Hence, the unique psychological Nash equilibrium under
ambiguity is (p, r) = (0, 0).

Summarizing, the example shows that even only an infinites-
imal amount of ambiguity works as an equilibrium selector as it
destroys the psychological equilibrium (p, r) = (1, 0) and selects
only the equilibrium (p, r) = (0, 0).

Example 3.5. This example illustrates a two-player psychological
game in which one of the players (John) has ambiguous first-
order beliefs that are described by partially specified probabilities.
As explained is Section 2.2.2, we consider the case in which the
other player (Anne) has correct second order beliefs but then, as
a natural consequence, Anne has set-valued second-order beliefs.

There are two players: the pure strategy set of Player 1 (say
John) is A1 = {U, D} and the pure strategy set of Player 2 (say
Anne) is A2 = {L, C, R}. We denote with p the mixed strategy
of John, where, with an abuse of notation, p is the probability

of U and 1 − p is the probability of D. So we can identify the
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et of mixed strategies of John as Σ1 = {p | p ∈ [0, 1]}. Similarly
= (r1, r2, r3) denotes the mixed strategy of Anne: r1 is the

robability of L, r2 is the probability of C , r3 is the probability
f R and r1 + r2 + r3 = 1. As r3 = 1 − r1 − r2, with an abuse
f notation we identify the set of mixed strategies of Anne as
2 = {(r1, r2) | r1, r2 ⩾ 0, r1 + r2 ⩽ 1}.
John’s utility is not affected by beliefs while Anne’s utility

epends on her second-order beliefs. Moreover, as done in the
revious examples, it is considered the case in which only the
xpectations of the beliefs play a role. We denote with q =

q1, q2, q3) the expectations of John’s first-order beliefs about
nne’s mixed strategy r = (r1, r2, r3), that is q1 is the expectation
f r1, q2 is the expectation of r2, q3 is the expectation of r3.
onsequently q1 + q2 + q3 = 1. Let q̃ = (q̃1, q̃2, q̃3) denote the
xpectations of Anne’s second-order beliefs about the expectation
of John’s first-order beliefs, that is q̃1 is the expectation of

1, q̃2 is the expectation of q2, q̃3 is the expectation of q3 and
onsequently q̃1 + q̃2 + q̃3 = 1. The normal form game is the
ollowing:

Player 1 Player 2
L C R

U 0,0 1, 1 + q̃2 0,1
D 1,0 0,0 0,1

A mixed strategy profile is identified by the pair (p, r). Since
nly the expectations of the second component of Anne’s mixed
trategy play a role, then, with an abuse of notation, the (sim-
lified) correct belief functions map the strategy profiles (p, r) to
orrect expectation of this component. More precisely, β1(p, r) =

2 tells that the expectation of John’s correct first-order beliefs
bout Anne’s component r2 must be equal to r2 and β2(p, r) =

2 tells that the expectation of Anne’s correct second-order be-
iefs about John’s correct first-order belief about Anne’s strategy
omponent r2 must be equal to r2 as well.
A psychological Nash equilibrium is unequivocally determined

y a mixed strategy profile (p∗, r∗) such that
GPS
1 ((p∗, r∗), (p∗, r∗)) ⩾ wGPS

1 ((p∗, r∗), (y, r∗)) ∀y ∈ Σ1,
GPS
2 ((p∗, r∗), (p∗, r∗)) ⩾ wGPS

2 ((p∗, r∗), (p∗, y)) ∀y ∈ Σ2.

Firstly, let us analyze Anne’s utility. Given any mixed strategy
of John, the expected utility of Anne for every second-order
elief q̃2 and mixed strategy y, is

2(q̃2, (p, (y1, y2))) = py2(1 + q̃2) + 1 − y1 − y2.

y definition we get
GPS
2 ((p, r), (p, r)) = u2(r2, (p, (r1, r2))) and
GPS
2 ((p, r), (p, y)) = u2(r2, (p, (y1, y2))).

nne’s best reply correspondence for every strategy p of John is
iven by:

RGPS
2 (p) =

{
(r1, r2) |wGPS

2 ((p, r), (p, r))

⩾ wGPS
2 ((p, r), (p, y)) ∀(y1, y2) ∈ Σ2

}
.

he strategy L is strictly dominated for Anne, so the first compo-
ent of the best reply must be equal to 0, that is r1 = 0. Therefore,
e have to maximize u2(q̃2, (p, (0, y2))), which has the form:

2(q̃2, (p, (0, y2))) = py2(1+ q̃2)+ 1− y2 = y2[p(1+ q̃2)− 1] + 1.

e need to distinguish three cases:

– If p(1 + q̃2) − 1 > 0, then u2 is maximized only for y2 = 1.
Being the corresponding correct belief q̃2 = 1, then p(1 +

1)−1 > 0 must be satisfied. Hence, when p > 1/2, it follows
that
wGPS

2 ((p, (0, 1)), (p, (0, 1))) ⩾ wGPS
2 ((p, (0, 1)), (p, (y1, y2)))
∀(y1, y2) ∈ Σ2.
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– If p(1 + q̃2) − 1 < 0, then u2 is maximized only for y2 = 0.
Being the corresponding correct belief q̃2 = 0, then p−1 < 0
must be satisfied. Hence, when p < 1, it follows that

wGPS
2 ((p, (0, 0)), (p, (0, 0))) ⩾ wGPS

2 ((p, (0, 0)), (p, (y1, y2)))
∀(y1, y2) ∈ Σ2.

– If p(1 + q̃2) − 1 = 0, then every y2 maximizes u2 but
p(1 + q̃2) − 1 = 0 implies that

q̃2 =
1 − p
p

.

Since
1 − p
p

∈ [0, 1] ⇐⇒ p ∈ [1/2, 1],

then for every p ∈ [1/2, 1], it follows that

wGPS
2

((
p,

(
0,

1 − p
p

))
,

(
p,

(
0,

1 − p
p

)))
⩾ wGPS

2

((
p,

(
0,

1 − p
p

))
, (p, (y1, y2))

)
for every (y1, y2) ∈ Σ2.

Summarizing, the best reply correspondence is:

BRGPS
2 (p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(r1, r2) ∈ Σ2

⏐⏐⏐⏐⏐⏐⏐⏐⏐
(r1, r2) = (0, 0) if p ∈ [0, 1/2[
(r1, r2) ∈ {(0, 0)} ∪ {(0, 1)} if p = 1/2
(r1, r2) ∈ {(0, 0)} ∪ {(0, 1)}

∪

{(
0, 1−p

p

)}
if p ∈]1/2, 1]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Now, let us analyze John’s utility. We know that in equilibrium
1 = 0 so we look only at the best reply to Anne’s mixed strategies
f the form (0, r2) for every r2 ∈ [0, 1]. John’s utility function is
he classical expected utility without any psychological term, so
he best reply can be immediately computed:

RGPS
1 (0, r2) =

{
p ∈ [0, 1]

⏐⏐⏐⏐p ∈ [0, 1] if r2 = 0
p = 1 if r2 ∈]0, 1]

}
. (15)

he set of Psychological Nash Equilibria is the set of strategy
rofiles (p, (r1, r2)) belonging to the set
GPS

= {(p, (0, 0)) | p ∈ [0, 1]} ∪ {(1, (0, 1))}.

Now we introduce ambiguity and assume that John has par-
ially specified probabilities about Anne’s strategy choice. The
orrespondence K1 defined in (8) takes the following form

1(r1, r2) = {(y1, y2) ∈ Σ2 | y1 + y2 = r1 + r2}

nd represents the situation in which John does not know cor-
ectly the strategy of Anne but knows the probability that she
ill play L or C. We assume that first and second-order beliefs are
iven by set-valued maps as defined in (11). However, only the
xpectations of Anne’s correct second-order beliefs play a role;
herefore with an abuse of notation, Anne’s beliefs are given by

2(p, (r1, r2)) =
{
(q̃1, q̃2) | q̃1, q̃2 ⩾ 0, q̃1 + q̃2 = r1 + r2

}
,

eaning that Anne expects that John expects that she will play
or C with probability r1 + r2. For p, h ∈ Σ1, r = (r1, r2), y =

y1, y2) ∈ Σ2 we get:

argmin
(q̃1,q̃2)∈γ2(p,(r1,r2))

u2(q̃2, (h, (y1, y2))) =

argmin
(q̃1,q̃2)∈γ2(p,(r1,r2))

[
hy2(1 + q̃2) + 1 − y1 − y2

]
=

{
γ2(p, (r1, r2)) if hy2 = 0,

q̃2 = 0 if hy2 > 0.
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Therefore
((p, r), (h, y)) = U2(γ2(p, (r1, r2)), (h, (y1, y2))) =

min
(q̃1,q̃2)∈γ2(p,(r1,r2))

[
hy2(1 + q̃2) + 1 − y1 − y2

]
=

{
1 − y1 − y2 if h = 0
y2[h − 1] + 1 − y1 if h > 0.

Let BR2 be the best reply correspondence of Anne in the ambigu-
ous game:

BR2(p) = {(r1, r2) | w((p, r), (p, r)) ⩾ w((p, r), (p, y))
∀(y1, y2) ∈ Σ2} .

It follows that

R2(p) =

{
(r1, r2) ∈ Σ2

⏐⏐⏐⏐(r1, r2) = (0, 0) if p ∈ [0, 1[
(r1, r2) ∈ {(0, r2) | r2 ∈ [0, 1]} if p = 1

}
.

The best reply of John is the same as in (15).
Therefore the set of Psychological Nash Equilibria under am-

biguity is the set of strategy profiles (p, (r1, r2)) belonging to the
set

E = {(p, (0, 0)) | p ∈ [0, 1]} ∪ {(1, (0, r2)) | r2 ∈ [0, 1]} .

It can be immediately noticed that the set of equilibria in the am-
biguous game results enlarged by the interval {(1, (0, r2)) | r2 ∈

[0, 1]}.

. Equilibrium existence

This section is devoted to the issue of existence of psycholog-
cal Nash equilibrium under ambiguity. To this purpose we need
o recall some tools on set-valued maps.18

reliminaries about correspondences
Consider a set-valued map Γ : X ⇝ Y between two metric

paces X and Y , meaning that Γ (x) ⊆ Y for every x ∈ X .
Then, the upper limit of Γ in x ∈ X is defined by

Lim sup
x→x

Γ (x) =

{
y ∈ Y

⏐⏐⏐⏐ lim inf
x→x

d(y, Γ (x)) = 0
}
,

here d(y, Γ (x)) denotes the distance (in the metric space Y )
between y and the set Γ (x), while the lower limit of Γ in x ∈ X
is defined by

Lim inf
x→x

Γ (x) =

{
y ∈ Y

⏐⏐⏐⏐ limx→x
d(y, Γ (x)) = 0

}
.

efinition 4.1. The set-valued map Γ : X ⇝ Y is said to be:

(i) lower semicontinuous19 at x ∈ X if Γ (x) ⊆ Lim infx→xΓ (x),
meaning that for any y ∈ Γ (x) and for any sequence (xν)ν ⊂

X converging to x, there exists a sequence of elements
(yν)ν ⊂ Y , with yν ∈ Γ (xν) for every ν ∈ N, that converges
to y. Γ is lower semicontinuous in X if it is so in every point
x ∈ X;

(ii) closed at x ∈ X if

Lim sup
x→x

Γ (x) ⊆ Γ (x),

that is, for every sequence (xν)ν ⊂ X converging to x and
every sequence (yν)ν ⊂ Y , with yν ∈ Γ (xν) for every
ν ∈ N, that converges to a point y ∈ Y , it follows that

18 We refer mainly to Aubin and Frankowska (1990) and references therein.
19 The terms lower (upper) semicontinuous set-valued map and lower hemi-
ontinuous correspondence are synonyms in the game theory literature and, in
articular, in this paper.
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y ∈ Γ (x). Γ is closed in X if it is so in every point x ∈

X . Moreover Γ is closed in X if and only if Graph(Γ ) =

{(x, y) | x ∈ X, y ∈ Γ (x)} is a closed subset of X × Y ;
(iii) upper semicontinuous at x ∈ X if for any neighborhood U

of Γ (x) there exists η > 0 such that Γ (x) ⊂ U for all
x ∈ BX (x, η) = {x ∈ X : ∥x − x∥X < η}. Γ is upper
semicontinuous in X if it is so in every point x ∈ X;

(iv) continuous at x ∈ X if it is upper and lower semicontinuous
at x. Γ is continuous in X if it is so in every point x ∈ X .

Recall that if X is closed, Y is compact and Γ has closed values
then Γ is upper semicontinuous if and only if it is closed (see
roposition 1.4.8 in Aubin and Frankowska (1990)). We will see
hat every set-valued map introduced in this paper satisfies these
roperties, therefore, in our setting, upper semicontinuity and
losedness are equivalent notions.

We conclude this section recalling some useful and well-
nown results. The first result is a version of the Berge’s max-
mum theorem as presented in Aubin and Frankowska (1990,
heorem 1.4.16).

heorem 4.2. Let X, Y be two metric spaces, Γ : X ⇝ Y a set-
alued map and f : Graph(Γ ) → R a function. Let g : X → R be

the marginal function defined by

g(x) = sup
y∈Γ (x)

f (x, y) ∀x ∈ X .

Then,

(i) If f is a lower semicontinuous function and Γ a lower semi-
continuous set-valued map then g is a lower semicontinuous
function;

(ii) If f is an upper semicontinuous function and Γ an upper
semicontinuous set-valued map with compact images then g
is an upper semicontinuous function.

The second result is the well known Kakutani fixed point
heorem.

heorem 4.3 (Kakutani Fixed Point Theorem). Let X be an Euclidean
finite dimensional space. Let K be a non-empty compact convex
subset of X. If Γ : K ⇝ K is an upper semicontinuous mapping such
that, for all x ∈ K , the set Γ (x) is convex, closed and non-empty,
then there exists a fixed point for Γ , that is a point x ∈ K such that
x ∈ Γ (x).

The existence theorem

Theorem 4.4. Consider a psychological game under ambiguity
G = (A1, . . . , An,U1, . . . ,Un) as presented in Definition 2.6. Assume
that, for every player i ∈ I ,

(i) ui : Bi × Σ → R is a continuous function in Bi × Σ ;
(ii) ui(bi, (·, τ−i)) : Σi → R is a quasi-concave function20 in Σi,

for every bi ∈ Bi and every τ−i ∈ Σ−i;
(iii) γi : Σ ⇝ Bi is a continuous set-valued map in Σ with not

empty, convex and compact images γi(σ ), for every σ ∈ Σ .

hen there exists σ ∗
∈ Σ such that (γ (σ ∗), σ ∗) is a psychological

ash equilibrium under ambiguity for the game G.

roof. Consider the summary form Ĝ := (A1, . . . , An, w1, . . . , wn)
f the game G. Let BRi : Σ ⇝ Σi be the set-valued map defined

20 Here we refer to the classical definition of quasi-concavity: a function
g : X → R (where X is convex) is quasi-concave in X if and only if the upper
level sets are convex subsets of X .
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Ri(σ ) := {τi ∈ Σi | wi(σ , (τi, σ−i)) ⩾ wi(σ , (yi, σ−i)) ∀yi ∈ Σi}

∀σ ∈ Σ,

and BR : Σ ⇝ Σ the set-valued map defined by:

BR(σ ) = Πn
i=1BRi(σ ) ∀σ ∈ Σ .

Lemma 2.8 guarantees that σ ∗ is a fixed point for BR, i.e. σ ∗
∈

BR(σ ∗), if and only if (γ (σ ∗), σ ∗) is a psychological Nash equi-
librium under ambiguity for G. Therefore, our proof reduces to
verify the existence of such a fixed point. To this aim we apply
Theorem 4.3 to the correspondence BR : Σ ⇝ Σ .

From the assumptions it follows that the summary utility
unction wi defined in (4) is well posed; moreover, wi(σ , τ ) =

inbi∈γi(σ ) ui(bi, τ ), for all (σ , τ ) ∈ Σ × Σ . Theorem 4.2 ensures
hat wi is continuous in Σ × Σ , hence the best reply corre-
pondence BRi is upper semicontinuous21 with not empty and
ompact images BRi(σ ) for every σ ∈ Σ . It follows that BR is
upper semicontinuous22 with not empty and compact images
BR(σ ) for every σ ∈ Σ .

Lastly, it remains to prove that BR(σ ) is a convex subset of
. It is sufficient to verify that each BRi(σ ) is a convex subset of
i, as the finite product of convex sets is obviously convex. Take
∈ [0, 1] and τ i, τ̂i ∈ BRi(σ ). We will prove that λτ i + (1−λ)τ̂i ∈

Ri(σ ). Since τ i, τ̂i ∈ BRi(σ ), then

wi(σ , (τ i, σ−i)) ⩾ wi(σ , (yi, σ−i)), ∀yi ∈ Σi,

wi(σ , (τ̂i, σ−i)) ⩾ wi(σ , (yi, σ−i)), ∀yi ∈ Σi,

which implies that

ui(bi, (τ i, σ−i)) ⩾ wi(σ , (yi, σ−i)), ∀yi ∈ Σi, ∀bi ∈ γi(σ )

ui(bi, (τ̂i, σ−i)) ⩾ wi(σ , (yi, σ−i)), ∀yi ∈ Σi, ∀bi ∈ γi(σ ).

Therefore, for every bi ∈ γi(σ ), it follows that

αbi := min{ui(bi, (τ i, σ−i)), ui(bi, (τ̂i, τ−i))} ⩾ wi(σ , (yi, σ−i))
∀yi ∈ Σi.

Now, since the function ui(bi, (·, τ−i)) is quasi-concave, it follows
that

ui(bi, (λτ i+(1−λ)τ̂i, σ−i)) ⩾ αbi ⩾ wi(σ , (yi, σ−i)) ∀yi ∈ Σi.

Since the previous inequality holds for every bi ∈ γi(σ ), we finally
get

wi(σ , (λτ i + (1 − λ)τ̂i, σ−i)) = inf
bi∈γi(σ )

ui(bi, (λτ i + (1 − λ)τ̂i, σ−i))

⩾ wi(σ , (yi, σ−i)).

Hence, λτ i + (1 − λ)τ̂i ∈ BRi(σ ). □

. Ambiguous trembles and stability

As already mentioned in the Introduction, the classical theory
f refinements of Nash equilibria deals with the problem of
quilibrium selection based on properties of stability of the equi-
ibria (Van Damme, 1989). It is well known that, in case of games
ith multiple equilibria, some of them may not be robust with
espect to perturbations on the strategies or on the payoffs of the
layers, so that it is possible to restrict significatively the set of

21 The continuity of wi guarantees immediately that BRi is a closed set-valued
ap, hence it is upper semicontinuous.

22 Berge (1997, Theorem 4’ page 114) shows that the cartesian product
f a finite number of upper semicontinuous set-valued map is an upper
emicontinuous map.
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equilibria on the basis of some stability property. This approach
arises with the concept of trembling hand perfect equilibrium for
Nash equilibria introduced in the seminal paper by Selten (1975).
The main idea underlying this concept is that players believe
that their opponents can make mistakes playing their equilibrium
strategies, therefore each equilibrium strategy should be close
to the best reply against perturbed expectations about oppo-
nents’ behavior, if the perturbation is small enough. As already
mentioned in the Introduction, the concept of trembling hand
perfect equilibrium is extended to psychological games in other
papers: in Geanakoplos et al. (1989), the idea is that strategies
are perturbed as in Selten (1975) and hierarchies of beliefs are
consistent with the (unperturbed) equilibrium strategies, along
the perturbations; in Battigalli and Dufwenberg (2009), strate-
gies are perturbed in the same way and hierarchies of beliefs
are perturbed accordingly, by means of the consistency condition
between strategies and hierarchies of beliefs. In this paper, we
take into account a different perspective as, on the one hand,
we look at the stability with respect to perturbations on the
entire hierarchies of beliefs and, on the other hand, we allow
for ambiguous perturbations, that (can) take the form of sets of
hierarchies of beliefs.

To better understand the problem, we look at Example 3.4 in
Section 3. It turns out that, when the correct belief function βA
is perturbed by ambiguous trembles so that beliefs are repre-
sented by the set-valued map γ ε

A , the set of equilibria reduces
to just one out of the two equilibria that we find in the non
ambiguous case. Namely, the presence of ambiguity destroys the
psychological equilibrium (p, r) = (1, 0) and selects only the
equilibrium (p, r) = (0, 0). Now, when ε converges to 0, the
set-valued map γ ε

A converges (in a suitable way) to βA. Taking
the sequence of the corresponding psychological Nash equilibria
under ambiguity (the constant sequence obtained for p = 0 and
r = 0), we get that, as ε → 0, the limit process obviously
selects (p, r) = (0, 0) and not (p, r) = (1, 0). So we have
constructed a selection mechanism for psychological equilibria
based on ambiguous trembles.

The arguments above have an underlying problem that con-
cerns the way ambiguous belief should converge to correct beliefs
in such a way that sequences of psychological equilibria under
perturbations converge to psychological equilibria of the unper-
turbed game. Below we look at this problem that we embody
in a larger one in which the unperturbed game can be itself
ambiguous23 and utilities can be perturbed as well.24 We give
a general limit theorem that gives conditions on the convergence
of psychological games under ambiguity to an unperturbed one in
such a way that corresponding sequences of equilibria under per-
turbation converge to unperturbed equilibria. Then we apply the
theorem to construct selection criteria for classical psychological
equilibria.

5.1. The limit theorem

In this subsection we show what conditions must be imposed
in order that sequences of psychological equilibria under ambigu-
ity of perturbed games converge to psychological equilibria under
ambiguity of the unperturbed game, as the perturbation vanishes.
In order to state and prove this limit result, we need firstly
to recall definitions on variational convergence of sequences of
functions and set-valued maps.

23 This means that we allow for perturbations of ambiguous beliefs.
24 The theory of refinements of Nash equilibria studies stability with respect
to perturbations on payoffs as well (see, for instance the property of essentiality
in Van Damme (1989)).
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echnical tools
We referred mainly to the paper (Lignola and Morgan, 1992)

or the following definitions and results.

efinition 5.1. Let X be a topological space. Consider a sequence
f functions25 {gν}ν∈N with gν : X ⊂ Rk

→ R for every ν ∈ N and
function g : X ⊂ Rk

→ R.

(i) The sequence of functions {gν}ν∈N epiconverges to the func-
tion g if:

(1) for every x ∈ X and for every sequence {xν}ν∈N ⊂ X
converging to x in X we have

g(x) ⩽ lim inf
ν→∞

gν(xν);

(2) for every x ∈ X there exists a sequence {xν}ν∈N ⊂ X
converging to x in X such that

lim sup
ν→∞

gν(xν) ⩽ g(x).

(ii) The sequence {gν}ν∈N hypoconverges to the function g if the
sequence of functions {−gν}ν∈N epiconverges to the function
−g .

(iii) The sequence {gν}ν∈N sequentially converges (or continuously
converges) to the function g if it epiconverges and hypocon-
verges to the function g , i.e. if for every x ∈ X and for every
sequence {xν}ν∈N ⊂ X converging to x in X we have:

g(x) = lim
ν→∞

gν(xν) = lim sup
ν→∞

gν(xν) = lim inf
ν→∞

gν(xν). (16)

The next definition is devoted to set-valued maps.

efinition 5.2. Let X and Y be metric spaces. Let {Γν}ν∈N be a
equence of set-valued maps, with Γν : X ⇝ Y for every ν ∈ N
nd let Γ : X ⇝ Y be a set-valued map. Let S(y, ε) be the ball in
with center in y and radius ε and

im inf
ν→∞

Γν(xν) = {y ∈ Y | ∀ε > 0, ∃ν s.t. for all ν ≥ ν,

S(y, ε) ∩ Γν(xν) ̸= ∅},

Lim sup
ν→∞

Γν(xν) = {y ∈ Y | ∀ε > 0, ∀ν, ∃ν ≥ ν

s.t. S(y, ε) ∩ Γν(xν) ̸= ∅}.

Then

(i) {Γν}ν∈N is sequentially lower convergent to Γ if for every
x ∈ X and for every sequence {xν}ν∈N ⊂ X converging to
x in X we have:

Γ (x) ⊆ Lim inf
ν→∞

Γν(xν);

(ii) {Γν}ν∈N is sequentially upper convergent to Γ if for every
x ∈ X and for every sequence {xν}ν∈N ⊂ X converging to
x in X we have:

Lim sup
ν→∞

Γν(xν) ⊆ Γ (x);

(iii) {Γν}ν∈N is sequentially convergent to Γ if for every x ∈ X
and for every sequence {xν}ν∈N ⊂ X converging to x in X we
have:

Lim sup
ν→∞

Γν(xν) ⊆ Γ (x) ⊆ Lim inf
ν→∞

Γν(xν).

25 For technical reasons, we consider the case where functions take values in
R = R ∪ {−∞, +∞}.
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The result
Now we can state the limit theorem.

Theorem 5.3. Let G = {A1, . . . , An,U1, . . . ,Un} be a psychological
game under ambiguity. For every player i, let

(a) {ui,ν}ν∈N be a sequence of functions with ui,ν : Bi × Σ → R
for every ν ∈ N;

(b) {γi,ν}ν∈N be a sequence of set-valued maps γi,ν : Σ ⇝ Bi, for
every ν ∈ N;

(c) {Ui,ν}ν∈N be the sequence of functions Ui,ν : Ki × Σ → R
defined by

Ui,ν (Ki, σ ) = inf
bi∈Ki

ui,ν(bi, σ ) ∀(Ki, σ ) ∈ Ki × Σ

for every ν ∈ N;
(d) {Gν}ν∈N be the sequence of games where Gν = {A1, . . . , An,

U1,ν, . . . ,Un,ν
}
for every ν ∈ N.

Assume that, for every player i,

(i) the sequence {ui,ν}ν∈N sequentially converges to the function
ui;26

(ii) each function ui,ν and the function ui are continuous in Bi×Σ ;
(ii) the sequence {γi,ν}ν∈N sequentially converges to the set-valued

map γi. Suppose additionally that each γi,ν and γi have com-
pact and not-empty values for every σ ∈ Σ .

If the sequence {σ ∗
ν }ν∈N ⊂ Σ converges to σ ∗

∈ Σ and, for every
ν ∈ N, (γν(σ ∗

ν ), σ
∗
ν ) is a psychological Nash equilibrium of Gν , then

t follows that (γ (σ ∗), σ ∗) is a psychological Nash equilibrium under
mbiguity of G.

roof. For every player i and every ν ∈ N let wi,ν be the summary
tility function of the game Gν , that is

i,ν(σ , τ ) := inf
bi∈γi,ν (σ )

ui,ν(bi, τ ) ∀(σ , τ ) ∈ Σ × Σ,

nd wi be the summary utility function of the game G, that is

i(σ , τ ) := inf
bi∈γi(σ )

ui(bi, τ ) ∀(σ , τ ) ∈ Σ × Σ .

he continuous convergence of the sequence of functions
wi,ν}ν∈N to the function wi for every i ∈ I guarantees the result.
n fact, if {σ ∗

ν }ν∈N ⊂ Σ is a sequence converging to σ ∗
∈ Σ

uch that, for every ν ∈ N, (γν(σ ∗
ν ), σ

∗
ν ) is a psychological Nash

quilibrium of Gν , then from Lemma 2.8 it follows that, for every
layer i,

i,ν(σ ∗

ν , σ ∗

ν ) ⩾ wi,ν(σ ∗

ν , (yi, σ ∗

−i,ν)) ∀yi ∈ Σi.

pplying the continuous convergence of {wi,ν}ν∈N to wi we get

i(σ ∗, σ ∗) = lim
ν→∞

wi,ν(σ ∗

ν , σ ∗

ν ) ⩾ lim
ν→∞

wi,ν(σ ∗

ν , (yi, σ ∗

−i,ν))

= wi(σ ∗, (yi, σ ∗

−i)) ∀yi ∈ Σi.

his latter inequality implies that (γ (σ ∗), σ ∗) is a psychological
ash equilibrium under ambiguity of G. Therefore, the proof
educes in verifying the continuous convergence of {wi,ν}ν∈N to

wi. To this aim, as defined in (16), we need to check that for every
(σ , τ ) ∈ Σ × Σ and for every sequence {(σν, τν)}ν∈N converging
to (σ , τ ) we get the inequalities

lim sup
ν→∞

wi,ν(σν, τν) ⩽ wi(σ , τ ) ⩽ lim inf
ν→∞

wi,ν(σν, τν).

Consider (σ , τ ) ∈ Σ × Σ and take a sequence {(σν, τν)}ν∈N
converging to (σ , τ ). The proof is organized in two steps.

26 The function u is the one appearing in the construction of U (see Eq. (3)).
i i
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tep 1: wi(σ , τ ) ⩽ lim infν→∞wi,ν(σν, τν).
Suppose by contradiction that

wi(σ , τ ) > lim inf
ν→∞

wi,ν(σν, τν). (17)

This means that there exists a converging subsequence
{(σνk , τνk )}k∈N such that

lim
k→∞

wi,νk (σνk , τνk ) < wi(σ , τ ). (18)

Additionally, continuity of ui and ui,ν for every ν and
compactness of the images of γi and γi,ν , for every ν,
guarantee that there exist b∗

i ∈ γi(σ ) and a b∗

i,ν ∈ γi,ν(σν)
for every ν, such that

ui(b∗

i , τ ) = inf
bi∈γi(σ )

ui(bi, τ ) = wi(σ , τ ), (19)

ui,ν(b∗

i,ν, τν) = inf
bi,ν∈γi,ν (σν )

ui,ν(bi,ν, τν) = wi,ν(σν, τν). (20)

Consider the sequence of beliefs {b∗

i,νk
}k∈N obtained from

wi,νk (σνk , τνk ) as in (20): since Bi is compact, it has a
subsequence {b∗

i,νh
}h∈N which converges to a point b̂i ∈ Bi.

This point b̂i actually belongs to γi(σ ) since, by definition,
the upper limit Lim supν→∞γi,ν(σν) contains the limit of
every converging subsequence of {b∗

i,ν}ν∈N; that is

b̂i ∈ Lim sup
ν→∞

γi,ν(σν).

On the other hand, the sequence of set-valued maps
{γi,ν}ν∈N is supposed to be sequentially upper convergent
to γi, that is,

Lim sup
ν→∞

γi,ν(σν) ⊆ γi(σ ).

Therefore, b̂i ∈ γi(σ ). Eq. (19) implies that ui(b∗

i , τ ) ⩽
ui(b̂i, τ ).
Now, the sequence {ui,ν}ν∈N epiconverges to ui, therefore
since (b∗

i,νh
, τνh ) converges to (b̂i, τ ), we have:

ui(b̂i, τ ) ⩽ lim inf
h→∞

ui,νh (b
∗

i,νh , τνh ).

We finally get

wi(σ , τ ) = ui(b∗

i , τ ) ⩽ ui(b̂i, τ ) ⩽ lim inf
h→∞

ui,νh (b
∗

i,νh , τνh ) =

lim inf
h→∞

wi,νh (σνh , τνh ) = lim
h→∞

wi,νh (σνh , τνh ).

Inequality (18) implies that

wi(σ , τ ) ⩽ lim
h→∞

wi,νh (σνh , τνh ) < wi(σ , τ ),

which results in a contradiction. So

wi(σ , τ ) ⩽ lim inf
ν→∞

wi,ν(σν, τν).

tep 2: wi(σ , τ ) ⩾ lim supν→∞wi,ν(σv, τ ).
Let b∗

i ∈ γi(σ ) be such that

ui(b∗

i , τ ) = inf
bi∈γi(σ )

ui(bi, τ ) = wi(σ , τ ).

Such a b∗

i exists because of the continuity of ui and the
compactness of γi(σ ) for every σ ∈ Σ . Since the sequence
{γi,ν}ν∈N is sequentially lower convergent to γi, that is,

γi(σ ) ⊆ Lim inf
ν→∞

γi,ν(σν),

then there exists a sequence {bi,ν}ν∈N converging to b∗

i
such that, for every ν, b ∈ γ (σ ).
i,ν i,ν ν f
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The sequence {ui,ν}ν∈N hypoconverges to ui; it follows
that

lim sup
ν→∞

ui,ν(bi,ν, τν) ⩽ ui(b∗

i , τ ).

Moreover, by construction wi,ν(σν, τν) ⩽ ui,ν(bi,ν, τν) for
every ν ∈ N. This finally implies that

lim sup
ν→∞

wi,ν(σν, τν) ⩽ lim sup
ν→∞

ui,ν(bi,ν, τν) ⩽ ui(b∗

i , τ )

= wi(σ , τ ). □

Remark 5.4. The proof of the previous theorem is self contained.
An alternative proof could be obtained by applying the stability
results for marginal functions under constraints as considered
in Lignola and Morgan (1992).

5.2. Equilibrium selection

Building upon the previous result, in this subsection we show
how to construct selection mechanism for psychological Nash
equilibria based on ambiguous trembles. Let GGPS

= {A1, . . . ,

An, u1, . . . , un} be a non-ambiguous psychological game hav-
ing GPS psychological Nash equilibria. The selection mechanism
works as follows:

– for every player i, choose a sequence of beliefs correspon-
dences {γi,ν}ν∈N, with γi,ν : Σ ⇝ Bi that sequentially con-
verges to the function βi (which represents the hierarchies
of correct beliefs of the game GGPS);

– for every player i, choose a sequence of utility functions
{ui,ν}ν∈N with ui,ν : Bi × Σ → R that sequentially converges
to the function ui;

– let {Ui,ν}ν∈N be the sequence of functions Ui,ν : Ki ×Σ → R
defined, for every player i, by

Ui,ν (Ki, σ ) = inf
bi∈Ki

ui,ν(bi, σ ) ∀(Ki, σ ) ∈ Ki × Σ,

and consider the corresponding sequence of ambiguous
games {Gν}ν∈N where
Gν =

{
A1, . . . , An,U1,ν, . . . ,Un,ν

}
for every ν ∈ N;

– let {(γν(σν), σν)}ν∈N be a sequence where each (γν(σν), σν)
is a psychological Nash equilibrium under ambiguity of
Gν . Since Σ is compact, then {σν}ν has a converging sub-
sequence {σνk}k∈N whose limit is σ ∗. Consequently, the
subsequence {(γνk (σνk ), σνk )}k∈N converges to (β(σ ∗), σ ∗),
which is a psychological Nash equilibrium of GGPS in light of
Theorem 5.3. Hence, the psychological Nash equilibrium
(β(σ ∗), σ ∗) is stable with respect to the perturbation given
by the sequence of games {Gνk}k∈N;

– if the set of limit points of all the sequences of equilibria
corresponding to the sequence of games {Gνk}k∈N is a proper
subset of the set of equilibria of GGPS then the selection
method is effective.

emark 5.5. An underlying assumption is required so that the
election mechanism previously presented makes sense: it con-
ists in the existence of psychological Nash equilibria at least
or a subsequence of the sequence games {Gν}ν∈N. Nevertheless,
he examples in Section 3 show that it is reasonably simple
o construct sequences of psychological games under ambiguity
ith nonempty sets of equilibria.

emark 5.6. At first sight, it might seem surprising that an
quilibrium is selected if it is a limit point for just one sequence
f perturbed equilibria. However, this is precisely what happens

or trembling hand perfect equilibria. In fact, even in the classical
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ame theory (with no psychological effects) it turns out that
here exist entire classes of games in which no equilibrium is
table with respect to every possible perturbation. Therefore,
he weaker assumption that we use is much more likely to be
pplicable; moreover, Example 3.4 shows that it can provide an
ffective selection mechanism in simple games.

. Conclusion

The present paper aims to jointly take into account two is-
ues that arise from different strands of literature. On the one
and, the studies on psychological games point out that play-
rs’ preferences might depend on the hierarchies of beliefs. On
he other hand, the literature on strategic ambiguity in classical
ames suggests that beliefs might be ambiguous (or imprecise)
n equilibrium. In this paper we deal with simultaneous-move
sychological games characterized by ambiguous beliefs that are
epresented as multiple hierarchies of beliefs. In the new concept
f psychological Nash equilibrium under ambiguity, the correct
elief function of each player is replaced by a set-valued map that
pecifies the set of hierarchies of beliefs that the corresponding
layer perceives to be consistent with the equilibrium played;
oreover ambiguity is solved by considering the classicalmaxmin
references. It follows that this concept generalizes the standard
sychological Nash equilibrium defined in Geanakoplos et al.
1989) in a natural way and it embodies different models of
trategic ambiguity as the partially specified probability model. The
heory shows that continuity of the beliefs correspondences is
he key for equilibrium existence. In addition, examples highlight
hat the presence of ambiguity may alter significantly the equi-
ibria of the game: either they can be totally different from the
nambiguous case or we can run into equilibrium selection.
The role of ambiguity as equilibrium selector puts our pa-

er in relation with the theory of Nash equilibria refinements:
e look at the problem of stability of psychological equilibria
hen perturbations affect the entire hierarchy of correct beliefs.
irstly we show that, under suitable assumptions, we can obtain
he convergence of equilibria of perturbed game to those of
he unperturbed one. As a consequence, it is possible to refine
sychological Nash equilibria by constructing selection mecha-
isms based on properties of stability with respect to ambiguous
rembles on the hierarchies of beliefs.

This paper is just a first step in the study of ambiguity in
sychological games. As such, there are some limitations in our
nalysis; hence, many relevant and intricate questions remain
pen. On the one hand, the extension to different types of prefer-
nces under ambiguity and the effects on the theoretical results
hould be explored. On the other hand, our analysis focus on
he specific class of psychological games involving simultaneous
oves so that only initial beliefs are allowed to affect utility. In

he dynamic psychological game model studied in Battigalli and
ufwenberg (2009), both sequential play and updated beliefs are
llowed; so a relevant issue would be to study the problem of
equential rationality and updated beliefs in case of ambiguous
onditional probability systems. The issues previously mentioned
re certainly theoretically and technically challenging and will be
he focus of future research.
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