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ABSTRACT
Here, we explored the vast potential of microbiome-based interventions in preventing and mana-
ging non-communicable diseases including obesity, diabetes, allergies, celiac disease, inflamma-
tory bowel diseases, malnutrition, and cardiovascular diseases across different life stages. We 
discuss the intricate relationship between microbiome and non-communicable diseases, empha-
sizing on the “window of opportunity” for microbe–host interactions during the first years after 
birth. Specific biotics and also live biotherapeutics including fecal microbiota transplantation 
emerge as pivotal tools for precision medicine, acknowledging the “one size doesn’t’ fit all” aspect. 
Challenges in implementation underscore the need for advanced technologies, scientific transpar-
ency, and public engagement. Future perspectives advocate for understanding maternal−neonatal 
microbiome, exploring the maternal exposome and delving into human milk's role in the establish-
ment and restoration of the infant microbiome and its influence over health and disease. An 
integrated scientific approach, employing multi-omics and accounting for inter-individual variance 
in microbiome composition and function appears central to unleash the full potential of early-life 
microbiome interventions in revolutionizing healthcare.
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Introduction

The incidence of health deterioration associated 
with non-communicable diseases (NCDs) has 
been on an upward trajectory. Data projects that 
by 2050, several NCDs, such as diabetes and 
ischemic heart disease, will be among the leading 
causes of diseases.1 The primary health system’s 
preventative measures involve minimizing expo-
sure to risk factors. However, addressing these 
risk factors poses both economic and technical 
challenges for public and private health systems.2 

Reducing exposure to risk factors and adopting 
healthy dietary habits, such as increasing the intake 
of whole grains, fermented foods, and soluble fibers 
while reducing the consumption of refined grains 

and processed meat, will modulate the gut micro-
biota and reduce the risk of NCDs.3,4

The importance of microbiome modulation for 
health and disease management shows promise in 
preventing and managing or treating NCDs.5,6 

These alterations are causally implicated in physio-
logical, immunological, and metabolic processes 
and ultimately in various inflammatory diseases, 
including autoimmune diseases.7–9 Acting as 
a mediator, the gut microbiome vertical transmis-
sion and the sharing of environments with NCD- 
related microbial reservoirs may influence the 
onset and progression of diseases. This suggests 
that it transforms NCDs from noncommunicable 
to communicable,10–12 and the breakdown of the 
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symbiotic relationship between the intestinal 
microbiome and its host emerges as a potential 
cause for NCDs. Additionally, the gut microbiome 
can influence brain functions through neuroin-
flammation processes driven by inappropriate anti-
gen trafficking, which can include nutrients.10,13–15

Research on the human microbiome, encom-
passing intestinal and extra-intestinal microbiotas, 
appears vital for understanding the causes and 
complications of NCDs.14 There is indeed 
a shared understanding that exerting better control 
over the composition and function of an indivi-
dual’s microbial ecosystem can be advantageous for 
promoting the production of metabolites derived 
from microbes.16 Here we aim to give an overview 
of the potential use of pre-, pro-, and post-biotics 
and dietary interventions in disease attenuation 
and management throughout different life stages, 
emphasizing the relevance of the ‘window of 
opportunity’ during early infancy and showcasing 
the microbiome’s potential to revolutionize health-
care and enhance well-being during pregnancy, 
lactation, and long-lasting effects in later stages in 
life.

Prenatal factors and early-life maternal-fetal 
microbiome

Impact of prenatal physiological changes on 
maternal microbiome and pregnancy outcomes

The hormonal, immunological, and metabolic 
changes during pregnancy exert an influence on 
microbiome and clinical outcomes with potential 

implications for maternal and infant well-being.17 

Physiological changes during pregnancy are related 
to shifts in maternal microbial diversity,18,19 and this 
has been related to adverse pregnancy outcomes and 
obstetric diseases such as gestational diabetes mellitus 
(GDM).20,21 These outcomes suggest a relationship 
between microbiota and maternal physiological 
changes that may infer complication pre-, peri-, and 
post-partum in both the mother and offspring22 

(Table 1). As an example, a metagenomic sequencing 
analysis of 749 women from the InSPIRe cohort in 
France showed that maintaining lower microbial 
diversity and lower vaginal Lactobacillus crispatus 
abundance during the last trimester of pregnancy 
may be linked to preterm delivery, and the overall 
diversity of vaginal microbiota could be used as an 
indicator of preterm delivery risk.23 Another recently 
published study demonstrated that GDM, which is 
currently diagnosed toward the end of the second 
trimester, can be predicted from as early as week 12 
using clinical and immunological data and micro-
biome characteristics.20 Additionally, changes in 
maternal oral microbiome have also been linked 
with adverse outcomes including preterm pre-labor 
rupture of fetal membranes, preterm birth, and low 
birth weight, hypertension, and chorioamnionitis.24 

Furthermore, maternal periodontitis may also influ-
ence the risk of asthma in the offspring.25 

Nevertheless, some positive effects have been 
observed in the presence of microbial aromatic 
hydrocarbons and extracellular vesicles in cord 
blood and amniotic fluid for conditions such as dia-
betes, food allergy, neonatal necrotizing enterocolitis 
(NEC), or autism spectrum disorder.26

Table 1. Microbiota changes during pregnancy and maternal and fetal clinical conditions: human-based evidence.
Microbiota derived changes during pregnancy Clinical conditions Reference

Vaginal microbial lower diversity and decreased abundance of 
Lactobacillus crispatus.

Preterm delivery. 23

Maternal oral microbiota dysbiosis with prevalent pathogenic microbes, 
leading to maternal periodontitis and gingivitis.

Pre-labor rupture of membranes, preterm birth, and low birth 
weight, hypertension and chorioamnionitis, and risk of asthma in 
the offspring.

24,25

Presence of microbial aromatic hydrocarbons and extracellular vesicles in 
cord blood and amniotic fluid.

Increased fetal growth, amelioration of diabetes, food allergy, 
neonatal necrotizing enterocolitis, or autism spectrum disorder

26

Increased proinflammatory cytokines, significant differences in UniFrac 
dissimilarity, Shannon diversity, and the presence of Fusobacteria and 
Deferribacteres.

Gestational diabetes mellitus 20

Increased intestinal Proteobacteria and Actinobacteria with decreased 
abundance of Prevotella, Varibaculum, Lactobacillus, and 
Porphyromonas.

Preeclampsia 27,28

Increased intestinal Bacteroides, Faecalibacterium, and Lachnospira with 
decreased Enterococcus and Acinetobacter.

Fetal growth restriction 29
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Exploring the bidirectional relationship between 
maternal microbiota and pregnancy complications

The interplay between host inflammatory processes 
and microorganisms are involved in conditions such 
as GDM, pre-eclampsia, and preterm birth.17 

During the first trimester, an increase in inflamma-
tory markers, a decrease in microbial metabolites, 
such as short chain fatty acids (SCFA), and micro-
bial shifts have been observed.30 These changes in 
inflammatory and microbial biomarkers may pro-
vide an early opportunity to predict and prevent 
pregnancy complications. In addition, the women 
microbiome may not only be related to the women's 
health but also to the fetal health and development as 
well as pregnancy outcomes. Despite the debate on 
in utero microbiome exposure,31 maternal microbial 
metabolites and also microbial extracellular vesicles 
have been shown to affect the fetoplacental unit. For 
example, several groups have recently demonstrated 
the effect of maternal microbiota and microbial 
metabolites on placental development in mice,32,33 

and Li et al. reported an in-utero metabolome origi-
nating from the maternal microbiome in 
humans.17,34 In addition to deepening our under-
standing of this research area, we also need to gain 
more knowledge of how well defined pre/pro/post- 
biotics given to the mother can improve fetal devel-
opment and shape offspring health.

Perinatal factors and neonatal microbiome

Influences of maternal factors on neonatal gut 
colonization and health outcomes

The assembly of the infant’s gut colonization is 
a pivotal process, influencing their health and 
development,35 especially during the first 2 years 
post-partum when the microbial composition 
tends to mature into an adult-like microbiota.36 

Bifidobacterium and Bacteroides emerge as critical 
factors in the early establishment of the infant gut, 
exerting a substantial impact on health outcomes.37 

Additionally, bioactive components in Human Milk 
(HM) function in a symbiotic manner, encompass-
ing both microbiota and prebiotics, such as HM 
oligosaccharides (HMOs).38 Furthermore, the con-
stituents of HM play a regulatory role in infant 
growth,39 as well as in shaping the composition of 
the intestinal microbiome,40 and fortifying the 

immune system.41 Yet, maternal factors, such as 
diet, antibiotic usage, genetics, and the mode of 
delivery exert a notable influence on the composi-
tion of HM and its microbial diversity.42 These 
fluctuations, in consequence, possess the potential 
to influence infant outcomes, underscoring the 
rationale for maternal interventions to address neo-
natal health proactively.

Methodological challenges and future directions in 
studying human milk composition and its impact on 
infant health

Several methodological challenges have surfaced in 
the examination of HM composition and its repercus-
sions on infant health, microbiome engraftment, and 
development. These include the precise and reliable 
quantification of both known and novel components 
through untargeted omics approaches.43 Additional 
challenges in studying HM involve daily and feeding 
variations, hindmilk and foremilk distinctions, diur-
nal fluctuations, ethnicities, and compositional het-
erogeneity among other covariates.44 Future 
initiatives should aim at maternal-neonatal micro-
biota care, vertical transmission of antibiotic resis-
tance genes, microbial modulation, and HM-infant 
microbiota restoration. The importance of live 
biotherapeutics, probiotics, genome-wide association 
studies, and regulatory factors cannot be overstated. 
Identifying microbial markers and leveraging benefi-
cial compounds from HM and feces offer promising 
pathways for improving mother-infant well-being. 
Table 2 shows examples of potential biotherapeutics 
derived from milk components and supplements that 
could be used to fortify formula milk that have shown 
potential benefits for infants. Knowledge of humans 
in this field remains scarce, and studies have mostly 
been conducted in animals, although with positive 
effects shown,32 clinical studies in humans are yet to 
be conducted.

Microbiota dynamics post-birth: health 
evidence

Early-life microbiota dynamics and the impact on 
long-term health outcomes

Literature suggests that the first year after birth 
constitutes a critical time frame that may impact 
long-term health outcomes,57 in which various 
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mechanisms have been described linking modula-
tion of gut microbiota, gut permeability, epige-
netics, and immune responses. The establishment 
of early microbiota plays a pivotal role in determin-
ing susceptibility to dysbiosis, wherein the absence 
of specific microbial species in infants may elevate 
the likelihood of various diseases. Notably, main-
taining a diverse and beneficial microbiota is 
imperative, where its loss has been shown to 
increase predisposition to chronic inflammatory 
conditions, such as allergies, inflammatory bowel 
diseases (IBD), autoimmune diseases, metabolic 
disorders, neurodegenerative and neurodevelop-
mental disorders, and cancer.58 Environmental fac-
tors encompass the exposome, understood as the 
exposures that an individual comes across through-
out life, such as dietary habits and food additives 
found in ultra-processed foods (UPFs), including, 
select synthetic dietary emulsifiers that could exert 
profound influences on the intestinal microbiota in 
a way that potentiate chronic intestinal inflamma-
tion and associated downstream diseases.59–61 

These can induce shifts in microbial balance, either 
compositionally or functionally, thereby shaping 
the trajectory of disease development.62,63 Of 
note, these recent studies on diet–microbiota inter-
action highlighted the central role played by micro-
biota encroachment within the normally sterile 
inner mucus layer, opening innovative therapeutic 
approaches for the prevention of microbiota- 
driven chronic inflammatory conditions.63

Interventions and future directions for improving 
post-birth microbiota health

Moreover, it is crucial to underscore that within the 
first 2 years after birth, HM emerges as one of the 

primary nutrient sources, along with weaning and 
the introduction to solid foods. These factors are 
critical for the subsequent development of gut 
microbiota and the reduced risk of the onset of 
food allergies.64 Yet, in instances where HM is una-
vailable, the importance of fortified formula milk 
enriched with probiotics and prebiotics could be 
a valid alternative, where numerous studies have 
highlighted their critical contribution to delivering 
essential nutrients and cultivating a favorable micro-
bial environment.65 More research is needed to 
understand early microbial colonization, environ-
mental factors, and subsequent health outcomes, in 
order to advance our understanding of their applica-
tions to improve clinical outcomes during this cri-
tical developmental window.66 Future investigations 
will have to consider confounding factors like anti-
biotic use, probiotics, and dietary information. 
Global initiatives such as the Human Microbiome 
Action67 and the MicrobiomeSupport Association68 

aim to standardize methodologies for studying the 
microbiome’s impact on health, emphasizing the 
ongoing need for refinement and standardized 
approaches to analyze and interpret microbiome 
composition and function. Moreover, interdisciplin-
ary approaches involving multi-omics data, artificial 
intelligence, and big data analysis are in develop-
ment. Additionally, precision nutrition, incorporat-
ing genetics, epigenetics, microbiome, and health 
data holds promise for addressing health 
disparities,60,69 but necessitates further exploration 
for effective applications. Shifting focus from indivi-
dual bacterial strains to the functionality of the 
microbiome is crucial for targeted interventions. 
There are incompletely understood aspects, such as 
the immune memory and its interplay with dysbiosis 
in NCDs. Furthermore, the role of postbiotics, 

Table 2. Examples of milk sourced compounds and supplements with potential functional properties for infant health and 
development.

Milk sourced compounds and supplements with 
potential functional properties Potential benefit Reference

Fat globules and Lactoferrin Neurodevelopment, growth, and reduced risk of respiratory adverse events and diarrhea. 45,46
Betaine Akkermansia abundance modulation and long-term metabolic health. 47
Butyrate Food allergy 48
Glycosaminoglycans Infection modulation and intestinal metabolism. 49
Lacticaseibacillus rhamnosus GG Metabolic dysfunction, allergic manifestations, and atopic dermatitis in children. 50–52
Microbial strains of Bifidobacterium, Lactobacillus, 

Bacteroides, Enterococcus, Streptococcus.
Reduce the risk of allergic asthma development. 53

HMO Necrotizing Enterocolitis 54
Immunoglobulin A Patterns of bacterial recognition and immune training contribute to passive immunity in 

infants by attaching to the mucosal surface of enterocytes and neutralizing potential 
threats directly.

55,56
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defined as “a preparation of inanimate microorgan-
isms and/or their components that confers a health 
benefit on the host”, as stated by the International 
Scientific Association for Probiotics and Prebiotics 
(ISAPP),70 represent a promising avenue for study 
and potential health interventions, where conditions 
like autism and depression present opportunities, 
with inflammation as a focal point for potential 
prevention and treatment, contributing to a more 
nuanced understanding of microbiome-related 
therapeutics.

Microbiome-NCD connections unraveled

Microbiota-driven pathophysiological mechanisms 
and disease susceptibility

The pathophysiological connections still remain 
unveiled with regards to the microbiota, gut, and 
brain and conditions such as allergies, IBD, obesity, 
depression, autism, and celiac disease.71 An under-
lying mechanism involved could be mediated by 
the interaction between microbiota-derived meta-
bolites with Toll-like receptors and NOD-like 
receptors, playing a role in antimicrobial peptide 
production, immune cell recruitment, and the 
onset of pathologies such as NEC.72 This suggests 
that personalization accounting for microbiota 
composition is relevant to prevent and treat dis-
ease. Furthermore, the loss of specific microbial 
species in infants may increase the risk of diseases 
such as celiac disease,73 emphasizing the signifi-
cance of preserving a diverse microbiota. 
Additionally, the pathological mechanisms that 
denote disease in early life can also be explained 
by increased gut permeability and zonulin- 
mediated mechanisms74 that can precede the 
onset of the disease,75 where an already existing 
epithelial barrier leak, and increased zonulin pro-
duction may facilitate susceptibility to transloca-
tion of microbiota-produced lipopolysaccharides 
(LPS).76 Research shows that to improve our 
understanding of these mechanisms, we need to 
delve into microbiome−host immune system inter-
actions depicting luminal ligands such as T cell 
receptors and antigens, microtubule-associated 
proteins, and pattern recognition receptors, bile 
acids and farnesoid receptors, SCFA, and formyl 
peptide receptors.77

Western dietary habits and their impact on gut 
microbiota and non-communicable diseases

Western dietary habits characterized for being high 
in fats, sugars, calories, and highly processed foods 
or UPFs have been linked to changes in gut micro-
biota and NCDs.78 UPFs are understood as those 
with five or more ingredients along with salt, oil, 
sugar, fats, other substances such as hydrolyzed 
protein, modified starches, thickeners, and various 
additives whose purpose is to enhance sensory 
stimulus.79 These can impact disease through mod-
ulation of the intestinal microbiota by inferring 
dysbiosis and facilitating the production of meta-
bolites and other factors that can activate neuronal, 
endocrine, and immune pathways. In addition, 
theories such as “germ-organ theory of NCDs”16 

outline the effect of dysbiosis as one of the causes of 
NCDs due to the changes in bacteria, and conse-
quently, changes in the production and concentra-
tion of microbiota-derived metabolites. Preclinical 
data from animal studies have indicated that food 
additives such as carrageenan, carboxymethyl cel-
lulose (CMC), and Polysorbate 80 (P80) can facil-
itate the entry of bacteria into the mucosal layer, 
modulate intestinal microbiota diversity, and con-
sequently increase the risk of disease.80 We still do 
not understand the long-term effects, and some 
individuals may be more susceptible than others 
to the detrimental effects of dietary emulsifiers, 
necessitating a personalized approach. In pediatric 
populations exposed to UPF, those exposed to high 
sugar and color additives have been seen to have 
detrimental long-term effects on health, increasing 
risk to hyperactivity, impairments in hippocampal- 
dependent episodic memory, and obesity.81 

Research seems to be gapping knowledge on the 
impact of UPF components on health in relation to 
microbiota in the long term at different stages in 
life, and the challenge radiates in exploring this 
phenomenon accounting for the inter-individual 
microbial compositional variance.82 Nevertheless, 
research conducted on animals has reported the 
potential use of probiotic strains of Akkermansia 
muciniphila, such as the #BAA-835 (ATCC) strain, 
in mitigating the effects of dietary emulsifiers on 
the host and its microbiota.63 This probiotic strain 
may contribute to an increased immune response 
and mucus secretion, thereby facilitating mucus 
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turnover and leading to a reduction in risk.63 

Research in this line could drive product reformu-
lation, tailored dietary guidelines, and probiotic 
recommendations.

Microbes in NCDs: attenuation and 
management

Strategies for attenuating pathogenic effects of gut 
microbiota in non-communicable diseases

An adequate gut microbial ecosystem throughout 
all stages in life could reduce the risk of NCDs 
onset, where metabolite production has been 
linked to inflammatory and metabolic diseases.83 

Bacteria can act opportunistically and as patho-
bionts, expressing pathogenic traits under specific 
conditions, making infants predisposed to 
diseases.84 Beneficial gut bacteria play a crucial 
role in preventing opportunistic infections through 
various means, such as antimicrobial synthesis, 
SCFA production, bile acid metabolism modula-
tion, promotion of mucin formation, and main-
taining immune balance in the mucosal lining.85 

To this end, via multiple mechanisms that inhibit 
pathobionts, increase commensal bacteria, and 
modify bacterial metabolome, probiotics. synthetic 
communities, phages, diet, and fecal microbiota 
transplantation (FMT) administration may reduce 
the pathogenic effect of opportunistic, pathobiont 
bacteria, and ultimately persistent dysbiosis and 
increased gut barrier permeability.86 Clinical trials 
that use FMT in adults show that the transition 
phase in dietary interventions understood as the 
step between change from baseline and stabiliza-
tion represent a window of opportunity for effec-
tive probiotic mediated weight-loss dietary 
interventions, and management of recurrent 
Clostridioides difficile infection,87 where those that 
do not use FMTs lead to higher participant 
rebounds of adiposity, insulin resistance, and meta-
bolic syndrome after intervention when compared 
to dietary interventions that do consider FMTs.88,89 

In this line, Food and Drug Administration (FDA) 
approvals of FMT therapies for recurrent 
C. difficile infections include the RBX2660 (live 
biotherapeutic),90 and the Ser 109 (synthetic 

biotherapeutic).91 Furthermore, the use of vaginal 
microbiota transplants after antibiotics treatment 
to remove harmful pathogens successfully achieve 
donor strain engraftment and address severe vagi-
nal dysbiosis.92

Personalized microbiome-driven approaches for 
managing non-communicable diseases

Microbiome signatures are presently adequate for 
characterizing population-based risk,93 suggesting 
their potential sufficiency in stratifying individual 
disease risk. Consequently, in microbiome 
research, it is crucial to consider personalization 
and intervention across various levels, from indivi-
dual to subgroup levels. This involves a thoughtful 
selection of case/control groups to ensure mean-
ingful research outcomes and informed decision- 
making while accounting for the inter-individual 
variance of microbial traits.94 Furthermore, it is 
essential to highlight that microbial diversity fluc-
tuates throughout life, with circadian oscillations,95 

emphasizing the need for precise time collection of 
samples for accurate results.

Diet and microbiome: health implications

Impact of maternal diet on infant microbiome and 
immune development

Maternal diet significantly influences infant out-
comes, impacting both the newborn’s microbiome 
and the immune system. However, existing research 
has not fully considered microbial inter-individual 
variance in establishing optimal maternal nutrient 
recommendations during pregnancy.96 Maternal 
diet exerts a profound impact on both mothers and 
infants, yielding negative effects such maternal 
undernutrition contributing to stunting by 2 years 
of age and increased risk of atherogenic lipid 
profile.97,98 Emerging research underscores that the 
quality of the diet is linked to distinctive gut micro-
biota profiles,99 as well as HM bioactive compounds 
that associate with different dietary components. 
Nevertheless, covariates such as the mode of delivery 
and antibiotic intake are also factors involved in 
shaping microbial composition.42
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Interventions and strategies for modulating 
microbiota composition through maternal dietary 
change

Additionally, during pregnancy and lactation, 
short-term maternal dietary changes have been 
shown to influence the infant’s gut microbial func-
tional pathways.100 Studies indicate that manipu-
lating the microbiota can be effectively achieved 
through interventions such as via HM or specifi-
cally formulated substitutes, dietary fiber, and pro-
biotic supplements (Table 2). When personalized, 
these interventions not only impact the composi-
tion of your microbes but also influence the func-
tionality of the microbiota, leading to changes in 
metabolite production and, ultimately, impacting 
human health.101 Moreover, focusing on interven-
tions in early life, particularly during the ‘window 
of opportunity,’ holds special significance. Data 
indicates that the use of prebiotics, probiotic 
strains, synbiotics, and postbiotics in formula 
milk have the potential to influence the establish-
ment and development of infant gut 
microbiota.102,103 Comprehending the dynamics 
of the mother-milk-infant triad is vital for tailoring 
interventions aimed at the long-term health of both 
the mother and offspring. Current challenges 
include replicating the maturation of immunity 
and the microbiota seen in infants who are 
breastfed and delivered vaginally – these infants 
serve as the benchmark for comparison.

Microbial interventions for attenuation and 
management: challenges and opportunities

Challenges related to studying HM composition, 
including its complexity as a biofluid, as well as 
compositional variations within a day, between 
feeds, and among hindmilk and foremilk, neonate 
gender dependency, and the dynamic nature of HM 
during lactation, pose significant hurdles, highlight-
ing the need for advanced technologies.104 Disease 
prediction based on microbiome data encounters 
challenges, with individual variations often masking 
disease specificity, thus preclude making therapy 
predictions.105 These complexities contribute to the 
challenges associated with implementing microbial 
interventions for disease prevention. Moreover, the 
uncertainty surrounding the recommendations in 

general for the use of pre- or probiotics for attenu-
ating or managing infant diseases, due to the lack of 
conclusive evidence and the current non-consensus 
recommendation by scientific societies, further adds 
to the challenges in implementing microbial tar-
geted interventions. Nevertheless, the potential uti-
lization of -biotics by the population requires 
scientific transparency, effective communication, 
public engagement, and trust-building.106 This is 
essential to ensure the acceptance and understand-
ing of the relationship between humans and 
microbes and the potential benefits they exert on 
human health. Challenges persist in achieving con-
sistent effects in trials and to satisfy regulatory 
requirements, mainly due to the use of different 
technologies and to the barriers to consider 
a microbial strain as probiotic, where these must 
survive the digestive tract, compete against other 
microbes and antimicrobial activity, and once the 
bacteria has survived all the aforementioned bar-
riers, they have to engraft and compete against the 
already existing core of microbes within the host´s 
microbiota.107 Research has reiteratively shown het-
erogeneous use of methodologies,108 thus preclud-
ing the possibility to jointly shape population-based 
recommendations, where the targets, clinical condi-
tions, ingredient, durations, dosage, and matrix of 
preparations have been different.

Future perspectives and challenges

By considering future perspectives and challenges 
related to exploring microbiota-driven approaches 
for NCD prevention and treatment, it becomes 
imperative to focus on safeguarding the maternal- 
neonatal microbiota during pregnancy and investi-
gating the maternal exposome. To this end, we need 
randomized control trials that account for interindi-
vidual variations and microbiota-based stratification 
not only in early life, but there is also a lack of 
research in the field of aging. Additionally, under-
standing the short- and long-term health outcomes 
in infants resulting from early exposures is crucial, 
where the effect of UPFs and its ingredients includ-
ing food additives and their effect on microbiota and 
derived clinical outcomes remain an area that 
requires further investigation. Furthermore, delving 
into HM, infant formula, complementary feeding, 
genetic predisposition, and the restoration of infant 
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microbiota emerges as a promising avenue. 
A comprehensive approach is vital for effectively 
addressing pediatric allergies, given their potential 
shared mechanisms with conditions like depression, 
IBD, and autism. The epigenetic mechanisms, par-
ticularly those involving the production of immu-
nomodulatory components, such as interleukin-4, 
stand out as focal points in ongoing allergy research. 
As we move forward, an integrated scientific 
approach, such as those employing multi-omics 
analysis through artificial intelligence approaches 
applied to prospective birth cohorts, will be pivotal 
in unraveling the complexities of these future con-
siderations and meeting the associated challenges 
head-on.

Conclusion

The intricate relationship between microbiome and 
NCDs highlights the potential of microbiome-based 
interventions across all life stages. From prenatal 
influences on the fetal microbiome to perinatal fac-
tors shaping the infant’s microbial landscape and the 
critical first 1,000 days post-partum, the pivotal role 
of microbial dynamics in health and development 
becomes evident. It is clear that the interventions 
with probiotics, prebiotics, synbiotics, postbiotics, 
and most importantly, proper nutrition in modulat-
ing the microbiome for improved health outcomes, 
represent a path toward precision medicine. The 
“one size doesn’t fit all” aspect is crucial, acknowl-
edging the diverse influences on individual micro-
biomes and the need for personalized approaches. 
The challenges in implementation, highlighted in 
the study, underscore the necessity for advanced 
technologies, scientific transparency, effective com-
munication, and public engagement. Future per-
spectives call for a comprehensive understanding 
of maternal-neonatal microbiota, investigation of 
the maternal exposome, and exploration of HM’s 
role in restoring infant microbiota. An integrated 
scientific approach, incorporating multi-omics and 
addressing challenges head-on, will be essential for 
realizing the full potential of microbiome-based 
interventions in revolutionizing healthcare and 
enhancing well-being. In essence, early-life micro-
biome interventions hold substantial potential for 
precision medicine and primary prevention strate-
gies to ameliorate the burden of NCDs.
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