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A B S T R A C T

The detection of SARS-CoV-2 in faeces encouraged various studies exploring wastewater as a disease surveillance 
tool from a wastewater-based epidemiology (WBE) perspective. Virus concentration data in wastewater are 
collected and arranged in time series and generally analysed by using statistical approaches. However, for 
studying complex and non-linear phenomena, this procedure may not be effective. In this regard, the present 
work introduces an alternative and innovative approach to analyse time series of SARS-CoV-2 concentration in 
wastewater based on visibility algorithms. The temporal evolution of the epidemic is transformed into a visibility 
graph that allows the study of time series from a nonlinear perspective. The connectivity structure of the visi-
bility graph encapsulates significant information of the starting time series. By investigating the topological 
characteristics of the graph, it is possible to extract nontrivial evidence to give a physical interpretation of the 
phenomenon and to identify the factors that mainly influence the virus transmission. The proposed approach has 
been applied to the time series data collected at ten wastewater treatment plants to interpret the trend of the 
epidemic and attempt to forecast the phenomenon in the analysed basins. Overall, using visibility algorithms to 
study COVID-19 in sewage is a valuable tool for monitoring the community, with potential for predicting epi-
demics and community behaviours.

1. Introduction

The spread of diseases attracted particular attention in recent years 
due to Covid-19 [1], a severe acute respiratory syndrome discovered at 
the end of 2019 that spread rapidly around the world. Airborne trans-
mission has been recognized as one of the primary routes of conveyance 
of the virus [2], whose propagation and permanence was found to be 
influenced by both environmental and social factors [3,4]. The decisive 
actions adopted over time to mitigate the spread of the epidemic [5,6] 
marked the end of the health emergency state, although, given the un-
certainty and lack of information about possible new variants, effective 
strategies for epidemic monitoring are still required.

A first paradigm shift in epidemiological surveillance occurred with 
the discovery that traces of SARS-CoV-2 are detectable in wastewater 
[7]. This finding encouraged several studies on the suitability of 
wastewater surveillance to determine infection and transmission levels 
and to produce early warning of outbreaks in local communities 
[8,9,38,39]. Most of the studies concerning monitoring and detection of 
SARS-CoV-2 in wastewater rely on the Wastewater-Based Epidemiology 

(WBE) approach [10], which assesses the presence and quantity of 
specific chemical or biological markers (e.g., drugs, antibiotics, alcohol, 
tobacco, etc.) in wastewater samples [11]. The WBE approach as tool for 
monitoring and detecting traces of SARS-CoV-2 in wastewater has been 
extensively tested and validated in many industrialized cities world-
wide, where numerous procedures were initiated. In Italy, this proced-
ure was formally defined via the project SARI (Environmental surveillance 
of SARS-CoV-2 through urban wastewater in Italy), which started on the 
1st of July 2020. The project proposed an environmental surveillance 
activity based on the WBE model and planned the monitoring of 167 
Italian wastewater treatment plants (WWTPs), focusing on big urban 
centres (more than 50,000 inhabitants) as well as on centres of touristic 
importance, even with less of 50,000 inhabitants. The results of the 
monitoring were provided as time series of SARS-CoV-2 RNA concen-
tration detected in the influent at different WWTPs.

Other approaches aimed at tracking the epidemic involved the use of 
Complex Network Theory (CNT) tools to study the spread of diseases 
[40], also with reference to the analysis of social networks [12]. In this 
regard, the main interest in the use of CNT approaches lays in the pos-
sibility of analysing several social networks (e.g., friendships, work, 
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family, etc.) simplifying their representation using graphs. In fact, since 
the spread of diseases mainly takes place through contact between 
people, it is possible to represent this phenomenon through a graph 
where the nodes represent the people and the connections between the 
nodes represent their relationships [13], by assuming that two in-
dividuals are probabilistically connected based on the distance between 
them.

Interestingly, the CNT can support the study and analysis of epi-
demics with realistic and high-performance capabilities. This is ach-
ieved by recurring at the time series data of the evolution of the 
phenomenon over time, as produced within the WBE approach and 
employing visibility algorithms. The idea of transforming time series 
into graphs proved to be an effective method for representing and 
studying time series, especially for non-linear phenomena, so much so 
that it has attracted the interest of the scientific community in different 
fields.

One of the main applications concerns the medical sector [14–16], 
where it has been used also with respect to the propagation of epidemics 
[17]. Many environmental topics have been studied by visibility algo-
rithms, including the analysis of CO2 emission time series relating to the 
carbon price [18], the impacts on people's health and daily life through 
the analysis of air quality patterns [19], the daily and monthly sunspot 
series [20], the lag between two hydrogeological time series [21], and 
the velocity components of a fully developed turbulent channel flow 
[22].

In this regard, the present work aims at proposing an innovative 
approach for the analysis of SARS-CoV-2 RNA concentration time series. 
The approach involves transforming each viral RNA concentration time 
series into a visibility graph through the visibility algorithms [23] pro-
posed by the CNT. The connective structure of the visibility graph in-
herits many characteristics of the starting time series and facilitates the 
extraction of valuable insights into the behaviour of the epidemic. This is 
achieved through CNT topological metrics [24], with the main aim of 
highlighting how the spread of the epidemic varies across different 
contexts. The findings aim to suggest more effective measures for con-
taining and managing the epidemic.

The added value of this approach is its usefulness in gathering in-
formation on the non-linear trend of the phenomena that cannot be 
detected by the analysis of the time series via conventional methods. To 
validate the proposed approach, the time series of viral RNA 

concentration collected at ten WWTPs serving sewer network catchment 
areas (basins) with different characteristics (e.g., number of inhabitants, 
etc.) were analysed.

Experimental outcomes addressed the development of a promising 
tool to study time series from a new perspective as well as the discussion 
about the potential applications of the proposed approach for environ-
mental surveillance purposes. Although this application focused on the 
analysis of the collected data, its aim is to represent a first step towards 
defining a multidisciplinary approach, which addresses not only engi-
neering and environmental aspects, but also incorporates social and 
health considerations.

2. Complex Network theory (CNT)

The Complex Network Theory (CNT) integrates mathematical and 
technical tools to analyse the nature, complexity and dynamics of many 
real complex systems. These systems consist of many components that 
interact with each other, exhibiting behaviours that are difficult to 
model due to the properties such as nonlinearity, emergence and 
spontaneous order, as well as the interaction with the surrounding 
environment.

The basic concepts and models of CNT considered for the purposes of 
this study are reported in the Section 1 of the Supplementary Material.

2.1. Visibility algorithms

The study of specific phenomena, such as temperature of a basin or 
level of rainfall, characterized by temporal variability, generally relies 
on collecting data at discrete time interval, in a specific point or section. 
These data are often stored as time series, usually displayed as line 
graphs or histograms, which provide the primary basis for describing 
and analysing the trend of a phenomenon. The visibility algorithms [23] 
provide the transformation of such time series into graphs. These graphs 
are then used to identify specific characteristics of the phenomenon that 
cannot be detected via the sole analysis of the time series by using CNT 
metrics and models.

The most used algorithm for time series analysis is the Natural Vis-
ibility Algorithm (NVg) proposed by Lacasa et al. (2008), used 
throughout the present work. A time series with n observations, repre-
sented as lines of a histogram (Fig. 1-a), corresponds to a visibility graph 
G = (N,L), with a set of nodes N = {1, …, n} connected by a set of links, L 
= {1, …, l}, which occur only between nodes whose visibility is not 
obstructed, i.e., between which it is possible to draw lines without 
intersecting others (Fig. 1-b). The number n of nodes, together with the 
drawn links, form the visibility graph of the starting time series (Fig. 1- 
c). (See Section 1.3 of the Supplementary Material for further 
information).

The visibility algorithm can be envisioned as a geometric transform, 
which decomposes a signal/series in a concatenation of graph's motifs, 
and the degree distribution simply makes a histogram of such ‘geometric 
modes’, thus showing clearly distinct, discrete structures that charac-
terize the periodic time series.

3. Methodology: from time series to visibility graph

The present work proposes a novel approach for studying the time 
series of SARS-CoV-2 RNA concentration for several WWTPs by using 
the CNT tools, to evaluate the different diffusion trends of the epidemic 
and identify the mechanisms that mainly influenced its propagation. 
More specifically, the original data were provided by the Regional 
Agency for Environmental Protection in Campania (ARPAC) within the 
SARI project [25], and they referred to the viral RNA concentration 
detected over a period of approximately 12 months (from October 2021 
to September 2022) in the influent of ten WWTPs serving small, medium 
and large sewer network catchment areas. The approach has been 
applied to the raw time series without carrying out any data pre- 

Nomenclature

A = (aij) Adjacency matrix
APL Average shortest path length
ARPAC Regional Agency for Environmental Protection in 

Campania
CNT Complex network theory
Ci Clustering coefficient of a node i
C Average Clustering Coefficient
COVID-19 SARS-CoV-2 acute respiratory disease
D Diameter
G Graph
ki degree of a node i
<k> Average degree of the graph G
L set of links in the graph G
N set of nodes in the graph G
NVg Natural Visibility Algorithm
P (k) Degree Distribution
RNA genome of the SARS-CoV-2 virus
SARS-CoV-2 severe acute respiratory syndrome
WBE Wastewater-Based Epidemiology
WWTP wastewater treatment plant
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processing or removal of outliers. The reason is mainly linked to the 
inaccessibility of the collected samples. In fact, the collection of samples 
was carried out by an external public agency (ARPAC) as part of a 
government project (SARI) that had set up maximum safety conditions, 
considering the probable risk linked to the contact with the samples 
themselves.

The same agency rearranged the data in the time series herein used. 
Nonetheless, this condition made it possible to validate the approach 
even in the presence of anomalous data. However, it is important to note 
that despite potential noisy data and variability in flow rates typical of 
wastewater analyses, these challenges are inherent to the analysed series 
rather than specific to the proposed approach. Therefore, this general 
limitation applies to both conventional and innovative methodologies 
alike. Table 1 reports relevant data for each WWTP.

The main steps of the proposed methodology, plotted in Fig. 2, are 
described below.

1. Time series of viral RNA concentrations detected in a specific period, 
at the inlet of ten WWTPs, were collected. For each WWTP, the 
number of samplings is variable, as shown in the last column of the 
Table 1, depending on (i) the number of inhabitants of the basin 
served (two weekly samplings for basins serving more than 50,000 
inhabitants and 1 weekly sampling for basins serving fewer than 
50,000 inhabitants); (ii) the possibility of carrying out scheduled 
sampling; (iii) the period in which the monitoring began.

2. The concentration time series were transformed into visibility graphs 
through visibility algorithms, so that each infection curve was visu-
alized and studied through its associated visibility graph instead of 
time series. Each visibility graph is characterized by an adjacency 
matrix, which provides important information on its connectivity 
and represents the basis for evaluating CNT metrics.

3. Several CNT metrics were evaluated for each visibility graph, in 
order to define both the degree distributions and network features. 
More specifically, for the purposes of this study, nodal degree, 
average degree, clustering coefficient, diameter and average path 
length were evaluated.

The results obtained for each WWTP were comparatively assessed to 
evaluate the incidence of housing contexts and population habits in the 
spread of the virus.

Fig. 1. Bar plot for an example time series (a); visibility lines between nodes (b); visibility graph of the starting time series (c).

Table 1 
Relevant Data for the WWTPs analysed.

ID WWTP Location Province Inhabitants Sampling period Number of samples/ week Total number of samples

1 Eboli Salerno 30,000 02/15/22–09/27/2022 1 31
2 Manocalzati Avellino 140,000 11/11/21–09/29/22 2 44
3 Napoli Ovest ex Camaldoli Napoli 250,000 10/05/21–09/29/22 2 94
4 Nocera Sup Salerno 299,121 10/05/21–09/29/22 2 93
5 Area Casertana Caserta 370,769 10/05/21–09/29/22 2 93
6 Area Nolana Napoli 400,000 10/05/21–09/29/22 2 91
7 Villa Literno Caserta 631,714 12/02/21–09/27/2022 2 75
8 Salerno Salerno 700,000 12/02/21–09/29/2022 2 76
9 Napoli Ovest Napoli 950,000 10/05/21–09/27/22 2 93
10 Napoli Est Napoli 1,750,000 10/05/21–09/29/22 2 93

Fig. 2. Outline of the proposed methodology.
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4. Results and discussion

The present section discusses the results coming from the application 
of the proposed methodology to the time series of viral RNA concen-
trations obtained from the monitoring of the WWTPs reported in 
Table 1.

The first part of the section describes the application of the proposed 
methodology to the smallest case study, corresponding to the WWTP of 
Eboli: this serves the sewer network catchment area with the least 
number of inhabitants. Since the basin serves a population of less than 
50,000 inhabitants, as per national directive, ARPAC planned to carry 
out only one sampling per week during the reference period.

In the second part of this section, the methodology is extended to the 
remaining WWTPs, for which two weekly samplings were instead car-
ried out, because referred to WWTP serving basins with a population 
exceeding 50,000 inhabitants. The issue regarding the reliability of the 
monitored data is also evident concerning the sampling frequency, 
which should have been higher compared to what was scheduled, 
particularly regarding aspects related to flow variability, especially 
under dry period conditions. It is important to note that the data 
considered for the purpose of this analysis are those officially collected 
and disseminated by ARPAC. However, the issue of the number of 
samples was considered in the interpretation of the results, as discussed 
later in the text.

4.1. Study of the visibility graph obtained for the WWTP of Eboli

The steps supporting the visibility-based approach within the pro-
posed methodology are shown in Fig. 3 with reference to the time series 
obtained for the WWTP of Eboli. Panel 3-a plots the starting time series 
and the corresponding visibility graph; red vertical lines represent the 
viral RNA concentrations detected on specific days from the 15th of 

February to the 27th of September 2021 and the blue lines indicate the 
visibility between the various concentrations/nodes. The corresponding 
visibility graph is characterized by many poorly connected nodes and 
few very connected nodes, the latter representing the hubs of the system.

Once transformed the time series into the visibility graph, it is 
possible to evaluate the CNT metrics previously defined and to plot the 
degree distribution. Table 2 reports the metrics evaluated for the visi-
bility graph obtained from the time series.

Fig. 3-b reports the clustering coefficient for all nodes of the visibility 
graph. It is possible noting that all nodes with the maximum value of the 
clustering coefficient (equal to 1) correspond to minimum points in the 
time series, such as node 4 (see Fig. 3-a). Indeed, low values are surely 
surrounded (left and right) by higher values, which are visible to each 
other since they are not hindered by any intermediate values. This vis-
ibility supports the formation of triangles, thus guaranteeing high values 
of the clustering coefficient. Conversely, nodes with the minimum 
values of the clustering coefficient generally correspond to maximum 
points in the time series because, having very high ordinates, they do not 
allow visibility between their neighbour nodes (left and right), thus 
preventing the formation of triangles. Therefore, the clustering coeffi-
cient can be used as a parameter to evaluate the variability of the time 

Fig. 3. RNA concentration time series and corresponding Visibility Graph for the WWTP of Eboli (a). Local clustering coefficient (b) and local degree (c) for all nodes 
of the visibility graph of Eboli.

Table 2 
Relevant Data and CNT metrics for the visibility graph of the WWTP of Eboli.

VISIBILITY GRAPH – EBOLI

ID #nodes #links Average 
degree <
k>

Diameter 
D

Average 
Clustering 
coefficient 
C

Average 
Path 
Length 
APL

1 31 90 5.806 5 0.783 2.615
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series, since the formation of triangles is possible only in the presence of 
fluctuations. In the case of the Eboli network, the average clustering 
coefficient (0.783) indicates that the phenomenon is quiet variable, but 
still tending to high values.

The local degree (Fig. 3-c) shows that the most connected nodes in 
the visibility graph do not necessarily correspond to the maximum 
concentration values in the time series, as it might be assumed when 
thinking about the concept of visibility. Node 9, for example, corre-
sponds to the maximum concentration value in the time series but it has 
a degree equal to 5 in the visibility graph (the higher degree in the graph 
is k22 = 19), which is close to the average value of the degree distribu-
tion of the graph (Fig. 4). This can be attributed to the fact that, although 
node 9 has the maximum concentration value, it is surrounded by nodes 
with similar concentration values, thus hindering the visibility of a large 
part of nodes with lower concentrations. It could be asserted that the 
behaviour in this time interval is homogeneous, with close concentra-
tion values for the various samplings. The situation is different when 
referring to nodes 13 and 22; in fact, in addition to presenting high 
concentration values, they are surrounded by nodes with much lower 
concentration values. Therefore, for these nodes, it is possible to expand 
the radius of visibility, which implies an increase in their number of 
connections, which is much higher than that of the other nodes, so much 
so that they are defined as hubs of the system. These observations 
highlight how the inflection points, which allow greater/less visibility 
(influencing the degree) and interconnection (influencing the formation 
of triangles) represent a key aspect in the analysis.

This outcome also supports the fact that highly connected nodes 
(hubs) do not have, generally, high values of the clustering coefficient 
because it is either difficult or improbable that all their neighbourhood 
nodes are connected to each other. At the same time, the presence of 
highly connected nodes (hubs) shortens the distances in paths between 
nodes in the visibility graph and influences the average short path length 
(APL = 2.615), which indicates the paths that allow connecting pairs of 
nodes in the graph with the fewest number of steps.

The degree distribution of the visibility graph of Eboli, reported in 
Fig. 4-a, has the characteristics of a Poisson curve, with most of the 
values concentrated near the mean value (<k ≥ 5.806), thus deviating 
from the power law distribution, typical of scale-free models, and sug-
gesting a behaviour more similar to random and small-world networks. 
The high value of the average clustering coefficient coupled with both 
the low value of the APL and the presence of few hubs in a predomi-
nantly random distribution, support the hypothesis that the network 
better corresponds to a small-world model, whereby most of the nodes 
can be reached through a low number of steps. This, in turn, perfectly 
responds to the Milgram's principle of the six degrees of separation [26], 
characterizing social networks. This trend is further confirmed by the 
adjacency matrix, reported in Fig. 4-b, which shows how most of the 
nodes (non-zero values) are grouped near the main diagonal, indicating 
that connections between nodes occur mainly over short distances.

More specifically, the spread of the epidemic, as modelled, identifies 

the analysed graph as responding to characteristics of spatial network, 
meaning that the space where people live influence their habits. 
Furthermore, the spatial component makes it probable that the 
contamination curve is repeated with the increase in the number of in-
fections, whose average value will be a function of the concentration 
levels of viral RNA.

Spatial networks (e.g., communication networks, biological net-
works, neural networks, etc.) are systems in which the position of the 
elements plays a very important role because their distance strongly 
influence the system behaviour. In the spread of epidemics, the spatial 
component has been analysed considering various network configura-
tions, from contact networks [27], to social networks [13] to the 
network of movements between individuals [28,29].

The degree distribution provides relevant information to charac-
terize these systems, since it informs on the potential of each single in-
dividual to be infected and to cause further infections. Obviously, the 
greatest is the number of connections among individuals, the greatest is 
the probability that they are close to an individual who is either already 
infected [30] or likely to get easily infected. With reference to SARS- 
CoV-2, several authors demonstrated how socio-demographic and 
environmental characteristics significantly influenced the spatial pat-
terns of transmission [31,32]. Similarly, the lack of spatial stationarity 
has been observed in the associations between environmental charac-
teristics and transmission of SARS-CoV-2 [33], as these correlations vary 
depending on the space within which they develop [34]. The charac-
teristics of the built environment (e.g., houses, schools, offices), the 
socio-economic activities (e.g., shopping centers, restaurants) and the 
services offered (e.g., transport) significantly influence viral trans-
mission and incidence rates as they promote travels and/or meetings of 
people. In other terms, infectious diseases spread more rapidly in active 
social contexts, where frequent interactions increase the likelihood of 
connections between individuals. For this reason, pandemic control 
measures such as the use of face masks, social distancing, and travel 
restrictions proved to be useful for containing the spread of the epidemic 
[35]. However, relying solely on the number of inhabitants as the main 
discriminant may not have been sufficient.

In this context, the behaviour of the phenomenon at Eboli WWTP, 
with the degree distribution characterized by only one important peak 
settled around low asymptotic values, could be justified by the fact that 
it serves a small social context, mainly characterized by exchanges at 
both family and work levels. Although it is a touristic city, there is never 
an overpopulation that could affect the transmission of the virus, nor 
significant industrial and commercial centres. These characteristics 
proved to be favourable during the state of emergency, as they preserved 
the city context from important diffusion of the virus and, therefore, 
peaks in terms of infections. This conclusion, although realistic, could be 
obvious at times, as low virus transmission is expected in residential 
contexts with small populations. Nonetheless, the strategy improves this 
information by quickly identifying the level of risk (compared to the 
actual number of hubs and distribution curves of the phenomenon) or 

Fig. 4. Degree distribution P(k) (a). Adjacency matrix. Nonzero values are coloured while zero values are white (b).
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situational awareness (suggesting specific preventive measures over 
others) solely from wastewater measurements, precisely for effective-
ness in analysing non-linear phenomena. This information could 
represent a valuable support in times of health emergency, or even for 
monitoring specific substances.

4.2. Study of the visibility graphs obtained for the other WWTPs

The visibility-based approach was also applied to the time series of 
the others WWTPs reported in Table 1. The visibility graphs character-
istics and the corresponding CNT metrics are reported in Table 3. A first 
analysis is possible only considering the elements characterizing each 
visibility graph. By correlating the number of nodes (corresponding to 
the number of samplings in the time series for each WWTP analysed) 
with the number of links for each visibility graph, they result highly 
correlated (r = 0.965), i.e., their visibility follows the same trend. 
Although it is obvious that as the number of nodes increases, the number 
of links increases, it is not equally obvious that this increase is so 
consistent for all graphs. This result highlights the fact that, regardless of 
the number of samplings performed for each basin, the concentration 
values in each time series are such as to globally develop a similar 
behaviour in terms of visibility, minimum, maximum and inflection 
points. The average degree <k > is not a function of the number of in-
habitants, but rather of the characteristics of the basins. In fact, it as-
sumes higher values, indicating a greater interconnection (greater 
infections, peaks and inflection points and greater visibility for specific 
nodes) in correspondence to metropolitan areas and tends to decrease in 
correspondence to mostly residential centres.

Moreover, although not directly related, it generally increases as the 
number of inhabitants increases, precisely to indicate that in large cities, 
with greater probability of spreading the virus, there are greater possi-
bilities of visibility/connection between nodes of the graph. In this case, 
however, the number of inhabitants to refer to is those who carries out 
their own activities in the basin considered. In effect, one of the prob-
lems in the correlation between the number of inhabitants served by 
each WWTP and the metrics of the corresponding visibility graph lies in 
the fact that the inhabitants considered (residents) are not those who 
actually live that area on a daily basis, due to the countless movements 
for study, work, tourism, etc. It follows that, inevitably, metropolises 
will be overcrowded during the day, leaving most residential contexts 
almost deserted. However, this fact did not limit their contamination, 
due to their inevitable interactions with people returning from metro-
polises. It follows that the information on the number of inhabitants of 
each basin, although partially correlated with some of the CNT metrics 
evaluated (e.g., r = 0,60 with <k>) for the visibility graphs, loses 
relevance. This means that utilizing indicators that track movement 
networks between cities (for purposes such as tourism, work, and study) 
can provide a clearer picture of the number of people arriving in or 
departing from a city over a specific period. From this point of view, this 
study aims to take the first step towards defining a multidisciplinary 

approach, which incorporates not only engineering and environmental 
aspects but also social and health dimensions.

The values of the diameter of the visibility graphs, in the range [4 – 
6], once again leads such networks to small-world models, with 
maximum distance between pairs of nodes, in terms of number of steps, 
less than or equal to 6. Obviously, visibility graphs with a diameter equal 
to 4 characterize networks in which the distances between pairs of nodes 
are very short, due to the presence of many hubs or few highly connected 
hubs, to which also the maximum values of the average degree <k > is 
generally associated. That is, in these basins, people are more likely to be 
infected.

As observed for the diameter, the APL values are smaller for large 
graphs, because the more hubs that characterize these systems shorten 
the distances between pairs of nodes. The lowest APL value corresponds 
to ID10, which certainly exceeds the other visibility graphs in size 
(number of pipes), and for which the highest value of <k> and clus-
tering coefficient occur. Therefore, this system is the most inter-
connected (high <k> and Average C) and the one that best allows 
contact between nodes even over long distances (low APL and diam-
eter). Graphs ID3 and ID5 have the same metric values but the corre-
sponding WWTPs serve different number of inhabitants (i.e., 250,000 vs. 
370,769), thus supporting the statement that the population does not 
necessarily influence the spread of the epidemic, or at least not as much 
as the spatial constraints.

From this point of view, any new restriction should focus more on the 
social components of the urban centres rather than on the dimensional 
ones.

On the other hand, the comparison between ID5 and ID6 shows that, 
although the two sewer network catchment areas serve a similar number 
of inhabitants, they are differently interconnected (ID5 has higher <k>
and Average C values) and organized (ID5 has lower diameter and APL). 
This difference leads, once again, to the social difference that charac-
terizes the cities served by the two sewer network catchment areas; ID5 
is much more densely inhabited, commercial and touristic than ID6, 
which nonetheless has a prestigious logistics centre.

The graphs that cover longer distances in few steps are Napoli Est 
(ID10) and the Area Casertana (ID5), probably due to the presence of 
very important hubs. Both the WWTPs corresponding to these visibility 
graphs serve sewer network catchment areas characterized by com-
mercial and touristic cities, where an infection diffusion is expected.

The behaviour is also analysed with reference to the degree distri-
bution of the various visibility graphs. Fig. 5 reports the results obtained 
considering the time series of Manocalzati WWTP (ID2). The size of the 
nodes is sorted according to the number of connections, so that highly 
connected nodes are larger in size than less connected ones (Fig. 5-a). 
Similarly, Fig. 5-b reports the visibility graph with node size sorted with 
respect to the clustering coefficient values. Many nodes have a high 
clustering coefficient, i.e., the formation of many triangles between 
neighbouring nodes is favoured. Once again, nodes with high degree 
have a low clustering coefficient, probably due to the impossibility of 

Table 3 
Relevant Data and CNT metrics for the time series/ visibility graph analysed.

TREATMENT PLANT VISIBILITY GRAPH

ID Name #Inhab. #nodes #pipes Average degree < k> Diameter 
D

Average Clustering Coefficient C Average Path Length APL

1 Eboli 30,000 31 90 5.806 5 0.783 2.615
2 Manocalzati 140,000 44 124 5.636 5 0.764 2.584
3 Napoli Ovest Ex Camaldoli 250,000 94 394 8.383 4 0.818 2.166
4 Nocera Sup 299,121 93 344 7.398 5 0.788 2.550
5 Area Casertana 370,769 94 394 8.383 4 0.818 2.166
6 Area Nolana 400,000 91 371 8.154 5 0.796 2.419
7 Villa Literno 631,714 75 236 6.293 6 0.787 2.944
8 Salerno 700,000 76 292 7.684 6 0.802 3.120
9 Napoli Ovest 950,000 93 350 7.527 5 0.803 2.469
10 Napoli Est 1,750,000 93 434 9.333 4 0.830 1.977
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forming triangles with immediately adjacent nodes.
The degree distribution is reported in Fig. 5-c. As already observed, 

the nodal degree is randomly distributed around a mean value. This 
result can be interpreted in terms of a progressive reduction of infections 
over the reference period and suggests a lower probability of future 
infections, while not excluding the possibility of small epidemics. The 
fact that the curve follows the Poisson distribution is also highlighted in 
Fig. 5-d, which reports the cumulative distribution in the logarithmic 
scale.

The treatment plant of Manocalzati serves 19 municipalities pos-
sessing very different characteristics and habits, varying from agricul-
tural areas to touristic sites, shops and industrial poles.

Fig. 6 reports the visibility graphs obtained for the other eight time 

series corresponding to the treatment plants serving the larger sewer 
network catchment areas, for which information about degree distri-
bution, cumulative degree distribution and adjacency matrix is reported 
in Fig. 7. It is possible to observe, in all graphs, the presence of many 
nodes with few connections and few hubs, i.e., nodes with many con-
nections, facilitating connections between different parts of the network 
in a small number of steps. Sometimes, these hubs result so significant in 
relation to the nature of the phenomenon analysed that they may sug-
gest possible errors in the original time series, as will be detailed later. 
Overall, the results obtained show that all the graphs, being subjected to 
spatial constraints, tend to develop neighbourhood rather than distant 
connections. This means that the concentration values detected in the 
network, although randomly distributed, are dependent on the values of 

Fig. 5. Analysis of the time series obtained for the WWTP of Manocalzati. Visibility graph with degree information (a). Visibility graph with clustering coefficient 
information (b). Degree distribution (c). Cumulative degree distribution in the logarithmic scale (d).

Fig. 6. Visibility graphs for the remaining eight WWTP.

A. Simone et al.                                                                                                                                                                                                                                 Journal of Water Process Engineering 66 (2024) 106107 

7 



their neighbours. Therefore, future connections, created based on pre-
sent and past infection values, can randomly connect to the network 
resulting in increases or decreases of infections.

The degree distributions for all visibility graphs follows a Poisson 
distribution. The spatial component, which favours connections be-
tween nodes over short distances, is well highlighted in the adjacency 

Fig. 7. Degree distribution (left), the cumulative degree distribution in the logarithmic scale (center) and the adjacency matrix (right) for the visibility graphs 
of Fig. 6.
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matrices reported in Fig. 7. To simplify the comparison between the 
behaviours of the various sewer network catchment areas, the cumula-
tive degree distributions in logarithmic scale of all visibility graphs of 
Fig. 6 are reported in Fig. 7 (center).

The logarithmic scale representation highlights how all graphs 

exhibit similar behaviours attributable to the same phenomenon. 
However, some graphs demonstrate greater efficiency in information 
transfer and contact between points (e.g., graphs with more hubs or 
highly connected hubs) compared to others. Additionally, some graphs 
deviate from the expected behaviour, suggesting the need for further 

Fig. 7. (continued).
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investigation into data quality. Therefore, the degree distribution could 
provide valuable insights both for analysing the phenomenon (e.g., 
trends, epidemic containment measures) and for assessing the quality of 
the data (e.g., detection of outliers).

Analysing the distribution of ID3 (Napoli Ovest Ex Camaldoli) and 
ID9 (Napoli Ovest), it is possible to note that their trend corresponds. 
Although these two basins are characterized by significantly different 
numbers of inhabitants (250,000 vs. 950,000), these have similar habits 
and spatial constraints. Even with respect to the analysis of the curves, 
therefore, the result of the analysis remains unchanged.

Comparing graphs with similar size (number of nodes and links), 
such as ID4 (Nocera Superiore) and ID9 (Napoli Ovest), from the Table 3
it is possible observing that the ID9 is more interconnected than ID4, 
also featuring a higher value of average clustering coefficient, as 
consequence of the greater variability, and therefore of triangles, in the 
visibility graph. In this regard, ID9 acts much better in terms of inter-
connectivity than ID4, probably because of the different social context. 
This behaviour also emerges by comparing their degree distribution, 
where it is possible to note that, although with similar number of con-
nections between nodes (pipes), the connective structure of the two 
graphs is very different, highlighting the clearly homogeneous character 
of ID4, with nodes having very similar degree and hub quite in line with 
the behaviour of the analysed phenomenon (k = 16), compared to that 
of ID9, which, although preserves the predominantly homogeneous 
character of the phenomenon, presents very relevant hubs (k = 49). This 
further consideration also suggests a more in-depth analysis regarding 
the presence of such relevant hubs in phenomena with almost homo-
geneous behaviour, which could result in anomalous values in the time 
series.

In fact, some distributions present anomalous values towards the 
final part of the curve because of main hubs in the corresponding visi-
bility graphs, which tend to shift the behaviour from random to scale- 
free, as shown in Fig. 8. These points could both indicate a strong 
component of interaction that anomalous concentration values, which 
should be cautiously evaluated.

From a careful analysis of both the time series and the results, this 
anomaly in the distribution is evidently due to the presence of an outlier 
within the starting time series. In fact, as can be seen from the graph in 
Fig. 9, the starting time series corresponding to four WWTPs are char-
acterized by the presence of a very high concentration value detected on 
the 07/05/2022. The value can even be 10 times higher than the second 

highest value in the same series. This fact could be due to a series of 
factors not attributable to the spread of the virus, such as heavy rain 
after weeks of drought. In this case, the dry period would have limited 
the transport of the viral RNA towards the treatment plant, while the 
rain event would have conveyed to the WWTP the material settled in the 
drainage system, leading to the detection of a greater value on a single 
day. Although this hypothesis should be better considered in the light of 
the viral RNA concentration decay kinetics, it is evident that the accu-
racy of the data becomes very important, as well as the introduction of 
amplifying/reducing factors when necessary.

In light of these considerations, however, it is possible to assert that 
the methodology also resulted reliable in identifying spurious elements, 
giving the opportunity to improve more and more the various steps 
involved in the process, and that the same presence of outliers, although 
affecting the connective structure of the graphs, does not affect the 
overall result of the analysis.

The analysis performed is useful to state that the main variable in 
determining the behaviour of the phenomenon is the spatial one. Indeed, 
the fact that similar behaviours occur for graphs serving sewer network 
catchment areas with different number of inhabitants (299,121 for ID4 
and 950,000 for ID9) confirms that the spread of the epidemic does not 
only depend on the number of inhabitants, but that habits and spatial 
limits govern the process of the virus spreading, which is only amplified 
by the increasing number of inhabitants. Similar outcomes were ob-
tained also in other works on the topic [36,37], based on different 
strategies, which agree that epidemiological networks are strongly 
influenced by spatial factors, also confirming that contacts between in-
dividuals generally prefer short distances, thus occurring mainly on a 
local scale.

5. Conclusions

The present work proposes a novel, non-invasive approach aimed at 
producing a spatial analysis of the trend of SARS-CoV-2. The visibility 
algorithms were used to convert the time series of viral RNA concen-
trations, previously identified by using the WBE-based approach, into 
visibility graphs, which are then analysed with CNT tools. The visibility 
graphs analysis allowed to extract nontrivial information on the 
phenomenon.

Monitoring and control measures have so far favoured basins serving 
many inhabitants, while the present study has demonstrated that the 

Fig. 8. Cumulative degree distribution corresponding to the visibility graphs of Fig. 6.
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sole number of inhabitants is not indicative of the trend of the phe-
nomenon. Somewhat, the transformation of the time series highlighted 
how the phenomenon is directly influenced by the spatial constraints 
and habits in the analysed basins, growing exponentially as the number 
of inhabitants increases. Therefore, the habits and the spatial develop-
ment of the territory influenced the spread of the epidemic, which tends 
to be amplified by the number of inhabitants. This information repre-
sents a very important support to the monitoring actions because 
different measures could be devised according to the type of territory to 
be monitored. This means that the procedures aimed at preventing the 
spread of the virus could be much more effective if habits and spatial 
limits are considered as parameters instead of the number of inhabitants, 
also in creating an order of importance in either the closure or the 
control of urban centres in case of alert. In fact, the probability of 
diffusion is significantly higher in metropolitan areas, characterized by 
higher level of services for the community, excellent vehicles of the 
disease.

With respect to the reliability of the data used, it was highlighted 
how the approach manages to bring out possible outliers. In fact, despite 
the presence of anomalous data within the analysed time series, the 
emerging behaviour of the phenomenon remained evident.

In perspective, it would be useful to carry out more in-depth studies 
that consider other factors in addition to the size of the population, also 
considering a multidisciplinary approach, such as the level of 
commuting, land use, daily network of movement between cities, de-
mographics, vaccine uptake rate, variant circulating, to have increas-
ingly reliable results with respect to the trend of the phenomenon and 
any further measures to contain the epidemic.

The proposed methodology has evidently confirmed the importance 
of the WBE as an investigative tool. Furthermore, the visibility algo-
rithms coupled with the WBE opens new perspectives, with actions and 
implications also in social and public health terms, such as, for example, 
in monitoring the variability in the use of drugs and medicines, in 
determining periods and areas with a high polluting impact, arranging, 
where necessary, ad hoc measures and interventions. The study also lays 
the foundations for further developments, both aimed at a well-founded 
forecast analysis of the trend of the virus and at the non-invasive 
investigation of other substances, with obvious implications both in 
the social and medical fields. More specifically, future efforts may use 
the proposed methodology to support the development of guidelines 

during states of emergency by identifying characteristics that may 
significantly influence the spread of epidemics.
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