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Abstract— This work presents a new formulation of the inte-
gral interconnection and damping-assignment passivity-based
control methodology for underactuated mechanical systems
subject to both matched and unmatched disturbances, either
constant or position-dependent. The new controller is also ap-
plicable to systems with non-constant input matrix. Simulations
results on two examples demonstrate its effectiveness.

I. INTRODUCTION

The control of underactuated mechanical systems has been
approached with various methodologies, including model
predictive control [1], optimal control [2], and energy-
shaping controllers [3]. Among the latter, the Interconnection
and damping assignment Passivity based control (IDA-PBC)
methodology [4] involves designing the control action such
that the closed-loop dynamics preserves the port-Hamiltonian
structure and is characterized by a desired total energy.
The key advantages of IDA-PBC are the interpretability of
the closed-loop dynamics in terms of mechanical structure,
and its passivity properties. Several works have investigated
the robustification of IDA-PBC through integral actions
resulting in the integral IDA-PBC methodology (iIDA-PBC)
[5]. The initial formulation of iIDA-PBC was applicable
to a limited class of systems subject to constant matched
disturbances, and it employed a change of coordinates [6].
Subsequent works have avoided the change of coordinates,
see [7], and have extended the result to a broader class of
systems [8]. More recent works have investigated the iIDA-
PBC for systems with physical damping [9], [10] and with
non-constant disturbances [11], [12]. In our recent works
[13], [14] we have extended the iIDA-PBC to underactuated
mechanical systems subject to matched disturbances, either
constant or state-dependent, and constant unmatched distur-
bances. However, the former results are limited to mechanical
systems with constant input matrix. This excludes well-
known examples such as the pendulum-on-cart (POC) and
the vertical takeoff and landing aircraft (VTOL) for which the
existing iIDA-PBC formulations are not directly applicable.
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The main contribution of this work is a new formulation
of the iIDA-PBC methodology for underactuated mechanical
systems characterized by non-constant input matrix, and
subject to both matched and unmatched additive distur-
bances, either constant or position-dependent. To the best of
the authors’ knowledge, this is the first iIDA-PBC design
applicable to a class of systems including the POC and
VTOL with unmatched disturbances. The effectiveness of the
new controller is demonstrated with numerical simulations.

Notation. Function arguments are specified on first use and
subsequently omitted in equations for conciseness.

II. OVERVIEW OF INTEGRAL IDA-PBC
The dynamics of an underactuated mechanical system with

n DOFs and the control input u ∈ Rm applied through the
input matrix G (q) ∈ Rn×m, where rank (G) = m < n for
all q ∈ Rn, and subject to the disturbances δ(q) ∈ Rn, is
described in port-Hamiltonian form as[

q̇
ṗ

]
=

[
0 I
−I −D

] [
∇qH
∇pH

]
+

[
0
G

]
(u+ v)−

[
0
δ

]
, (1)

where v ∈ Rm is an auxiliary control to add integral action,
and D = D⊤ ⪰ 0 is the physical damping. The system states
are the positions q ∈ Rn and the momenta p = M(q)q̇ ∈
Rn, while y = G⊤∇pH is a passive output of (1). The
mechanical energy of the system,

H(q, p) =
1

2
p⊤M(q)−1p+Ω(q), (2)

is characterized by the inertia matrix M(q) = M(q)⊤ ≻ 0,
and the potential energy Ω(q). The remaining terms in (1) are
the identity matrix I , the vector of partial derivatives of H
with respect to q, ∇qH , and the vector of partial derivatives
of H with respect to p, ∇pH . The controller design aims at
stabilizing the prescribed equilibrium (q, p) = (q⋆, 0). This
is achieved, in the absence of disturbances (i.e., δ = 0), by
using v = 0 and the IDA-PBC control law [4]

u = G† (∇qH −MdM
−1∇qHd + J2∇pHd

)
+ ud,

ud = −KvG
⊤∇pHd,

(3)

where Hd(q, p) =
1
2p

⊤Md(q)
−1p + Ωd(q), Kv = K⊤

v ≻ 0,
and G† =

(
G⊤G

)−1
G⊤. The control law (3) exists provided

that the inertia matrix Md(q) = M⊤
d (q) ≻ 0, the potential

energy Ωd(q), and the matrix J2(q, p) = −J⊤
2 (q, p) verify

for all (q, p) ∈ R2n the partial differential equations (PDEs)

G⊥ (∇q(p
⊤M−1p)−MdM

−1∇q(p
⊤M−1

d p)
)

(4)

+G⊥ (2J2M−1
d p

)
= 0,

G⊥ (∇qΩ−MdM
−1∇qΩd

)
= 0, (5)



where G⊥ is defined such that G⊥G = 0 and rank
(
G⊥) =

n − m. To achieve the regulation goal (q, p) = (q⋆, 0), the
potential energy Ωd(q) should also admit a strict minimizer
in q⋆ hence verifying the conditions ∇qΩd (q

⋆) = 0 and
∇2

qΩd (q
⋆) ≻ 0. The desired closed-loop dynamics is thus[

q̇
ṗ

]
=

[
0 S12

−S⊤
12 J2 −GKvG

⊤ −DS12

] [
∇qHd

∇pHd

]
, (6)

where S12 = M−1Md, see [4]. Computing the time-
derivative of Hd along the trajectories of (6) yields then

Ḣd = −(∇pHd)
⊤(GKvG

⊤ +DM−1Md − J2)∇pHd. (7)

According to [15], it follows from (7) that Ḣd ≤ 0 if

∆S = GKvG
⊤ +

1

2
DM−1Md +

1

2
MdM

−1D ⪰ 0. (8)

If D = 0, Ḣd ≤ 0 for all Kv ≻ 0 and the equilibrium
(q, p) = (q⋆, 0) is asymptotically stable if yd = G⊤∇pHd

is a detectable output of (6), that is yd → 0 =⇒ (q, p) →
(q⋆, 0). In addition, Ḣd ≤ y⊤d ud, where yd is a passive output
of (6), that is the control law (3) preserves passivity, see [4].

If the disturbances are constant and matched (i.e., δ =
Gδ0, δ0 ∈ Rm), the input matrix G and the matrix Md are
constant, D = 0, and the matrix M is independent of the
unactuated coordinates, the iIDA-PBC design [5] can be used
to compensate the disturbance. Then, the auxiliary control v
and the time-derivative of the integral state ζ take the form

v = −KIIKIK
−T
II G⊤M−1∇qΩd −KvKIζ,

ζ̇ = K⊤
IIG

⊤M−1∇qΩd,
(9)

with constant KI ≻ 0 and KII = (G⊤M−1G)−1. The
extended closed-loop dynamics in port-Hamiltonian form isż1ż2

ż3

 =

 0 S12 S13

−S⊤
12 −GKvG

⊤ 0
−S⊤

13 0 0

∇z1Wd

∇z2Wd

∇z3Wd

 , (10)

with S13 = −M−1GKII , z1 = q, z2 = p+GKIIKI(ζ−α),
z3 = ζ. Subsequent versions of iIDA-PBC have avoided the
coordinate transformation [7], and have extended the results
to systems with non-constant matrices Md and G, see [8].

III. MAIN RESULT

This section presents a new iIDA-PBC design for a class
of mechanical systems defined by Assumptions 1 to 4.

Assumption 1. The PDEs (4)-(5) are solvable analytically
with Md(q), J2(q, p) and Ωd(q), where q⋆ = argmin (Ωd),
and S12 = M−1Md in (6). The output yd = G⊤∇pHd is
detectable. The model parameters D ⪰ 0, G(q),M(q),Ω(q)
are exactly known, and the states (q, p) are measurable.
The solvability of PDEs is a fundamental step in IDA-PBC
and remains a major challenge [4]. This step is beyond the
scope of this paper, which focuses on the integral action
design for disturbance rejection. Nevertheless, the PDEs are
solvable for many examples, see e.g. [4], [16]. Differently
from [13], [14], the matrix G is not required to be constant.

Assumption 2. The disturbance is parameterized as δ =
δ1GG⊤h(q) + δ2G

⊥⊤
G⊥h(q), where δ1, δ2 ∈ R are un-

known scalar constants, while h(q) ∈ Rn is a known globally
bounded and continuously differentiable function of q. The
prescribed equilibrium q = q⋆ is assignable for system (1),
that is G⊥

(
∇qΩ(q

⋆) + δ2G
⊥⊤

G⊥h(q⋆)
)
= 0.

Without loss of generality, the disturbances can be separated
into matched (i.e., δ1GG⊤h(q)) and unmatched components
(i.e., δ2G

⊥⊤
G⊥h(q)), where δ1 and δ2 are unknown con-

stants (i.e., the disturbance bounds are unknown).
Assumption 3. There exist some Kv ≻ 0 and some scalar

constant Γ1 > 0 such that (8) holds and Γ1I −∆S ≻ 0.

A. Controller design
The target closed-loop dynamics is defined as
q̇
ṗ

ζ̇1
ζ̇2

 =


0 S12 S13 S14

−S⊤
12 −S22 S23 S24

−S⊤
13 −S⊤

23 −S33 S34

−S⊤
14 −S⊤

24 −S43 −S44



∇qWd

∇pWd

∇ζ1Wd

∇ζ2Wd

 , (11)

where ζ1 and ζ2 are integral states introduced to reject the
matched and unmatched disturbances respectively, while

S13 = S12∇pΨ1, S14 = S12∇pΨ2,

S22 = GKvG
⊤ − J2 +DM−1Md,

S23 = ∇pΨ1Γ1 − S22∇pΨ1 − S⊤
12∇qΨ1,

S24 = ∇pΨ2Γ1 − S22∇pΨ2 − S⊤
12∇qΨ2,

S33 = S⊤
13∇qΨ1 + S⊤

23∇pΨ1,

S34 = −S⊤
13∇qΨ2 − S⊤

23∇pΨ2,

S43 = S⊤
14∇qΨ1 + S⊤

24∇pΨ1,

S44 = S⊤
14∇qΨ2 + S⊤

24∇pΨ2.

(12)

The storage function Wd(q, p, ζ1, ζ2) is defined as

Wd = H⋆
d +

k1
2

(ζ1 −Ψ1 − α)
2
+

k2
2

(ζ2 −Ψ2 − β)
2
,

H⋆
d (q, p, ζ2) = Ωd(q) + Φ(q, p, ζ2) +

1

2
p⊤M−1

d p+ k0,

Ψ1(q, p) = h(q)⊤GG⊤p, Ψ2(q, p) = h(q)⊤G⊥⊤
G⊥p,

(13)

where α = δ1/(k1Γ1) ∈ R and β = δ2/(k2Γ1) ∈ R,
with k1, k2, k0,Γ1 positive scalar constants. In particular,
H⋆

d (q, p, ζ2) is an extended Hamiltonian, with Md(q) and
Ωd(q) that solve the PDEs (4) and (5), see Assumption 1.
The scalar function Φ(q, p, ζ2) represents the mechanical
work of the closed-loop non-conservative forces resulting
from the unmatched disturbance, see [13], and it is defined
by the following assumption.

Assumption 4. Given the assignable equilibrium q⋆ of (1),
there exists a scalar function Φ(q, p, ζ2) that verifies

G⊥ (∇pΨ2Γ1k2(ζ2 −Ψ2)−MdM
−1∇qΦ

)
+G⊥ (∇pΨ2Γ1 −MdM

−1∇qΨ2

)
∇ζ2Φ = 0, (14a)

∇pΦ+∇pΨ2∇ζ2Φ = 0, (14b)
∇qΩd +∇qΦ = 0 q = q⋆, (14c)

∇2
qΩd +∇2

qΦ ≻ 0 q = q⋆. (14d)



This assumption is a bottleneck of the proposed approach,
since solving the PDEs (14a) to (14d) can be challenging.
The new control input is given by

u = G† (∇qH − S⊤
12 (∇qH

⋆
d +∇qΨ2∇ζ2Φ)

)
+G† (−S22M

−1
d p+∇pΨ1Γ1k1 (ζ1 −Ψ1)

)
.

(15)

The time-derivatives of the new integral states are

ζ̇1 = −(∇pΨ1)
⊤S⊤

12 (∇qH
⋆
d +∇qΨ2∇ζ2Φ)

−((∇pΨ1)
⊤(Γ1I − S⊤

22)− (∇qΨ1)
⊤S12)M

−1
d p, (16a)

ζ̇2 = −(∇pΨ2)
⊤S⊤

12 (∇qH
⋆
d +∇qΨ2∇ζ2Φ)

−((∇pΨ2)
⊤(Γ1I − S⊤

22)− (∇qΨ2)
⊤S12)M

−1
d p. (16b)

Proposition 1. The system (1) with Assumptions 1 to 4
in closed-loop with the new control law (15) and the time-
derivatives of the integral states (16a) and (16b) yields (11)
with the parameters (12). The proof is given in Appendix A.

Remark 1. The PDEs (4) and (5) are preserved by design,
thus the controller (15) is modular with respect to the IDA-
PBC (3). In addition, the proposed design contains our previ-
ous implementation [13] as a special case: if the input matrix
G and the disturbance are constant (i.e., h(q) = κ ∈ Rn) we
have Ψ2 = G⊥p and therefore ∇qΨ2 = 0,∇pΨ2 = G⊥⊤

for κ = 1, recovering the PDE (13a) in [13], that is

G⊥
(
G⊥⊤

Γ1

(
k2(ζ2 −G⊥p) +∇ζ2Φ

)
− S⊤

12∇qΦ
)
= 0.

If in addition G⊥S⊤
12 = G⊥MdM

−1 is constant, then the
former PDE has constant coefficients, and Φ(p, ζ2) can be
expressed as Φ = Λ⊤(q− q⋆), where Λ(p, ζ2) is a vector of
closed-loop non-conservative forces, see [17], [18].

B. Stability analysis

Proposition 2. Consider the system (1) with Assumptions
1 to 4 in closed-loop with the new control law (15) and
the time-derivatives of the integral states (16a) and (16b).
Then the equilibrium point (q, p, ζ1, ζ2) = (q⋆, 0, α, β) of
the closed-loop system (11) is locally asymptotically stable.

Proof. It follows from (13) that Wd ≥ 0 for some k0 > 0
in proximity of q⋆. Computing the time-derivative of Wd

along the trajectories of the closed-loop system (11) yields

Ẇd = −∇pW
⊤
d S22∇pWd −∇ζ1W

⊤
d S33∇ζ1Wd

−∇ζ2W
⊤
d S44∇ζ2Wd +∇ζ1W

⊤
d S34∇ζ2Wd

−∇ζ2W
⊤
d S43∇ζ1Wd.

(17)

Computing the symmetric part of S22 as ∆S = 1
2S22+

1
2S

⊤
22

yields (8), which is verified by Assumption 3. If follows from
(12) that S34 − S⊤

43 = −2(∇pΨ1)
⊤(Γ1I − ∆S)(∇pΨ2).

Substituting S33 and S44 in (17) while omitting skew-
symmetric terms yields

Ẇd = −∇pW
⊤
d ∆S∇pWd

−∇ζ1W
⊤
d (∇pΨ1)

⊤(Γ1I −∆S)(∇pΨ1)∇ζ1Wd

−∇ζ2W
⊤
d (∇pΨ2)

⊤(Γ1I −∆S)(∇pΨ2)∇ζ2Wd

−2∇ζ2W
⊤
d (∇pΨ2)

⊤(Γ1I −∆S)(∇pΨ1)∇ζ1Wd.

(18)

Refactoring terms in (18) yields finally

Ẇd = −∇pW
⊤
d ∆S∇pWd − η⊤(Γ1I −∆S)η,

η = ∇pΨ1∇ζ1Wd +∇pΨ2∇ζ2Wd.
(19)

It follows from Assumption 3 and (19) that Ẇd ≤ 0, hence
the equilibrium is stable and all states are bounded.
Case 1. If ∆S ≻ 0 (i.e., D ≻ 0), it follows from LaSalle’s
theorem (see Theorem 3.4 in [19]) that the trajectories of
the closed-loop system (11) converge asymptotically to the
set ∇pWd = 0 ∩ η = 0. Combining the former expressions
while substituting (14b), which is verified by Assumption
4, and the partial derivatives of Wd (see (20) in Appendix
A) yields p = 0. Computing ṗ from (11) yields then (14c),
which is verified by Assumption 4, thus the equilibrium point
(q, p) = (q⋆, 0) is locally asymptotically stable.
Case 2. If D = 0 then ∆S = GKvG

⊤ ⪰ 0 and Ẇd = 0 =⇒
G⊤∇pWd = 0 ∩ η = 0. Combining the former expressions
and substituting (14b), which is verified by Assumption 4,
yields yd = G⊤M−1

d p = 0. Since the output yd is detectable
by Assumption 1, the equilibrium point (q, p) = (q⋆, 0) is
locally asymptotically stable, see [4] □

Remark 2. While the proposed controller (15) has a wider
applicability compared to our prior work, [13], [14], the
stability conditions are more stringent. This is apparent if
D = 0, for which Assumption 3 yields Γ1I −GKvG

⊤ ≻ 0,
while the corresponding condition in [13], [14] is simply
Γ1 > 0. Physical damping D ≻ 0 further restricts the
stability conditions, in accordance with [10], [15].

IV. SIMULATION RESULTS

A. Pendulum-on-cart system

The POC consists of a pendulum of length l0 with a point
mass m0 at the tip, mounted on an actuated cart, thus n = 2
and m = 1, see Fig. 1. The equations of motion after partial
feedback-linearization, see [16], are given by (1) with

q =

[
q1
q2

]
, M = I, D = 0, G =

[
−b cos (q1)

1

]
,

Ω = a(1− cos (q1)),

where a, b are positive constants depending on m0 and l0.
The angle q1 of the unactuated pendulum is measured from
the vertical, while the position q2 of the actuated cart is
measured from an arbitrary origin. The matrices Md, J2 and
the potential energy Ωd that solve the PDEs (4) and (5) are

Md =

[
1
3b

2k cos (q1)
3 − 1

2bk cos (q1)
2

− 1
2bk cos (q1)

2
m20 + k cos (q1)

]
,

J2 = j0
bk sin (q1) cos (q1)

24m20 + 6k cos (q1)

[
0 1
−1 0

]
,

j0 = p2bk cos (q1)
2
+ 3p1k cos (q1) + 6m20p1,

Ωd =
3a

b2k cos (q1)
2 +

kp
2

(γ1)
2
,

γ1 = q2 +
6m20 tan (q1)

bk
+

3

b
log

(
cos (q1) + sin (q1)

cos (q1)

)
,



where kp, k,m20 are tuning parameters, and Md ≻ 0 for all
−π/2 < q1 < π/2. For illustrative purposes, the system is
subjected to a position-dependent matched disturbance and
a constant unmatched disturbance, that is δ = δ1GG⊤q +
δ2G

⊥⊤
. The assignable equilibrium is (q1, q2) = (q⋆1 , q

⋆
2),

where a sin (q⋆1) = δ2(1+b2 cos (q⋆1)
2
), and it exists provided

that |δ2| ≤ a/(1 + b2). To implement the controller (15), q⋆1
is computed from the equation

sin (q⋆1) =
(1 + b2 cos (q⋆1)

2
)

a
Γ1k2(ζ2 −Ψ2).

In addition, Ψ1 = (p2 − p1b cos (q1))(q2 − bq1 cos (q1)) and
Ψ2 = p1 + p2b cos (q1). The scalar function Φ(q, p, ζ2) that
verifies (14a) to (14d) locally at the assignable equilibrium
(q, p) = (q⋆, 0) with q⋆2 = 0 is given in Appendix B.

Fig. 1. Schematic of the POC system.
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Fig. 2. Simulation results for POC with position-dependent matched
disturbance and constant unmatched disturbance: (a) pendulum position;
(b) cart position; (c) control input; (d) integral states (16a) and (16b).
“Simplified design” imposes ζ2 = 0, similarly to [14].

The simulations were performed in MATLAB with
an ODE23 solver using the parameters a = 1, b =
1 and the initial conditions (q1, q2, p1, p2, ζ1, ζ2) =
(1.37,−0.1, 0, 0, 0, 0). The tuning parameters, k = m20 =

0.01, kp = 1,Kv = 0.01 and k1 = 10, k2 = 0.0075,Γ1 =
0.05, verify Assumption 3. Figure 2 shows the system re-
sponse with δ1 = 0.02 and δ2 = 0.05. Using the controller
(15) with the integral states (16a) and (16b), the position
reaches the assignable equilibrium (q⋆1 , q

⋆
2) = (0.1, 0). In-

stead, either ignoring the unmatched disturbance (i.e., see
“Simplified design” in Fig. 2) or employing the baseline
IDA-PBC (3) yields large errors on the cart position.

B. Vertical-take-off and landing aircraft

The VTOL is characterized by m = 2 actuators, that is
(u1, u2), and n = 3 DOF, that is the horizontal and vertical
coordinates of the center of mass (x, y), and the roll angle θ,
see Fig. 3. For conciseness, the equations of motion and the
details of the IDA-PBC implementation (3) are omitted, and
the reader is referred to [16]. For illustrative purposes, the
system is subjected to a constant matched disturbance and a
constant unmatched disturbance, that is δ = δ1G+ δ2G

⊥⊤
.

This results in Ψ1 = p1 + p2 + p3
1
ϵ (cos (q3) + sin (q3))

and Ψ2 = p1 cos(q3) − ϵp3 + p2 sin(q3), where 0 ≤ ϵ ≤ 1
is a parameter that captures the effect of the “slopped”
wings, inducing a coupling between the vertical and the
roll dynamics. The assignable equilibrium is (q1, q2, q3) =
(q⋆1 , q

⋆
2 , q

⋆
3), where −g sin (q⋆3) = (ϵ2 + 1)δ2, and it exists

provided that |δ2| ≤ g/(1+ ϵ2). To implement the controller
(15), q⋆3 is computed from the equation

sin (q⋆3) = −1

g
(ϵ2 + 1)Γ1k2(ζ2 −Ψ2).

Fig. 3. Schematic of the VTOL system with (q1, q2, q3) = (x, y, θ).

The simulations were performed in MATLAB with an
ODE23 solver and the parameters ϵ = 1, Kp =[
0.1 0
0 0.2

]
, Kv = K0 =

[
1 0.5
0.5 1

]
, k1 = 1,

k2 = 1,Γ1 = 3.1, which verify Assumption 3.
The initial conditions are (q1, q2, q3, p1, p2, p3, ζ1, ζ2) =
(−5, 0, 0.1,−0.1,−0.1, 0.1, 0, 0) (i.e., not corresponding to
steady state). Figure 4 shows the system response with
δ1 = 0.5 and δ2 = −0.2. Employing the new controller (15)
with the integral states (16a) and (16b), the position reaches
the assignable equilibrium (q⋆1 , q

⋆
2 , q

⋆
3) = (0, 0, 0.04). Either

ignoring the unmatched disturbance (i.e., see “Simplified
design” in Fig.4) or employing the baseline IDA-PBC (3),
while setting Kv = 10K0 to reduce oscillations, yields large
steady-state errors on the position (x, y).
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Fig. 4. Simulation results for VTOL with constant matched and unmatched
disturbances: (a) x position; (b) y position; (c) roll angle θ; (d) control
input u1 and (e) u2; (f) integral states (16a) and (16b). “Simplified design”
imposes ζ2 = 0.

The MATLAB code of both examples, including the analytical
expression of M,Ω,Md,Ωd, J2, and Φ that solves (14a) to
(14d) locally at q⋆ for the VTOL, are available on IEEE
Code Ocean.

V. CONCLUSION

This work introduces a novel iIDA-PBC design for un-
deractuated mechanical systems with a non-constant input
matrix and subject to both matched and unmatched distur-
bances, either constant or position-dependent. The proposed
controller design is more general than existing implementa-
tions, but it imposes stricter stability conditions. In addition,
rejecting unmatched disturbances requires solving additional
PDEs, which poses practical challenges. Simulation results
on two examples with various types of disturbances demon-
strate the effectiveness of the new controller.

Future work will explore methodologies for solving the
PDEs to provide constructive solutions for a broad class of
systems and will investigate different classes of disturbances.
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APPENDIX A
Proof of Proposition 1.

Computing the partial derivatives of Wd from (13) yields

∇qWd = ∇q

(
Ωd +

1

2
p⊤M−1

d p+Φ

)
−k1∇qΨ1(ζ1 −Ψ1 − α)− k2∇qΨ2(ζ2 −Ψ2 − β),

∇pWd = M−1
d p− k1∇pΨ1(ζ1 −Ψ1 − α)

+∇pΦ− k2∇pΨ2(ζ2 −Ψ2 − β),

∇ζ1Wd = k1 (ζ1 −Ψ1 − α) ,

∇ζ2Wd = k2 (ζ2 −Ψ2 − β) +∇ζ2Φ.

(20)

Equating the corresponding rows of (1) and of (11) yields

M−1p = S12∇pWd + S13∇ζ1Wd + S14∇ζ2Wd, (21a)

−∇qH −D∇pH +Gu− δ1GG⊤h(q)− δ2G
⊥⊤

G⊥h(q) =

−S⊤
12∇qWd − S22∇pWd + S23∇ζ1Wd + S24∇ζ2Wd,

(21b)

ζ̇1 = −S⊤
13∇qWd − S⊤

23∇pWd − S33∇ζ1Wd + S34∇ζ2Wd,
(21c)

ζ̇2 = −S⊤
14∇qWd − S⊤

24∇pWd − S43∇ζ1Wd − S44∇ζ2Wd.
(21d)

Step 1. Substituting S13, S14 from (12) and the partial
derivatives of Wd from (20) into (21a) yields

M−1p = S12

(
M−1

d p+∇pΦ
)
+ S12∇pΨ1k1 (ζ1 −Ψ1 − α)

−S12 (k1∇pΨ1(ζ1 −Ψ1 − α) + k2∇pΨ2(ζ2 −Ψ2 − β))

+S12∇pΨ2 (k2 (ζ2 −Ψ2 − β) +∇ζ2Φ) .

Refactoring the former expression and subtracting the PDE
(14b), which is verified by Assumption 4, yields the equation
M−1p = M−1MdM

−1
d p, which is verified for all Md ≻ 0.

Step 2. Substituting S23 and S24 from (12) and the partial
derivatives of Wd from (20) into (21b) yields

−∇qH −D∇pH +Gu− δ1GG⊤h(q)− δ2G
⊥⊤

G⊥h(q) =

−S⊤
12∇q

(
Ωd +

1

2
p⊤M−1

d p+Φ

)
− S22

(
M−1

d p+∇pΦ
)

+S⊤
12 (k1∇qΨ1(ζ1 −Ψ1 − α) + k2∇qΨ2(ζ2 −Ψ2 − β))

+S22 (k1∇pΨ1(ζ1 −Ψ1 − α) + k2∇pΨ2(ζ2 −Ψ2 − β))

+
(
∇pΨ1Γ1 − S22∇pΨ1 − S⊤

12∇qΨ1

)
k1 (ζ1 −Ψ1 − α)

+
(
∇pΨ2Γ1 − S22∇pΨ2 − S⊤

12∇qΨ2

)
k2 (ζ2 −Ψ2 − β)

+
(
∇pΨ2Γ1 − S22∇pΨ2 − S⊤

12∇qΨ2

)
∇ζ2Φ.

Substituting α and β in the previous expression and noting
that ∇pΨ1 = GG⊤h(q),∇pΨ2 = G⊥⊤

G⊥h(q) cancels the
disturbance δ1 and δ2 yielding

−∇qH −D∇pH + S⊤
12∇q

(
Ωd +

1

2
p⊤M−1

d p+Φ

)
+Gu+ S22M

−1
d p−∇pΨ1Γ1k1 (ζ1 −Ψ1) =

−S22 (∇pΦ+∇pΨ2∇ζ2Φ) +∇pΨ2Γ1k2 (ζ2 −Ψ2)

+
(
∇pΨ2Γ1 − S⊤

12∇qΨ2

)
∇ζ2Φ.

Multiplying the above by G† and substituting the control law
(15) yields the PDE (14b) (i.e., pre-multiplied by G†S22),

which is verified by Assumption 4. Multiplying it instead by
G⊥ yields the sum of the PDEs (4), (5), (14a), and (14b)
(i.e., pre-multiplied by G⊥S22), which are all verified by
Assumption 1 and Assumption 4.
Step 3. Substituting S33, S34 from (12) and the partial
derivatives of Wd from (20) into (21c) yields

ζ̇1 = −S⊤
13∇q

(
Ωd +

1

2
p⊤M−1

d p+Φ

)
+S⊤

13 (k1∇qΨ1(ζ1 −Ψ1 − α) + k2∇qΨ2(ζ2 −Ψ2 − β))

+S⊤
23 (k1∇pΨ1(ζ1 −Ψ1 − α) + k2∇pΨ2(ζ2 −Ψ2 − β))

−
(
S⊤
13∇qΨ1 + S⊤

23∇pΨ1

)
k1 (ζ1 −Ψ1 − α)

+
(
−S⊤

13∇qΨ2 − S⊤
23∇pΨ2

)
k2 (ζ2 −Ψ2 − β)

−S⊤
23

(
M−1

d p+∇pΦ
)
−
(
S⊤
13∇qΨ2 + S⊤

23∇pΨ2

)
∇ζ2Φ.

Refactoring terms in the former expression cancels α and β.
Substituting (16a) yields (14b) (i.e., pre-multiplied by S⊤

23),
which is verified by Assumption 4.
Step 4. Substituting S43, S44 from (12) and the partial
derivatives of Wd from (20) into (21d) yields

ζ̇2 = −S⊤
14∇q

(
Ωd +

1

2
p⊤M−1

d p+Φ

)
+S⊤

14 (k1∇qΨ1(ζ1 −Ψ1 − α) + k2∇qΨ2(ζ2 −Ψ2 − β))

+S⊤
24 (k1∇pΨ1(ζ1 −Ψ1 − α) + k2∇pΨ2(ζ2 −Ψ2 − β))

−
(
S⊤
14∇qΨ1 + S⊤

24∇pΨ1

)
k1 (ζ1 −Ψ1 − α)

−
(
S⊤
14∇qΨ2 + S⊤

24∇pΨ2

)
k2 (ζ2 −Ψ2 − β)

−S⊤
24

(
M−1

d p+∇pΦ
)
−
(
S⊤
14∇qΨ2 + S⊤

24∇pΨ2

)
∇ζ2Φ.

Refactoring terms in the former expression cancels α and β.
Substituting (16b) yields (14b) (i.e., pre-multiplied by S⊤

24),
which is verified by Assumption 4, concluding the proof □

APPENDIX B

Scalar function Φ(q, p, ζ2) for the POC system.

Φ =
3(q⋆1 − q1)

b2k

(
2a tan (q⋆1) + 3kpγ3(2m20 + k cos (q⋆1))

k cos (q⋆1)
2

)

−3kpq2γ3
bk

− γ2
p1 − ζ2 + bp2 cos (q1)

2Γ1k cos (q⋆1)
3
(
1 + b2 cos (q1)

2
)

− a sin (q⋆1)γ2

2Γ2
1k2k cos (q

⋆
1)

3
(
1 + b2 cos (q⋆1)

2
)(

1 + b2 cos (q1)
2
) ,

γ2 =
(
2ak + 12kpm

2
20

)
cos (q1)

3
sin (q⋆1)

+2Γ1k2k cos (q
⋆
1)

3
(p1 − ζ2)− 3γ4k

2kp cos (q1)
2
cos (q⋆1)

3

+2Γ1k2bkp2 cos (q1) cos (q
⋆
1)

3
+ 3γ4k

2kp cos (q1)
3
cos (q⋆1)

2

−6kpm20 cos (q1) cos (q
⋆
1)

2
sin (q1)(2m20 + k cos (q1))

+6kkpm20 cos (q1)
3
cos (q⋆1) sin (q1)

+6kpkm20γ4 cos (q1) cos (q
⋆
1)(cos (q1)

2 − cos (q⋆1)
2
)

+2Γ1k2bk cos (q1)
2
cos (q⋆1)

3
(p1 + p2b cos (q1)− ζ2),

γ3 = kγ4 + 2m20 tan (q
⋆
1), γ4 = log

(
1 + sin (q⋆1)

cos (q⋆1)

)
.


